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ABSTRACT A restoration problem in a radial electrical distribution system (EDS) is solved to restore
de-energized loads downstream of sectors affected by a permanent fault, transferring loads among primary
feeders through switching operations. As it is a computationally complex problem, its resolution by exact
optimization techniques in a treatable runtime is a difficult task. The complexity is related to the number
of switches available for solution. To reduce investment costs, a typical EDS has switches only in a portion
of the branches, but the number of switches tends to be expressive in larger systems. In this context, less
complex restoration problems have been successfully solved in the literature by exact methods, but they
tend to be prohibitive in highly complex problems. In this paper, a mathematical model with an enhanced
approach solves, through exact techniques, the restoration problem in a relatively large radial EDS with
the aim of evaluating its ability to obtain optimal operationally reliable solutions with low computational
effort. The problem is solved without simplifying the topological structure of the system and using only
two types of binary variables. The model minimizes the demand not supplied with a minimum number of
switching operations, allowing considering the influence of priority loads and remotely controlled switches,
and ensures a feasible and radial operation. Tests were carried out on a radial 417-bus EDS adapted to have
switches at strategic locations and the results show that the model effectively provides optimal solutions and
can be applied for larger systems mainly in an offline or preventive way.

INDEX TERMS Large-scale distribution systems, mathematical modeling, service restoration.

I. INTRODUCTION
A radial electrical distribution system (EDS) is subject to
supply outages due to contingencies. An unscheduled perma-
nent fault in the EDS requires an urgent operational planning
to attempt to restore the supply to the affected areas in a
fast and safe way in order to improve the service reliabil-
ity and reduce the negative impact in financial terms and
in customers’ satisfaction terms. The service restoration is
made through switching operations, whereby the loads are
reallocated in primary feeders. As it is a computationally
complex multi-constrained combinatorial problem, solving it
by exact techniques in a treatable runtime is a difficult task.
Thus, heuristic methods have been the main alternatives to
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solve restoration problems in the literature, assuming that
good quality solutions are satisfactory in an urgency context
since they allow finding good quality solutions with low
computational effort [1]–[18], which is of great importance
especially for very complex problems.

Among the main heuristic methods that have been investi-
gated for restoration in radial EDSs are heuristic rules based
on expert knowledge [1], [2], a strategy of depth-first search
on a decision binary tree [3], strategies that find a radial
restoration topology through a constructive process of open-
ing of branches on a meshed topology [4], [5], a heuristic
that reconnects the de-energized areas in large-scale EDSs
by minimal paths to the branches on the boundary with
these areas [6], strategies of branches exchange besides the
boundary of the de-energized area in large-scale EDSs [7],
[8], a multi-agent approach [9], multi-objective optimization
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methods using an evolutionary approach and fuzzy sets [10]
and using an evolutionary algorithm that incorporates spe-
cialized genetic operators and solves the problem in large-
scale EDSs [11], and a NSGA-II proposal that optimizes
four objective functions in a hierarchical structure [12]. Other
studied heuristic approaches have been a four-stage method
that combines reconfiguration with intentional islanding of
distributed generators, allowing the restored EDS to operate
in an islanded way with these generators [13], a method
based on multi-agent systems using expert systems rules for
autonomous restoration in active EDSs [14], a three-stage
heuristic strategy, whereby the system operator participates in
the second stage, filtering a set of feasible solutions generated
in the first stage to be improved in the third stage through
a local search process [15], a two-stage proposal that does
the optimal island partitioning in a smart EDS for feasible
operation with distributed generators [16], a strategy based
on the weighted ideal point method that solves the problem
with multiple objectives [17], and a proposal using simulated
annealing and a local improvement strategy, where the search
space is represented by a set of permutation vectors composed
by the switches, and the time for the switching operations is
estimated using a scheduling approach considering multiple
dispatch teams [18]. Other important topics on restoration
have been investigated in [19]–[21], whose proposals are an
iterative method that generates alternative energizing path
schemes for restoration after a blackout [19], an alternating
direction method of multipliers that separates the restoration
problem into two sub-problems to solve it iteratively [20],
and a method based on the reinforcement learning technique
that can address the self-healing and load management func-
tions in advanced distribution management systems simul-
taneously or using the conventional strategy that addresses
these two techniques separately [21].

