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ABSTRACT Device-to-Device (D2D) communications underlaying cellular networks have emerged as a
necessity for a substantial increase in the system throughput and the number of active devices for the
future cellular networks. In underlay D2D networks, it is conventional to use different interference man-
agement (IM) techniques to allow D2D transmitters to reuse the cellular users’ subcarriers. Conventionally,
those IM techniques pair a specific number (one or more) of D2D transmitters to each subcarrier and/or
allow each D2D transmitter to transmit on a specific number of subcarriers simultaneously in order to
achieve the target rates. Due to the mixed-integer nature of those IM techniques, convex optimization
techniques can not be used, and usually complex heuristic or game-theoretic approaches are exploited. In this
paper, we introduce a reduced-constraints approach to seek sub-optimal joint power allocation and channel
assignment solutions for two non-convex, mixed-integer, and non-linear programs (MINLP). Specifically,
via the reduced-constraints approach and variable transformation techniques, we can exploit primal-dual
algorithms to solve system power minimization and energy-efficiency maximization problems. Extensive
numerical simulation results show that the proposed approach outperforms state-of-the-art techniques.

INDEX TERMS Device-to-Device, underlay cellular networks, multi-pair D2D, resources allocation, power
minimization, energy efficiency, primal-dual algorithm, reduced-constraints.

I. INTRODUCTION
Recently, Device-to-Device (D2D) communication arose as a
future technology to improve utilization and enhance spectral
efficiency needed for a fully connected world. In D2D com-
munication, devices in close proximity exchange information
with each other directly rather than via the evolvedNode Base
(eNB), while the eNB takes control of resources allocation in
order to efficientlymanage interference. As ameans for direct
communication between devices in proximity underlaying
cellular networks, D2D has emerged as a key technology
with promises to improve utilization, energy efficiency (EE),
and spectrum efficiency. Moreover, D2D communication
could support some interesting features such as low power,
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short-range, long battery life, and massive connectivity for
enabling Internet-of-Things (IoT) deployment underlaying
cellular network [1], [2]. Additionally, D2D communication
provides several benefits for the core network including load
balancing, traffic offloading, better coverage for edge users,
and satisfying the quality of service (QoS) requirements [3],
[4]. The Long-Term Evolution (LTE) network standard has
defined two D2D communication schemes. In the first one,
D2D nodes reuse the available resources of the cellular users’
equipment (UE) in a non-orthogonal manner, which is known
as the reuse or underlay mode, while in the second scheme,
the available resources are divided between UEs and D2D
nodes, which is known as dedicated or overlaymode [5]. Con-
sequently, employing the non-orthogonal sharing concept in
the underlay D2D scheme enhances the users’ connectiv-
ity and the network throughput by improving the spectrum
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efficiency of the network. The efficient utilization of the
network resources can be achieved by careful resources allo-
cation and interference management to guarantee successful
decoding at the receivers [6]–[8]. In this paper, we focus on
resources allocation for underlay D2D communication in the
cellular network by concentrating on improving the EE of the
network.

Although the D2D concept provides promising benefits
to the core network, it exhibits some technical challenges
such as D2D peer discovery, mode selection, and interference
management between cellular users and D2D users. Peer
discovery has been considered in several studies including [9]
and the references therein, while the mode selection has
been heavily investigated in the literature [5]. On the other
hand, interference management and resource allocation have
been considered from different perspectives. Recently, sev-
eral investigations have focused on improving the perfor-
mance of D2D networks by assigning different resources,
such as the channel assignment and power allocation, to max-
imize the throughput or minimize the power consumption
under different power and QoS constraints [6], [10]. To cope
with the requirements of the green fifth-generation (5G) and
beyond 5G (B5G) networks, EE is considered to be one of the
most important metrics of the network. The maximization of
EE has recently gained a lot of attention for different network
architectures. In those schemes, the EE is targeted alone
or as a joint objective with other performance metrics such
as latency and sum-rate maximization. [11]–[15]. However,
the EE maximization problem is a non-convex problem [11],
in particular, fractional programming is used to solve this
problem.

In this paper, we consider an underlayD2D communication
model at which multi-pair of D2D coexists in an underlay
scheme with a group of cellular users equipment (UEs) in
the uplink scenario. Both D2D nodes and UEs are assumed
to be uniformly deployed within the cell. Each cellular user
uses only one resource block (RB), while each D2D trans-
mitter is allowed to reuse the RB of any UE for the uplink
purpose provided that all reuse partners can achieve their
pre-defined QoS requirements. Generally, resource reuse can
be done for the uplink as well as the downlink, which might
be quite similar, with careful consideration of some basic
differences. Those differences include (1) The interference
from the eNB in the downlink is much higher than the
interference from UE in the uplink, which limits the chan-
nel sharing availability. (2) The control is centralized at
the eNB, which has higher processing capabilities than the
UE, thus, allows better interference management. (3) The
traffic load in the uplink is less than in the downlink,
which gives higher spectrum efficiency when sharing the
uplink resources rather than the downlink. Consequently,
although utilizing the downlink is more challenging, it is
a promising approach that needs further research. How-
ever, uplink sharing is still dominant in D2D communi-
cation and has been used in several recent research as
in [16]–[18].

Usually, the formulations of interference management and
resource allocation problems in D2D networks involve binary
channel assignment parameters that lead to non-convex and
mixed-integer, non-linear programs (MINLP). Additionally,
several of those problems are non-deterministic polynomial-
time hard (NP-hard) problems [1], [4], [19]. The objective
of such a problem in the literature is to jointly assign sub-
carriers and powers to cellular and D2D users in order to
optimize certain system metric subject to satisfying QoS
Constraints. It is noteworthy that this type of problem is
usually accompanied by some constraints on the maximum
number of D2D pairs that can reuse the same subcarrier and
themaximum number of subcarriers that can be reused by any
D2D pair. Many research in the literature assumes that both
constraints are set to unity to reduce the complexity of the
assignment problem solution but on the expenses of losing
possible improvement of the spectral efficiency and energy
efficiency [1], [4], [6], [17], [20]–[22], while other techniques
set certain values (w, v), which complicates the solution to
get better performance by using heuristic [23], [24] and
game-theoretic approaches [25]. One common approach to
get a sub-optimal solution is to decompose the original prob-
lem into two sub-optimal problems for power allocation and
channel assignment [6], [20], [21], [23].

Unlike the existing research [16]–[18], [24], [25], this
paper investigates a generalized model that consider the per-
formance of both UEs and D2D pairs as well. For the sake of
making the best use of each RB and fully exploit the available
degrees of freedom of D2D network, we introduce the idea of
reduced-constraints optimization (RCO). In RCO, we reduce
constraints that limit the number of D2D reuse partners on
all RBs. In other words, we assume that all D2D transmitters
are allowed to reuse all available RBs simultaneously, while
all RBs can be reused by all D2D transmitters too under
QoS constraints. Then, a variable transformation technique is
applied to the reduced problem to get a convex form that can
be solved for optimal power allocation using the Lagrangian
function and the duality theory, which are typical in the
field of optimization [22], [26], [27]. By solving the convex
reduced problem, we get a sub-optimal subcarrier and power
assignment for the original problem. The proposed technique
leads to a simpler and more robust solution rather than the
existing heuristic algorithms. The major contributions in this
paper can be summarized as follows:

• Propose the reduced-constraints optimization technique.
• We applied RCO for solving two interesting optimiza-
tion problems,1 namely, the power minimization and the
EE maximization.

• A joint resource allocation scheme is proposed to
achieve the minimum total power consumption. The
proposed problem is characterized by a non-convex
MINLP nature, which is solved by applying RCO and

1For the sake of efficient resources utilization, we extend our work in [28],
which investigated the throughput maximization and power minimization of
the multi-pair D2D network, by concentrating on the EE perspective.
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a variable transformation technique. The new problem
is converted into a convex optimization problem that
has a primal-dual optimal solution. Thus, we apply the
duality theory and the Lagrangian function to propose a
primal-dual algorithm to find the optimal power alloca-
tion that minimizes the total power consumption.

• A joint resources allocation problem for EE maximiza-
tion, which again is a non-convex problem, is proposed.
Then, we applied the RCO and Dinkelbach method to
find the optimal EE. We propose a non-linear fractional
programming algorithm based on primal-dual update
equations for finding the optimal solution.

• The simulations results show that the proposed algo-
rithms provide substantial power minimization and
EE maximization compared to previous state-of-the-art
algorithms in [6], [20], [21], [23], [24], [28].

The rest of the paper is organized as follows. In Section III,
the overall system model is illustrated. Then, the power min-
imization and EE maximization problems are formulated and
the proposed algorithms are introduced in Section IV and
Section V, respectively. Moreover, simulation and discussion
are presented in Section VI. Finally, the paper is concluded
in Section VII.
Notations: Uppercase and lowercase boldface letters

denote matrices and vectors, respectively. Moreover, A � 0
stands for positive semi-definite matrix. The Gaussian distri-
bution with mean µ and variance σ 2 is denoted byN (µ, σ 2).
The symbol [·]+ denotes max (0, ·).

II. LITERATURE REVIEW
In the following, we shed the light on the research efforts
in the literature that investigated resources sharing in D2D
networks from different perspectives, various performance
metrics, and different applications [1], [4], [6], [10]–[13],
[19]–[21], [23], [29]–[32]. A single cell with one UE and one
D2D pair is considered in [10], where the eNB performs opti-
mal mode selection to maximize the sum-throughput under
power and rate constraints. In particular, the eNB optimizes
the transmission by selecting the proper mode, i.e. dedicated
or underlay mode. In [6], a joint RB scheduling and power
control problem is proposed to achieve high spectrum effi-
ciency and network throughput. Then, the original problem
is decomposed into two problems and then the problem is
solved iteratively. Besides, a heuristic algorithm based on a
column generation method is used to achieve near-optimal
solutions efficiently. The sum-rate maximization problem
is investigated in [29] for simultaneous spectrum access
of machine-to-machine (M2M) and human-to-human (H2H)
communications in uplink multi-pair underlaying cellular
communication. In [20], a three-step scheme is proposed
to solve resources allocation problem for maximizing the
cell throughput while guaranteeing quality-of-service (QoS)
requirements. Based on the minimum distance metric, D2D
pairs are admitted. Then, powers are allocated for the admit-
ted D2D pair and UE partners. Finally, a maximum weight
bipartite matching is utilized to select a UE partner for each

D2D pair to maximize the overall network throughput. The
authors in [21] introduced a two-step low complexity match-
ing algorithm for D2D pairing based on a ‘‘mutual selection’’
principle to maximize the cell sum throughput. A two-step
resource sharing algorithm is proposed in [23] with adapted
computational complexity according to the network condi-
tion. Their proposed algorithm relies on Lagrangian dual
decomposition, which is similarly adopted in this paper, to get
the optimal power allocation that maximizes the network sum
throughput.

A lot of research had been carried out in the domain of
EE of D2D networks. The authors in [16] have adopted an
EE maximization approach for a cooperative D2D network
where each D2D pair can reuse only one RB and each RB can
be reused only by one D2D pair. In [17], the authors inves-
tigated energy-efficient resource reuse strategies for down-
link D2D communication underlaying cellular networks.
They proposed an iterative algorithm, based on non-linear
fractional programming and utilizing Karush-Kuhn-Tucker
(KKT) conditions, to maximize the total EE of all the D2D
links by joint power control and D2D-UE matching scheme.
However, the allocated power toUEs is fixed and each RB can
be reused only by one D2D pair, which reduces the overall
cell energy efficiency. In [24], the authors have proposed
a heuristic approach to iteratively optimize the uplink RBs
assignment and power allocation in D2D underlying cellular
networks. Specifically, they divided the problem into two
sub-problems. First, they allocate equal power for all RBs
and propose a many-to-many heuristic matching algorithm to
assign RBs, which increases the complexity of the proposed
algorithm. Then, they exploit the difference between concave
functions to allocate power to all RBs.

The authors in [11] investigated different resources allo-
cation schemes for EE maximization in various 5G wire-
less networks. In [12], the energy efficiency of a single cell
D2D-cellular converged network is studied and the optimal
D2D distance tomaximize EE for video delivery is addressed.
However, D2D overlay mode is assumed therein. Moreover,
the effect of different network parameters, such as users’
density, eNBs’ density, and requested data rates on D2D
communication in a multi-cell network is quantified in [13].
Then, an EE model is developed, where the EE is evaluated
in both underlay and overlay modes with various offload-
ing radius. In [33], the authors used a penalty function to
eliminate part of constraints iteratively. Then, a two-layer
approach is proposed, where optimal power and channel
assignment are allocated iteratively. A generalized model is
proposed in [34], where multi-cell and multiple bands are
considered under a stochastic geometry framework. On the
other hand, several game theory-based approaches have been
proposed for EE resource allocation in D2D networks [18],
[25]. In [18], a non-cooperative game theory-based resource
allocation approach is used at which each D2D link selfishly
adjusts its power and subcarrier allocation to maximize its
own EE assuming a fixed resource allocation of other links.
However, this approach certainly is not spectral-efficient.
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Moreover, in [25] another coalition game is used to address
the joint mode selection and resource allocation for both D2D
and cellular links. Nevertheless, the authors assumed that
D2D links only achieve their minimum required rates, which
might not fully improve network performance.