Although exact restoration methods can provide optimal
solutions, they are less used in the literature than heuris-
tic methods and are effective for less complex problems.
The main reason is that exact methods usually require a
larger computational effort, and the execution time tends
to be prohibitive when they are used to solve the problem
in large EDSs with a very expressive number of switches.
Solving restoration problems in a treatable runtime using
exact techniques requires efficient and robustness methods.
Thus, full mathematical models solved by exact techniques
are relatively recent proposals for optimal restoration in radial
EDSs [22]–[25]. Convexification techniques and efficient
forms of representing the radiality [26]–[29] contributed to
the proposal of mathematical models for restoration in radial
EDSs. Linearization and search space reduction are examples
of techniques applied to the development of these models to
make them more efficient. This type of strategy is important
because these models have binary variables, which make
them integer-mixed programming problems and hence hard
problems to solve. In [22], a second-order conic model min-
imizes the demand not supplied (DNS) and the number of
switching operations in balanced EDSs, with the possibility

of considering the influence of priority loads and the pri-
ority operation of remotely controlled switches. In [23], a
linear model with relaxed power flow equations minimizes
the DNS in a large EDS with low computational effort, but
the configurations need to be validated with respect to their
operational feasibility. In [24], a non-linear model minimizes
the number of consumers not served during the switching
sequence and on the final topology in unbalanced three-phase
EDSs. In [25], two different models are proposed to minimize
the energy not supplied: the first model uses predetermined
time steps to represent the time horizon for restoration and
the second one uses a route table and virtual energization
agents to estimate the restoration time in unbalanced three-
phase EDSs.

The main aim of this work is to enhance the approach in
[22], where the model has binary variables representing the
operational status of all branches, assuming that there are
switches in all lines or that a section is simplified as a single
bus in the sense that its internal configuration cannot change.
A typical radial EDS has tie/sectionalizing switches installed
only in a parcel of the lines, at points that allow a good
coordination of the system and its operational optimization
in face of urgent or short-term operational problems, and the
arrangement of these switches delimits load sections usually
composed of several consumer units connected internally by
lines without a switching device. Thus, the number of candi-
date solutions increases greatly when the problem is solved
considering switches in all lines, and the structure of the
EDS is not fully represented when the sections are simplified
as single elements. For the model in [22] to represent the
sections in full, all buses must be considered and the variables
that represent the status of closed branches without switches
must be set to 1 before resolution. The strategy proposed in
this work reduces the number of binary variables in relation
to [22] and does not require additional variables to represent
the load sections or the energization state of their internal
elements, besides keeping the radiality constraint simple. In
[25], the strategy used to represent the switchable lines and
the load sections as well as to ensure radial configurations
required a large number of binary variables to represent the
energization state of the elements within those sections. The
new approach considers the complete structure of the EDS
and the real allocation of the switches without the need for
previous adaptations as in [22], and the energization state of
the elements within the sections is defined using only two
types of binary variables, one associated with the buses and
the other associated with the branches. The model with the
new approach ensures the same operational safety and quality
of service proposed in [22]. Thus, it can also be solved by
exact techniques using efficient solvers and provide optimal
operationally feasible solutions.

The second aim of this work is to apply the model with
the new approach to solve the restoration problem in large
EDSs in a more realistic way and evaluate its real ability in
solving complex problems. The model in [22] required a few
seconds to provide optimal solutions in critical fault scenarios
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in a radial 53-bus EDS with switches in all 61 branches, but
it took many hours to provide optimal solutions in critical
fault scenarios in a radial 417-bus EDS with switches in all
473 branches [23]. Although these EDSs are not very large
in relation to the number of buses, the expressive number of
switches makes the problem very complex. When tests are
carried out with switches in all lines, the system becomes
highly more complex than a typical EDS, which usually has
around 10% to 25% of switchable lines [8], [30]. In [8],
e.g., a 416-bus EDS has 446 branches and 97 switches, a
percentage of 22%. In this paper, tests were performed on
the radial 417-bus EDS adapted to have switches only at
strategic locations for its operational optimization. Results
show that the new model can efficiently solve the problem
in even larger systems in the proposed context and can be
applied satisfactorily to provide optimal solutions for very
complex problems in an offline or preventive way.