III. SYSTEM MODEL
In this paper, the focus is on a single-cell uplink scenario,
as shown in Fig. 1, where the eNB is surrounded by M
uniformly-distributed UEs within a cell of radius rmax and
N uniformly-distributed D2D pairs assuming the maximum
distance between each D2D pair is rdmax . Each D2D pair is
allowed to reuse any channel2 from those that are originally
occupied by UEs forming a reuse partner for the uplink
transmission, while each UE can use only one channel with
no interference among UEs provided that all reuse partners
can achieve minimum pre-defined QoS requirements. Mean-
while, all nodes are equipped with a single antenna. Without
loss of generality, the cell is assumed to be fully loaded,
similar to [20], [23], which means that all UEs are active, and
hence, all channels are used, i.e., the mth channel is assigned
to the mth UE.

FIGURE 1. System model: Multi-pair of D2D devices are reusing the
uplink cellular resources of M UEs.

We consider a distance based path-loss model defined as
Pµ = Pη gη,µ L d−αη,µ, where Pη and Pµ are the transmitted
and the received powers, respectively, gη,µ and dη,µ are the
Rayleigh fading channel power gain and the distance between
node η and node µ, α is the path-loss exponent, and L is the
path-loss constant. Let hη,µ = gη,µ L d−αη,µ be the channel
power gain between node η and node µ. Further, denote by
hu2bm , hu2dm,n , h

d2b
n,m , and h

d2d
n,k,m the channel power gains between

themth UE and the eNB, themth UE and the nth D2D receiver,
the nth D2D transmitter and the eNB in the mth channel,
and the nth D2D transmitter and the k th D2D receiver in the

2The assumption that each D2D pairs can share only one channel at
maximum is to enforce fairness between D2D pairs or in some cases it is
a hardware constraint.

mth channel, respectively. Further, under the assumption that
the channel state information (CSI) is available at the eNB,
it is possible to assign different channels and allocate power
to D2D pairs.

Let xum and xdn,m be the transmitted signals of the mth UE
and the nth D2D transmitter in the mth channel, assuming a
normalized power such thatE[|xum|2] = 1 andE[|xdn,m|2] = 1.
The received signals at the eNB and the k th D2D receiver in
the mth channel are given respectively as follows:

ybm =
√
Pmhu2bm xum +

N∑
n=1

an,m
√
Pn,mhd2bn,m xdn,m + n

b
m, (1)

ydk,m =
√
Pmhu2dm,k x

u
m +

N∑
n=1

an,m
√
Pn,mhd2dn,k,m xdn,m

+ ndk,m, (2)

where Pm and Pn,m are the transmitted power of the mth UE
and the nth D2D transmitter in the mth channel, respectively,
nbm and ndk,m are the additive white Gaussian noise (AWGN)
at the eNB and the k th D2D receiver in the mth channel,
respectively, with a distribution N (0,N0), where N0 is the
noise power. The channel assignment coefficient is defined
as follows:

an,m ,

{
1, the nth D2D pair uses the mth channel,
0, otherwise.

(3)

Hence, the sum throughput is given by:

T (A, P) =
M∑
m=1

log2
(
1+ γ um

)
+

N∑
n=1

M∑
m=1

an,m log2
(
1+ γ dn,m

)
, (4)

where

γ um =
Pmhu2bm

N0 +
∑N

n=1 an,mPn,mh
d2b
n,m

, (5)

and

γ dn,m =
Pn,mhd2dn,n,m

N0 + Pmhu2dm,n +
∑N

k=1
k 6=n

ak,mPk,mhd2dk,n,m

, (6)

are the signal-to-interference-and-noise-ratio (SINR) at the
eNB and the nth D2D receiver in themth channel, respectively.
The channel assignment matrix is A ∈ {0, 1}N×M , and P =
[pu, Pd ], pu and Pd are the UE and the D2D transmit powers.
It is worth noting that in [28], we proposed a primal-dual
algorithm to maximize the sum-throughput.

IV. POWER MINIMIZATION PROBLEM
Resources allocation in such an underlay cellular network is a
crucial process in optimizing the performance of the network.
Therefore, suitable uplink resources allocation needs to be
controlled by the eNB to manage the interference between
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UEs and D2D pairs and between D2D pairs themselves to
achieve the pre-defined QoS constraints. In the following
sub-sections, the total power optimization problem is for-
mulated, then we apply the reduced-constraint transforma-
tion, followed by finding the optimal solution of the reduced
problem using the Lagrangemultipliers and duality theorems.
In addition, a primal-dual algorithm is proposed to find the
optimal primal-dual parameters.

The objective of the proposed joint channel and power
allocation problem is to find the optimal transmit powers, P∗,
and the optimal assignment matrix, A∗, that minimize the
total cell transmit power and achieve the QoS constraints
for all nodes. The constrained problem can be formulated as
follows:

minimize
A,P�0

M∑
m=1

Pm +
M∑
m=1

N∑
n=1

Pn,m

subject to C1 : log2
(
1+ γ um

)
≥ Rum,∀m ∈M,

C2 :

M∑
m=1

an,m log2
(
1+ γ dn,m

)
≥ Rdn ,

∀n ∈ N ,
C3 : Pm ≤ Pmax ,∀m ∈M,

C4 :

M∑
m=1

Pn,m ≤ Pmax ,∀n ∈ N ,

C5 :

N∑
n=1

an,m ≤ w,∀m ∈M,

C6 :

M∑
m=1

an,m ≤ v,∀n ∈ N ,

C7 : an,m ∈ {0, 1} ∀n ∈ N , and ∀m ∈M, (7)

where Rum is the minimum required rate for the mth UE
and similarly, Rdn is the minimum required aggregated rate
for the nth D2D pair. The minimum required rates are to
guarantee fairness among UEs and D2D pairs, while Pmax is
the maximum transmit power for any UE or D2D transmitter.
Constraints C1 and C2 ensure the minimum required rate
of each UE and D2D pair. Meanwhile, constraints C3 and
C4 limit the assigned powers for UEs and D2D pairs to the
maximum allowable power level Pmax . Further, constraints
C5 and C6 are usually used in the literature to choose the
maximum number of D2D pairs that can reuse the same
channel and the maximum number of channels that can be
reused by any D2D pair to be w and v, respectively. Although
the objective function is linear, constraints make this problem
a non-convex MINLP.