Thus, the contributions of this work are briefly as follows:
• The formulation of an AC mathematical model that
accurately represents the real structure of a radial EDS
typically arranged in sections, and its application to
provide optimal reliable solutions in large systems in a
treatable runtime, as shown in the testing section;

• The structure of the EDS arranged in load sections is
modeled without the need for an expressive number of
binary variables to control the energization state of the
internal elements of these sections and the radiality;

• The number of binary and continuous variables in the
proposed model is significantly less compared to [22],
and the new constraints modeled are mainly addressed
to impose operating limits for energized/de-energized
regions in the EDS under a restorative context;

• The model solves cases of single or multiple faults and
allows considering the influence of priority loads and
remotely controlled switches effectively with the same
simplicity as [22].

II. FORMULATION OF THE RESTORATION PROBLEM
Amixed-integer second-order cone programming (MISOCP)
mathematical model defines the switches to be operated for
optimal restoration in balanced radial EDSs in scenarios of
permanent faults. Consumer units and substations are repre-
sented by buses, and lines with or without switching devices
are represented by branches. Only branches with an installed
switch have a variable to represent their open/closed status,
which means that the other branches have no variable status.
Thus, sections delimited by switchable branches are repre-
sented by buses and closed branches without switches. This
representation does not simplify the structure of the EDS and
eliminates the need to identify the load sections individually.
Areas directly affected by a permanent fault and switches
indicated to isolate these areas are left out of the problem,
representing that the directly affected areas remain insulated
for repair and the other de-energized areas can be restored if
there is enough capacity reserve in the supporting feeders,
as well as switches to reallocate loads. The problem can

FIGURE 1. Example of connection of the fictitious substation.

be solved in scenarios of a single fault or multiple faults,
requiring only the previous exclusion of the elements related
to the areas to be isolated.

A linear objective function minimizes the DNS with a
minimum number of switching operations, complying with
voltage and current limits, substation capacity, and radiality,
which are fundamental constraints to obtain reliable radial
configurations. Kirchhoff’s two laws are modeled in the set
of constraints. The set of constraints is based on a relaxed
convex version [26] of the non-linear branch flow equations
[31], on which the mathematical model in [22] is also based.
The assessment of the objective function and the operating
conditions is performed through these constraints. The model
allows considering both the influence of priority loads and
the priority operation of remotely controlled switches. Costs
associated with the importance of the loads and with the
switching operations are represented in the objective function
by parameters to be chosen according to the characteristics of
the EDS and the restoration objectives.

When some primary feeder is under fault, reallocating
de-energized loads among other feeders can overload the
system. In this context, the load shedding can be imperative
to promote a safe operation. For this reason, the restoration
problem is solved with the connectivity constraint relaxed
and the strategy of using a fictitious substation and fictitious
branches [22] was adopted to complement this constraint
with regards to the number of branches to be closed to
get a radial configuration. The fictitious substation connects
de-energized sections through fictitious branches, keeping a
radial operation. A single fictitious branch is closed between
the fictitious substation and each de-energized parcel com-
posed of one or more sections. This concept is shown in
Figure 1, where the fictitious substation S f connects two de-
energized sections by closing only one fictitious branch: one
section is formed by bus 16 and the second section is formed
by buses 13, 14, and 15. Note that the switch in branch 15–16
links both de-energized sections and that it did not need to be
opened.

III. MATHEMATICAL MODEL
The mathematical model is presented after the definition of
its sets, parameters, and variables. The model consists of an
explicit mathematical formulation that allows it to be solved
by exact optimization techniques to provide optimal solutions
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to the problem. The new approach is highlighted in this
section in contrast to the model in [22].

A. DEFINITION OF SETS, PARAMETERS, AND VARIABLES
The sets that represent the structure of the EDS available for
restoration are �b and �l . The set �b represents the buses
of the EDS and the fictitious substation bus. The substation
buses, including the fictitious one, are also represented by the
set�s ⊂ �b. Thus, |�b| is the total number of buses, and |�s|

is the total number of substation buses. The set �l represents
the branches of the EDS and is divided into two subsets,
�c and �o. The subset �c is composed of closed branches
without switches, for which there are no decision variables
representing their operating status; and �o is composed of
open or closed branches with switches that can be operated
for restoration, whose operating status is represented by a
binary variable. All branches with initially closed switches
in �o are candidates for opening and are represented by its
subset �↑o . All branches with initially open switches in �o
are candidates for closure and are represented by its subset
�
↓
o . In summary, the sets of branches are defined as follows:

�l = �c ∪�o and�o = �
↑
o ∪�

↓
o . The sections do not need

to be identified, as the sets�b and�l define them completely
in the model. The new approach is essentially related to the
sets �c and �o, since in [22] all branches in �l have binary
decision variables representing their operating status.