A. REDUCED-CONSTRAINTS OPTIMIZATION (RCO)
Instead of choosing the parameters w and v and using heuris-
tic or game-theoretic approaches to solve (7), we propose
another effective but simple approach for the total transmit
power minimization. In this approach, we assume the same
problem as (7), except that we reduce constraints C5, C6 and

C7 to allow all D2D pairs to reuse any available channel
under the other QoS constraints. Exploiting this approach
has manifold benefits such as 1) the problem is substan-
tially simplified, 2) the problem can be easily transformed
into a convex problem under a realistic assumption, 3) the
duality theorem can be exploited to obtain a near-optimal
solution, and 4) the cell capacity with D2D communication
can be tightly reached. That is, the solution itself is systematic
though it is not used before (because the original problem
is a non-convex MINLP) to solve the power minimization
problem or EE maximization problem in the next section
for this model. In addition, the reduced problem leads to an
analytic solution instead of the complex heuristic algorithms
that exist in the literature. Additionally, in the following,
we describe how tomake the channel assignment based on the
allocated power in each channel. Then, we relate the solution
of the reduced problem to the solution of the original problem
in (7).

B. CHANNEL ASSIGNMENT IN RCO
The channel assignment can be done by inspecting the opti-
mal power allocation. The eNB assigns the mth RB to the nth

D2D pair, i.e., an,m = 1, if any power level is allocated to
the mth RB of the nth D2D pair, i.e., Pn,m > 0, otherwise,
the mth RB is not assigned to the nth D2D pair, i.e., an,m = 0.
This assignment is feasible since any D2D pair is allowed
to reuse any number of RBs and any RB can be reused by
any number of D2D pairs. Therefore, we can express our
RCO-based transmit powerminimization problem as follows:

minimize
P�0

PT (P) =
M∑
m=1

Pm +
M∑
m=1

N∑
n=1

Pn,m

subject to C1,C3,C4

C̄2 :

M∑
m=1

log2
(
1+γ dn,m

)
≥ Rdn , ∀n ∈ N , (8)

By comparing (7) and (8), the channel assignment param-
eters in C2 in the previous equation are removed in con-
straint C̄2. It is noteworthy and we highlight that the
reduced/reformulated problem in (8) is not equivalent to the
original problem in (7) and the solution for both problems
is not the same, neither the optimum power allocation nor
the total power consumption (and also the channel assign-
ment is different). In other words, we are proposing another
approach for achieving a sub-optimal power minimization
via using RCO. Thus, C5 and C6 in (7) are not necessarily
satisfied due to constraints reduction.

C. ON THE RELATION TO THE ORIGINAL PROBLEM
The problem in (8) is a reduced version from the problem
in (7). In the following, we want to give insights into the
solution of the reduced problem and its relation to the original
problem. First, the problem in (7) is a general problem that
is considered in the literature, where 1 ≤ w ≤ N and
1 ≤ v ≤ M . In [18], [23]–[25], each D2D pair can reuse
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all RBs, i.e. v = M . Also, each RB can be reused by
all D2D pairs, i.e., w = N . Thus, the problem considered
in [18], [23]–[25] is a relaxed version of the problem in (7)
since the set of feasible solutions of the problem in (7) is a
subset of the set of feasible solutions for the relaxed problem.
As a result, if the optimal solution of the relaxed problem
is in the set of feasible solutions of the problem in (7), this
solution is optimal for the problem in (7). Otherwise, it is a
sub-optimal solution. For example, without loss of generality,
suppose for a particular D2D pair v = 3 RBs, and the solution
of the relaxed problem assigned no greater than 3 RBs, then,
the solution of the relaxed problem is an optimal solution for
the problem in (7) for this particular D2D pair. Otherwise, it is
a sub-optimal solution.

Now, for the problem in (8), each D2D pair can reuse all
RBs, and each RB can be reused by all D2D pairs, i.e., v = M
and w = N . Although we reduced the channel assignment
constraints, the assignment parameters are not discarded and
their values are decided using the optimal power allocation
as described in the previous subsection. Thus, similar to the
problem in [18, 23, 24, 25], the solution of the problem
in (8) is considered a sub-optimal solution of the problem
in (7) unless the solution is in the set of feasible solutions
of the problem in (7). For example, for the solution of the
problem in (8), suppose the number of RBs that can be
reused is no greater than v for all D2D pairs, and each RB
can be reused by a maximum of w D2D pairs, this solu-
tion is an optimal solution for the problem in (7). Other-
wise, the solution is a sub-optimal solution for the original
problem.

D. THE PROPOSED SOLUTION
In order to solve the problem given in (8), a variable transfor-
mation technique is used at high SINR by letting qm = logPm
and qn,m = logPn,m ∀n,m, thus, Pm = 2qm and Pn,m = 2qn,m .
Hence, required rate constraints become concave functions,
which is a logarithm function of the sum of exponential func-
tions. Thus the problem is converted to a convex optimiza-
tion problem. As long as the problem (or the approximated
problem) is convex, using the Lagrangian function and the
duality theory is typical in the field of optimization and also
is considered in recent research as in [22], [26], [27]. Besides,
the reduced problems open new horizons for future research
problems and can be exploited to simplify the problem under
additional constraints such as delay, caching, and age of
information constraints. Moreover, the transmitted powers
and the minimum required rates can be chosen to ensure that
the achieved rates are in the achievable rate region3 such that
Slater’s condition holds. Therefore, there exists a primal-dual
optimal solution and there is no duality gap. Hence, the dual-
ity theory can be applied to get the optimal power allocation
using the Lagrangian function. We derived the Lagrangian

3The achievable rate region is convex [35].

function in Appendix A, which is given as follows:

L (P, µ, λ) =

M∑
m=1

(1+ λum)Pm +
M∑
m=1

N∑
n=1

(1+ λdn )Pn,m

−

M∑
m=1

µum log2
(
γ um
)
+

M∑
m=1

µumR
u
m

−Pmax

(
M∑
m=1

λum +

N∑
n=1

λdn

)

−

N∑
n=1

M∑
m=1

µdn log2
(
γ dn,m

)
+

N∑
n=1

µdnR
d
n . (9)

Accordingly, the dual function is given by:

D (µ, λ) = min
P�0

L (P, µ, λ) . (10)

The Lagrangian function L (P, µ, λ) is a convex function
and we define the gradient of the Lagrangian function as:

OP L (P, µ, λ) |P=P∗ = 0. (11)

Consequently, solving for P∗, the optimal power allocation
for (8) is derived in Appendix B and is given by:

P∗m =

 µum

1+ λum +
∑N

n=1
µdnhu2dm,n

N0+P∗mhu2dm,n+Am,n


+

, (12)

P∗n,m =

 µdn

1+ λdn +
µumhd2bn,m

N0+
∑N

n=1 P
∗
n,mhd2bn,m

+ Bm,n


+

, (13)

where

Am,n =
N∑
k=1
k 6=n

P∗k,mh
d2d
k,n,m, (14)

and

Bm,n =
N∑
k=1
k 6=n

µdk h
d2d
n,k,m

N0 + P∗mh
u2d
m,k +

∑N
i=1
i6=k

P∗i,mh
d2d
i,k,m

. (15)