The set �h represents the fictitious branches with
initially open switches to be closed exclusively to connect
de-energized sections to the fictitious substation. For this
connection, it is sufficient to have a fictitious branch between
the fictitious substation and a bus in each section. So, the
number of fictitious branches is equivalent to the number of
sections. In [22], there is a fictitious branch for all buses,
making �h much larger than in the new proposal.
The binary variables are yi ∀i ∈ �b and xi,j ∀i, j ∈ �o∪�h.

The variable yi indicates if a bus is energized or de-energized;
0 indicates an energized bus, and 1 indicates a de-energized
bus. The variable xi,j indicates if the switch in the branch i, j
is open or closed; 0 indicates an open switch, and 1 indicates
a closed switch. Thus, for i, j ∈ �↓o (candidate for closure),
xi,j = 0 indicates that the switch in the branch i, j remains
open in the solution found, and xi,j = 1 indicates that this
switch was closed; for i, j ∈ �

↑
o (candidate for opening),

xi,j = 1 indicates that the switch in the branch i, j remains
closed in the solution found, and xi,j = 0 indicates that
this switch was opened; finally, for i, j ∈ �h (candidate for
closure), xi,j = 0 indicates that the switch in the fictitious
branch i, j remains open in the solution found, and xi,j = 1
indicates that this switch was closed. In [22], yi is also defined
∀ i ∈ �b, but xi,j is defined ∀ i, j ∈ �l ∪ �h, which
makes the problem more complex due to the greater number
of candidate solutions.

The variables that represent the operational conditions of
the EDS have the same definition in [22], since they need to
be determined for all buses in �b or all branches in �l . The
difference in the new proposal is how to limit them. Pi,j, Qi,j,

and I sqri,j ∀ i, j ∈ �l are, respectively, the active and reactive
power flows, and the square of the current magnitude in the
branch i, j. Hi,j ∀ i, j ∈ �l ∪ �h is the artificial power flow
in the branch i, j. V sqr

i ∀ i ∈ �b is the square of the voltage
magnitude in bus i. PGi , Q

G
i , and H

G
i ∀ i ∈ �b are, respec-

tively, the active, reactive, and artificial power generation in
bus i. Lastly, bi,j ∀ i, j ∈ �l is used to prevent Kirchhoff’s
second law from being fulfilled if the branch i, j is open or
de-energized.

The parameters represent mainly data of the EDS and
operating limits and have the same definition in [22], as they
cover the whole EDS. They are defined as follows: PDi , Q

D
i ,

S̄Gi , and αi ∀ i ∈ �b; Ri,j,Xi,j, Zi,j, and Īi,j ∀ i, j ∈ �l ;
βi,j ∀ i, j ∈ �

↓
o ; µi,j ∀ i, j ∈ �

↑
o ; V , V̄ , M , and S f . PDi ,

and QDi are the active and reactive power demands in bus
i, respectively. S̄Gi is the maximum generation of apparent
power in substation bus i. αi is the cost of not supplying
the bus i per kW; Ri,j, Xi,j, Zi,j, and Īi,j are the resistance,
reactance, impedance, and maximum current capacity of the
branch i, j, respectively. βi,j is the cost of closing the switch
in the branch i, j. µi,j is the cost of opening the switch in the
branch i, j.M is the maximum artificial power flow in the de-
energized area, to be chosen asM ≥ |�b|−|�s|. V and V̄ are
the minimum and maximum voltage magnitude, respectively.
Lastly, S f represents the fictitious substation bus.

B. NEW MISOCP MATHEMATICAL MODEL
The MISOCP model proposed as an enhanced approach of
[22] is defined by the objective function (1) and the set of
constraints (2)–(27).