Hence, the optimal dual solution is given by:{
µ∗, λ∗

}
= arg max

µ,λ�0
D (µ, λ)

= arg max
µ,λ�0

L
(
P∗, µ, λ

)
. (16)

However, the closed-form solution of the set of
Equations (12-16) is very difficult to attain. Therefore,
a primal-dual algorithm is proposed, Algorithm 1, to find
the optimal-dual pair solution. The update equations for the
primal algorithm are given as follows:

Pm[j+ 1] =
[

µum[j]
1+ λum[j]+ Am,n[j]

]+
, (17)

Pn,m[j+ 1] =
[

µdn [j]
1+ λdn [j]+ Bm,n[j]+ Cm,n[j]

]+
, (18)
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where

Am,n[j] =
N∑
n=1

µdn [j]h
u2d
m,n

N0 + Pm[j]hu2dm,n +
∑N

k=1
k 6=n

Pk,m[j]hd2dk,n,m

,

(19)

Bm,n[j] =
µum[j]h

d2b
n,m

N0 +
∑N

n=1 Pn,m[j]hd2bn,m

, (20)

and

Cm,n[j] =
N∑
k=1
k 6=n

µdk [j]h
d2d
n,k,m

N0 + Pm[j]hu2dm,k +
∑N

i=1
i 6=k

Pi,m[j]hd2di,k,m

. (21)

While the update equations for the dual algorithm are
given as:

µum[j+ 1]=
[
µum[j]− α

u
m
(
Rum − log2

(
1+ γ um[j]

))]+
, (22)

µdn [j+ 1]=

[
µdn [j]−α

d
n

(
Rdn−

M∑
m=1

log2
(
1+γ dn,m[j]

))]+
,

(23)

λum[j+ 1]=
[
λum[j]− β

u
m (Pm[j]− Pmax)

]+
, (24)

λdn [j+ 1]=

[
λdn [j]− β

d
n

(
M∑
m=1

Pn,m[j]− Pmax

)]+
. (25)

Remark 1: The proposed solution is based primarily on
the convexity of the rate achievable region, therefore, the pro-
posed primal-dual algorithm will converge only under feasi-
ble rate constraints, i.e., the minimum rate constraints should
be in the rate achievable region.

V. ENERGY EFFICIENCY MAXIMIZATION PROBLEM
In this section, similar to (7) we exploit RCO for proposing an
RCO-based optimization problem that maximizes the system
EE as in (26). The EE is defined as the ratio between the
achievable throughput and the total transmit power, η(P) =
T (P)
PT (P)

where T (P) is given by (4) by removing the channel
assignment coefficients. The EE maximization problem can
be formulated as follows:

maximize
P�0

η(P) =
T (P)

M∑
m=1

Pm +
M∑
m=1

N∑
n=1

Pn,m

subject to C1, C̄2,C3,C4. (26)

Algorithm 1 Power Minimization Algorithm
1: Initialize P, µ, λ, ε, 1P , and j = 0
2: while 1P ≥ ε

3: j = j+ 1
4: Update the power allocation P using (17) and (18)
5: Update the dual parameters λ and µ using (22)-(25).
6: Update 1P = PT [j+ 1]− PT [j].
7: end
8: return P∗m = Pm[j+ 1] and P∗n,m = Pn,m[j+ 1]

The problem in (26) is not convex, which can be solved by
reformulating it into a non-linear fractional problem that can
be solved using the Dinkelbach method [36] as follows:

maximize
P�0

[T (P)− ν PT (P)]

subject to: C1, C̄2,C3,C4, (27)

where ν∗ = T ∗(P)
P∗t (P)

is the maximum EE that is achieved
when the maximum value of

[
T (P)− ν∗ PT (P)

]
= T ∗(P)−

ν∗ P∗t (P) = 0 [36]. Therefore, the original problem can
be solved by finding ν∗ and P∗, which can be obtained
by using Dinkelbach’s method [36] to find ν∗ iteratively
using non-linear fractional programming [36], [37]. For the
EE maximization, we use Dinkelbach’s method as a step
of the solution to transform the fractional problem into a
non-fractional problem. It is typical to use Dinkelbach’s
method since both the original and the new problems are
equivalent and the solution to both is the same and unique.
Using similar arguments of the convexity of the problem
in (27) as well as the Slater’s condition can be satisfied as in
the previous problems, the problem in (27) is a convex opti-
mization problem with strong duality. In addition, we derived
the Lagrangian function in Appendix C, which is given as
follows:

L (P, µ, λ) =

M∑
m=1

(1+ µum) log2
(
γ um
)
−

M∑
m=1

(λum + ν)Pm

+

N∑
n=1

M∑
m=1

(1+ µdn ) log2
(
γ dn,m

)
−

M∑
m=1

µumR
u
m −

N∑
n=1

µdnR
d
n

+Pmax

(
M∑
m=1

λum +

N∑
n=1

λdn

)

−

M∑
m=1

N∑
n=1

(λdn + ν)Pn,m. (28)

Accordingly, the dual function is given by:

D (µ, λ) = max
P�0

L (P, µ, λ) . (29)

The Lagrangian function L (P, µ, λ) is a concave function
and therefore,

OP L (P, µ, λ) |P=P∗ = 0. (30)

Consequently, solving for P∗, the optimal power allocation
is derived in Appendix D and is given by:

P∗m =

 1+ µum∑N
n=1

(1+µdn )hu2dm,n

N0+
∑N
k=1
k 6=n

P∗k,mh
d2d
k,n,m+P

∗
mhu2dm,n

+ λum + ν


+

,

(31)
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P∗n,m =

 1+ µdn

ν + λdn +
(1+µum)hd2bn,m

N0+
∑N

n=1 P
∗
n,mhd2bn,m

+ An,m


+

, (32)

where

An,m =
N∑
k=1
k 6=n

(1+ µdk )h
d2d
n,k,m

N0 + P∗mh
u2d
m,k +

∑N
i=1
i 6=k

P∗i,mh
d2d
i,k,m

. (33)

Hence, the optimal dual solution is given by:{
µ∗, λ∗

}
= arg min

µ,λ�0
D (µ, λ) = arg min

µ,λ�0
L
(
P∗, µ, λ

)
.

(34)

A primal-dual algorithm is proposed to find the
optimal-dual pair solution. The update equations for the
primal algorithm are given as follows:

Pm[j+ 1] =
[

1+ µum[j]
ν + λum[j]+ Am,n[j]

]+
,

Pn,m[j+ 1] =
[

1+ µdn [j]
ν + λdn [j]+ Bm,n[j]+ Cm,n[j]

]+
, (35)

where

Am,n[j] =
N∑
n=1

(1+ µdn [j])h
u2d
m,n

N0 +
∑N

k=1
k 6=n

Pk,m[j]hd2dk,n,m + Pm[j]h
u2d
m,n

,

(36)

Bm,n[j] =
(1+ µum[j])h

d2b
n,m

N0 +
∑N

n=1 Pn,m[j]hd2bn,m

, (37)

and

Cm,n[j] =
N∑
k=1
k 6=n

(1+ µdk [j])h
d2d
n,k,m

N0 + Pm[j]hu2dm,k +
∑N

i=1
i 6=k

Pi,m[j]hd2di,k,m

.

(38)

While the update equations for the dual algorithm are given
as:

µum[j+ 1] =
[
µum[j]+ α

u
m
(
Rum − log2

(
1+ γ um[j]

))]+
,

µdn [j+ 1] =

[
µdn [j]+α

d
n

(
Rdn−

M∑
m=1

log2
(
1+γ dn,m[j]

))]+
,

λum[j+ 1] =
[
λum[j]+ β

u
m (Pm[j]− Pmax)

]+
,

λdn [j+ 1]=

[
λdn [j]+ β

d
n

(
M∑
m=1

Pn,m[j]− Pmax

)]+
, (39)

where ν is given by Algorithm 2, similar to Algorithm 1
in [37], which iteratively solves for P∗ using the primal-dual
update equations and accordingly, updates ν such that
T (P∗)− ν PT (P∗) ≤ ε and ε is the required accuracy, which
also affects the convergence rate.
Remark 2: Similar to Remark 1, the minimum rate con-

straints should be in the rate achievable region to guarantee

Algorithm 2 EEMaximization Using Non-Linear Fractional
Programming
1: Initialize P, µ, λ, ε, and 1 = 1
2: while 1 ≥ ε
3: Solve the problem in (27) to get P∗ using the update

equations in (35) and (39) with ν
4: Update 1 = T (P∗)− ν PT (P∗)
5: Update ν = T (P∗)

PT (P∗)
6: end
7: return ν∗ = ν, T ∗ = T (P∗) and P∗T = PT (P∗)

that the proposed primal-dual algorithmwill converge. More-
over, when relaxing the minimum rate constraints, C1 and C2
in (26), the proposed EEmaximization algorithm achieves the
maximum sum-rate available under the EE maximization.

VI. PERFORMANCE ANALYSIS AND NUMERICAL
RESULTS
The purpose of this section is to address that the proposed
solutions achieve the required performance and give insights
into different parameters that affect the performance. The
simulation parameters are also adopted in [6], [20], [21], [23]
for D2D models. The simulation parameters are listed
in Table 1. Since we assumed that the cell is fully loaded,
in Table 1, the number of UEs is M = 10, which is the same
number of channels. Note that the SINR for all UE and D2D
pairs, Sum, and S

d
n , respectively, are chosen uniformly in the

range 0 : 10 dB. Therefore, the minimum required rates are
given by:

Rum = log2
(
1+ Sum

)
,

Rdn = log2
(
1+ Sdn

)
. (40)

TABLE 1. System parameters.

The performance of the proposed resources allocation
algorithms is measured in terms of the total power consump-
tion, energy efficiency, the total cell throughput gain, and the
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access rate of D2D pairs. The cell throughput gain is the
additional throughput that is achieved by D2D pairs when
reusing the available RBs, while the access rate is the ratio
between the number of the accessed D2D pairs to the number
of UEs. Figs. 2-7 compare the performance of the proposed
algorithms for different optimization objectives versus the
energy-efficient D2D algorithm in [24]. The authors in [24]
adopt the same model except that they do not assume a
fully-loaded cell and they use the extra available RBs to be
reused by D2D devices in addition to the used RBs. Further,
we compare the performance of our proposed algorithms
with the sum throughput maximization algorithms in [28] and
in [23], which outperforms the algorithms in [6], [20], [21].
Interestingly, the proposed algorithms have a substantially
enhanced performance when the noise power spectral density
is decreased, which reflects the design criteria that is based on
the high SINR assumption.

FIGURE 2. Comparing the total power consumption vs. the number of
D2D pairs for different objective functions and different SNR with rate
constraints.

FIGURE 3. Comparing the total power consumption vs. the number of
D2D pairs for different objective functions and different SNR without rate
constraints.

FIGURE 4. Comparing the energy efficiency vs. the number of D2D pairs
for different objective functions and different SNRs with rate constraints.

FIGURE 5. Comparing the energy efficiency vs. the number of D2D pairs
for different objective functions and different SNRs without rate
constraints.

FIGURE 6. Comparing the throughput gain vs. the number of D2D pairs
for different objective functions and different SNRs with rate constraints.

Figs. 2 and 3 depict the total power consumption for
all algorithms under different signal-to-noise-ratio (SNR).
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FIGURE 7. Comparing the access rate vs. the number of D2D pairs for
different objective functions and different SNRs with rate constraints.

The proposed power minimization algorithm minimizes the
total power consumption and outperforms all other algo-
rithms at the low SNR, as shown in Fig. 2. Specifically,
at an equal number of UEs and the accessed D2D pairs, the
proposed power minimization algorithm achieves,
approximately, 0.71 times the total power consumption of
our proposed EE maximization algorithm and the throughput
maximization algorithm in [28], and 0.4 times the total
power consumption of the throughput maximization algo-
rithm in [23]. However, its performance is limited by the
noise, specifically, in the low SNR regime. Thus, minimiz-
ing the total power consumption is worthless in the low
SNR regime when the number of the accessed D2D pairs
is relatively larger than the number of UEs in the cell,
approximately, the number of the accessed D2D pairs is 1.6
times the number of UEs. Besides, both proposed algorithms
outperform the energy-efficient D2D algorithm in [24]. On
the other hand, interestingly, the proposed EE maximiza-
tion algorithm reduces the total power consumption at high
SNR more than the proposed power minimization algorithm.
Specifically, at an equal number of UEs and the accessedD2D
pairs, the proposed EE maximization algorithm achieves,
approximately, 0.66 times the total power consumption of
our proposed power minimization algorithm, 0.42 times the
total power consumption of the energy-efficient D2D algo-
rithm in [24], 0.23 times the total power consumption of the
throughput maximization algorithm in [28], and 0.18 times
the total power consumption of the throughput maximization
algorithm in [23].