The objective function (1) has three terms and comprises
two optimization criteria considered to be non-conflicting.
The most important objective, represented by the first term,
is to minimize the load shedding on the restored topology.
The last two terms represent the secondary objective, which
is to minimize the number of switching operations. Although
secondary, it is a significant objective, as the switching oper-
ations reflect costs and time to reconfigure the EDS. Param-
eters αi, βi,j, and µi,j must preserve the hierarchy between
these two criteria and can be used to distinguish the priority
loads and the most advantageous switches for operation,
which allows considering the priority operation of remotely
controlled switches. In this context, αi is the cost of not
serving the bus i, and βi,j or µi,j are the cost of operating
the switch in the branch i, j. If the buses have the same
importance, all parameters αi must be set to the same value
α > 0; otherwise, αi must reflect the importance of bus i
for the service according to the characteristics of the EDS.
If the objective is only to minimize the number of operated
switches, all parameters βi,j and µi,j must be set to 1, but if
objective is to minimize the operating costs, they must be set
according to the characteristics of the EDS.

Min v =
∑
i∈�b

αiPDi yi +
∑
i,j∈�↓o

βi,j xi,j +
∑
i,j∈�↑o

µi,j
(
1− xi,j

)
(1)
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It is important to note that the objective function has two
objectives clearly distinct: one related to the load shedding
and the other related to the switching operations. Thus, the
first diagnosis is that the objective function (1) cannot be
considered as a multi-objective function, since these parcels
are not conflicting, but complementary. It should be noted
mainly that these parcels are hierarchical, i.e., one criterion is
more important than the other. This same phenomenon occurs
when a linear programming problem is solved using the bigM
method of the simplex method, where the objective function
has also two parcels, one formed by the original variables
and the other by artificial variables. In the big M method, the
fundamental idea is to minimize the parcel corresponding to
the artificial variables first, discarding all these variables if
possible, which means removing them from the base. Even-
tually, if the problem is infeasible, some artificial variables
remain at the base, those with the lowestM values. The objec-
tive function (1) is formulated with this fundamental idea,
whereby it tries preferably to eliminate the load shedding
and, in a secondary way, to decrease the number of switching
operations. Thus, the values chosen for the parameters αi, βi,j,
and µi,j must respect the hierarchical logic, and their units
must be chosen so that the units of each parcel of (1) are the
same.

Constraints (2)–(4) impose Kirchhoff’s first law for each
bus i ∈ �b. Active, reactive, and fictitious power balances
are satisfied according to yi. If yi = 0, the active and reactive
demands are supplied by a real substation through PGi and
QGi in (2) and (3), and there is no artificial demand in (4).
If yi = 1, the active and reactive demands are supplied
by the fictitious generator

(
PDi + Q

D
i

)
yi in (2) and (3), and

the artificial demand is supplied by the fictitious substation
through HG

S f in (4). Constraints (5)–(7) complement (2)–(4)
regarding that supply, as they allow the active/reactive power
generation only in real substation buses and the artificial
power generation only in the fictitious substation bus.∑
j,i∈�l

Pj,i −
∑
i,j∈�l

(
Pi,j + Ri,jI

sqr
i,j

)
+ PGi = PDi (1− yi)

∀ i ∈ �b (2)∑
j,i∈�l

Qj,i −
∑
i,j∈�l

(
Qi,j + Xi,jI

sqr
i,j

)
+ QGi = QDi (1− yi)

∀ i ∈ �b (3)∑
j,i∈�l∪�h

Hj,i −
∑

i,j∈�l∪�h

Hi,j + HG
i = yi ∀ i ∈ �b (4)

PGi = 0 ∀ i ∈ (�b −�s) ∪ S f (5)

QGi = 0 ∀ i ∈ (�b −�s) ∪ S f (6)

HG
i = 0 ∀ i ∈ �b, i 6= S f (7)

A radial operation with the EDS fully connected is defined
with |�b|−|�s| closed branches. The connectivity is ensured
by constraints (2)–(7), as there must be a path between each
load bus and a substation bus to supply its demand. The radial
operation is ensured by the constraint (8), which defines the
number of branches to be closed as a necessary condition

for radiality. The branches in �c are permanently closed, so
|�b|−|�s|−|�c| is the number of branches to be additionally
closed in �o ∪ �h. Thus, the solutions are connected and
radial due to the set of constraints (2)–(8), as proven in [28],
with the aid of the fictitious components. Constraints (8)
differs from [22] regarding which variables to choose for
closing, since xi,j is not defined for �c.∑
i,j∈�o∪�h

xi,j = |�b| − |�s| − |�c| (8)