In Fig. 3, the minimum rate constraints, C1 and C2 in (8)
and (26), are removed to compare the total power consump-
tion when the maximum sum-rate is achieved, see Remark 2.
Without rate constraints, the proposed EEmaximization algo-
rithm outperforms other algorithms regardless of the SNR.
Specifically, at low SNR and at an equal number of UEs
and the accessed D2D pairs, the proposed EE maximiza-
tion algorithm achieves, approximately, 0.48 times the total

power consumption of the throughput maximization algo-
rithms in [28] and in [23]. The power consumption curve (red
dashed) of the proposed EE maximization algorithm goes
down when increasing the number of D2D pairs. We suggest
that this phenomenon results from the available diversity of
D2D pairs and the channel conditions. Specifically, as the
number of D2D pairs increases and the number of channels
is fixed, the probability that there exists a D2D pair with
better channel conditions increases. Thus, the total power
consumption decreases. This phenomenon starts to appear
when the number of D2D pairs is relatively larger than the
number of RBs.

In Figs. 4 and 5, the proposed EE maximization algo-
rithm outperforms other algorithms. Specifically, at high
SNR and at an equal number of UEs and the accessed D2D
pairs, the proposed EE maximization algorithm achieves,
approximately, 2.75 times the EE of our proposed power
minimization algorithm, 10 times the EE of the throughput
maximization algorithm in [28], and 18.75 times the EE of
the throughput maximization algorithm in [23]. It should be
clear that the EE in Fig. 4 is normalized to 1 Watt and the
typical allocated power is within mWatts and the maximum
is 24 dBm, which corresponds to 250 mWatts. Besides, there
are two different values for the noise power spectral density
to differentiate between two regimes, the high and the low
SNR. Thus, the high EE value is only an extreme case, and the
noise power spectral density may differ in practice. It is worth
noting that we did not plot the energy efficiency performance
of the proposed EE maximization algorithm at high SNR
in Fig. 5, i.e., in the case when there are no minimum rate
constraints since it is approximately doubles and the plot of
other algorithms will not be clear.

In Fig. 6, the throughput performance of the throughput
maximization algorithms, and the proposed EE maximiza-
tion algorithm outperform the proposed power minimization
algorithm at low SNR since the power minimization algo-
rithm is more sensitive to the interference at the low SNR
regime. At an equal number of UEs and the accessed D2D
pairs, the proposed power minimization algorithm achieves,
approximately, 0.45 times the throughput gain of our pro-
posed EE maximization algorithm, 0.42 times the throughput
gain of the throughput maximization algorithm in [28], and
0.3 times the throughput gain of the throughput maximization
algorithm in [23]. On the other hand, at high SNR, both the
proposed power minimization algorithm and the throughput
maximization algorithm in [28] outperform our proposed
EE maximization algorithm and the throughput maximiza-
tion algorithm in [23]. At an equal number of UEs and
the accessed D2D pairs, the proposed power minimization
algorithm and the throughput maximization algorithm in [28]
achieve, approximately, 1.16 times the throughput gain of
our proposed EE maximization algorithm, and 1.27 times the
throughput gain of the throughput maximization algorithm
in [23]. Without minimum rate constraints, the throughput
maximization algorithms try to achieve the boundaries of the
achievable sum-rate region and outperform the throughput
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performance of the proposed EE maximization algorithm
regardless of the SNR.

Fig. 7 shows that minimizing the total power consumption
reduces the number of accessed D2D pairs. The reason is that
the power minimization tries to satisfy the minimum required
rate and does not need to use more RBs, which reduces the
number of accessed D2D pairs. Meanwhile, maximizing the
throughput gives a priority to reusing more RBs, which gives
a higher probability of increasing the accessed D2D pairs.
This figure reveals that both the proposed EE maximiza-
tion algorithm and the throughput maximization algorithm
in [28] achieve 100% access rate, while the proposed power
minimization algorithm achieves approximately, 0.92 of the
full access rate at an equal number of UEs and the accessed
D2D pairs.

VII. CONCLUSION
In this paper, we investigated the problem of reducing
power consumption and improving the energy efficiency
of the multi-pair D2D communications underlaying cellu-
lar networks. The main focus is on exploiting the con-
vex optimization techniques to derive the optimal power
allocation and channel assignment coefficients to obtain
the maximum achievable performance, in terms of the
available energy efficiency and minimum transmit power,
instead of the existing sub-optimal and heuristic algorithms.
Specifically, we propose a primal-dual algorithm, where
the objective is to minimize the total cell transmit power
under the different quality of service constraints. Further-
more, a non-linear fractional programming approach is used
to develop another primal-dual algorithm that maximizes
energy efficiency. While these algorithms achieve the max-
imum available energy efficiency and minimum transmit
power and are needed as a baseline for any comparison,
they are limited by the complexity introduced as the num-
ber of UEs and D2D pairs increases. Simulations results
show that efficient resources allocation can improve the
spectrum utilization as well as the energy efficiency of the
network. Thus, our proposed algorithms outperform state-of-
the-art algorithms. At low SNR, the proposed power min-
imization algorithm achieves at most 0.71 times the total
power consumption of other algorithms. On the other hand,
the proposed EE maximization algorithm achieves at least
2.22 times the throughput gain of the proposed power min-
imization algorithm. At high SNR, the proposed power
minimization algorithm achieves at least 1.16 times the
throughput gain of other algorithms, while the proposed EE
maximization algorithm achieves at most 0.66 times the total
power consumption of other algorithms. Regardless of the
SNR, the proposed EE maximization algorithm achieves at
least 2.75 times the EE of other algorithms and the maxi-
mum access rate. As future research directions, the authors
would like to investigate the problem of resources alloca-
tion for multi-cell D2D deployment as well as investigat-
ing further algorithms with reduced complexity for each
objective.

APPENDIX A
THE LAGRANGIAN FUNCTION FOR THE POWER
MINIMIZATION PROBLEM
We chose the Lagrange multipliers µum and µdn for the rate
constraints C1 and C2, respectively, and λum and λdn for the
power constraints C3 and C4, respectively. The Lagrangian
function is represented in terms of the objective function and
constraints multiplied by the associated Lagrange multiplier,
i.e., a linear combination of the constraints. Sincewe assumed
high SINR, the term log2 (1+ SINR) can be approximated by
log2 (SINR). Thus, the Lagrangian function for the optimiza-
tion problem in (8) is given as follows:

L (P, µ, λ) =

M∑
m=1

Pm +
M∑
m=1

N∑
n=1

Pn,m

+

M∑
m=1

µum
(
Rum − log2

(
γ um
))

+

N∑
n=1

µdn

(
Rdn −

M∑
m=1

log2
(
γ dn,m

))

+

M∑
m=1

λum (Pm − Pmax)

+

N∑
n=1

λdn

(
M∑
m=1

Pn,m − Pmax

)
(41)

Rearranging terms, the Lagrangian function for the opti-
mization problem in (8) is given as follows:

L (P, µ, λ) =

M∑
m=1

(1+ λum)Pm +
M∑
m=1

N∑
n=1

(1+ λdn )Pn,m

−

M∑
m=1

µum log2
(
γ um
)
+

M∑
m=1

µumR
u
m

−Pmax

(
M∑
m=1

λum +

N∑
n=1

λdn

)

−

N∑
n=1

M∑
m=1

µdn log2
(
γ dn,m

)
+

N∑
n=1

µdnR
d
n . (42)

APPENDIX B
OPTIMAL POWER ALLOCATION FOR THE POWER
MINIMIZATION PROBLEM
To derive the optimal power allocation, Pm and Pn,m, we cal-
culate the derivative of the Lagrangian function with respect
to Pm and Pn,m. There are (N + 2) terms that are functions of
Pm, which are Pm, γ um, and γ

d
n,m ∀n. First, we evaluate some

terms as follows:
d
dPm

log2
(
γ um
)
=

1
Pm
, (43)

and

d
dPm

log2
(
γ dn,m

)
=

−hu2dm,n

N0 + Pmhu2dm,n +
∑N

k=1
k 6=n

Pk,mhd2dk,n,m

.

(44)
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Then, we calculate the derivative of the Lagrangian function
with respect to Pm as follows:

dL (P, µ, λ)

dPm
= 1+ λum −

µum

Pm

+

N∑
n=1

µdnh
u2d
m,n

N0 + Pmhu2dm,n +
∑N

k=1
k 6=n

Pk,mhd2dk,n,m

.

(45)

Consequently, solving for P∗m, the optimal power allocation
for the mth UE is given by:

P∗m =

 µum

1+ λum +
∑N

n=1
µdnhu2dm,n

N0+P∗mhu2dm,n+Am,n


+

, (46)

where

Am,n =
N∑
k=1
k 6=n

P∗k,mh
d2d
k,n,m. (47)

Similarly, there are (N+2) terms that are functions of Pn,m,
which are Pn,m, γ um, and γ

d
n,m ∀n. First, we evaluate some

terms as follows:

d
dPn,m

log2
(
γ um
)
=

−hd2bn,m

N0 +
∑N

n=1 Pn,mh
d2b
n,m

, (48)

d
dPn,m

log2
(
γ dn,m

)
=

1
Pn,m

, (49)

and

d log2
(
γ dk,m

)
dPn,m

=
−hd2dn,k,m

N0 + Pmhu2dm,k +
∑N

i=1
i 6=k

Pi,mhd2di,k,m

, n 6= k.

(50)

Then, we calculate the derivative of the Lagrangian func-
tion with respect to Pn,m as follows:

dL (P, µ, λ)

dPn,m
= 1+ λdn +

µumh
d2b
n,m

N0 +
∑N

n=1 Pn,mh
d2b
n,m

−
µdn

Pn,m

+

N∑
k=1
k 6=n

µdk h
d2d
n,k,m

N0 + Pmhu2dm,k +
∑N

i=1
i 6=k

Pi,mhd2di,k,m

.

(51)

Consequently, solving for P∗n,m, the optimal power allocation
for the nth D2D transmitter on the mth RB is given by:

P∗n,m =

 µdn

1+ λdn +
µumhd2bn,m

N0+
∑N

n=1 P
∗
n,mhd2bn,m

+ Bm,n


+

, (52)

where

Bm,n =
N∑
k=1
k 6=n

µdk h
d2d
n,k,m

N0 + P∗mh
u2d
m,k +

∑N
i=1
i 6=k

P∗i,mh
d2d
i,k,m

. (53)

APPENDIX C
THE LAGRANGIAN FUNCTION FOR THE
EE MAXIMIZATION PROBLEM
Assuming high SINR, the Lagrangian function for the opti-
mization problem in (27) is given as follows:

L (P, µ, λ) =

M∑
m=1

log2
(
γ um
)
+

N∑
n=1

M∑
m=1

log2
(
γ dn,m

)
− ν

(
M∑
m=1

Pm +
M∑
m=1

N∑
n=1

Pn,m

)

−

M∑
m=1

µum
(
Rum − log2

(
γ um
))

−

N∑
n=1

µdn

(
Rdn −

M∑
m=1

log2
(
γ dn,m

))

−

M∑
m=1

λum (Pm − Pmax)

−

N∑
n=1

λdn

(
M∑
m=1

Pn,m − Pmax

)
. (54)

Rearranging terms, the Lagrangian function is given as
follows:

L (P, µ, λ) =

M∑
m=1

(1+ µum) log2
(
γ um
)
−

M∑
m=1

(λum + ν)Pm

+

N∑
n=1

M∑
m=1

(1+ µdn ) log2
(
γ dn,m

)
−

M∑
m=1

µumR
u
m −

N∑
n=1

µdnR
d
n

+Pmax

(
M∑
m=1

λum +

N∑
n=1

λdn

)

−

M∑
m=1

N∑
n=1

(λdn + ν)Pn,m. (55)

APPENDIX D
OPTIMAL POWER ALLOCATION FOR THE EE
MAXIMIZATION PROBLEM
Using (43)-(44), we calculate the derivative of the Lagrangian
function with respect to Pm as follows:

dL (P, µ, λ)

dPm
=

(1+ µum)
Pm

− (λum + ν)

−

N∑
n=1

(1+ µdn )h
u2d
m,n

N0 + Pmhu2dm,n +
∑N

k=1
k 6=n

Pk,mhd2dk,n,m

.

(56)
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Consequently, solving forP∗m, the optimal power allocation
for the mth UE is given by:

P∗m=

 1+ µum∑N
n=1

(1+µdn )hu2dm,n

N0+P∗mhu2dm,n+
∑N
k=1
k 6=n

P∗k,mh
d2d
k,n,m
+λum+ν


+

. (57)

Using (48)-(50), we calculate the derivative of the
Lagrangian function with respect to Pn,m as follows:

dL (P, µ, λ)

dPn,m
=

(1+ µdn )
Pn,m

− (λdn + ν)

−
(1+ µum)h

d2b
n,m

N0 +
∑N

n=1 Pn,mh
d2b
n,m

−

N∑
k=1
k 6=n

(1+ µdn )h
d2d
n,k,m

N0 + Pmhu2dm,k +
∑N

i=1
i 6=k

Pi,mhd2di,k,m

.

(58)

Consequently, solving for P∗n,m, the optimal power allocation
for the nth D2D transmitter on the mth RB is given by:

P∗n,m =

 1+ µdn

ν + λdn +
(1+µum)hd2bn,m

N0+
∑N

n=1 P
∗
n,mhd2bn,m

+ An,m


+

, (59)

where

An,m =
N∑
k=1
k 6=n

(1+ µdk )h
d2d
n,k,m

N0 + P∗mh
u2d
m,k +

∑N
i=1
i 6=k

P∗i,mh
d2d
i,k,m

. (60)
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