Constraint (9) imposes Kirchhoff’s second law for each
loop formed by a branch i, j ∈ �l when bi,j = 0. This
condition is fulfilled when the branches are energized. If the
branch is de-energized or open, bi,j 6= 0 in (9), relaxing the
fulfillment of this law. The value that bi,j must assume is
defined in (10) and (11). In (10), yi identifies in which area
the branch i, j ∈ �c is closed. In (11), xi,j identifies if the
branch i, j ∈ �o is open or closed, and the area in which
the branch is when it is closed is identified by yi and yj. The
buses at the ends of a closed branch are both energized or both
de-energized, whereas an open branch can be additionally
between one energized bus and another de-energized bus.
Thus, yi = yj = 0 or yi = yj = 1 if the branch i, j is closed,
and yi and yj can be indefinitely 0 or 1 if the branch i, j is
open.

V sqr
i − V

sqr
j = 2

(
Ri,jPi,j + Xi,jQi,j

)
+ Z2

i,j I
sqr
i,j + bi,j
∀ i, j ∈ �l (9)∣∣bi,j∣∣ ≤ (V̄ 2

− V 2
)
yi ∀ i, j ∈ �c (10)∣∣bi,j∣∣ ≤ (V̄ 2

− V 2
) (

1− xi,j + yi + yj
)
∀ i, j ∈ �o (11)

Constraint (12) complements (9) and is a relaxed version
of the non-linear relation among power flows, voltage, and
current, which is originally an equality relation. The inequal-
ity ‘≥’ turns the non-linear problem into a second-order conic
problem. Although the two problems define different feasible
regions, the optimal solution of the conic problem is also the
optimal solution of the non-linear problem if (12) is active in
the solution found, as proven in [29]. When (12) is not active
in the solution found, it is important to verify if the error in
the approximation is large.

V sqr
j I sqri,j ≥ P

2
i,j + Q

2
i,j ∀ i, j ∈ �l (12)

Constraints (13)–(16) impose operating limits for the oper-
ational feasibility of the EDS in terms of security and quality
of the service. Constraint (13) limits the apparent power gen-
eration in substation buses, (14) keeps the voltage magnitude
in energized buses within the lower and upper limits allowed,
and constraints (15) and (16) prevent overload in energized
branches. Constraints (17) and (18) limit the artificial power
flow in the de-energized area.(
PGi
)2
+

(
QGi
)2
≤

(
S̄Gi
)2

∀ i ∈ �s, i 6= S f (13)

V 2(1− yi) ≤ V
sqr
i ≤ V̄ 2(1− yi) ∀ i ∈ �b (14)
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0 ≤ I sqri,j ≤ Ī
2
i,j(1− yi) ∀ i, j ∈ �c (15)

0 ≤ I sqri,j ≤ Ī
2
i,jxi,j ∀ i, j ∈ �o (16)∣∣Hi,j∣∣ ≤ Myi ∀ i, j ∈ �c (17)∣∣Hi,j∣∣ ≤ Mxi,j ∀ i, j ∈ �o ∪�h (18)

Constraints (19)–(24) reduce the feasible region without
eliminating the optimal solution and speed up the solution
of the model, providing good lower limits for the relaxed
problems needed for the solution of the integer programming
problem. Constraints (19)–(22) limit the power flows to V̄ Īi,j
or 0, whereas (23) and (24) prevent a closed branch from
connecting an energized bus and a de-energized bus simul-
taneously. Constraint (25) sets yS f = 1 to keep S f in the de-
energized area.∣∣Pi,j∣∣ ≤ V̄ Īi,j(1− yi) ∀ i, j ∈ �c (19)∣∣Qi,j∣∣ ≤ V̄ Īi,j(1− yi) ∀ i, j ∈ �c (20)∣∣Pi,j∣∣ ≤ V̄ Īi,j xi,j ∀ i, j ∈ �o (21)∣∣Qi,j∣∣ ≤ V̄ Īi,j xi,j ∀ i, j ∈ �o (22)∣∣yi − yj∣∣ ≤ (1− xi,j) ∀ i, j ∈ �o ∪�h (23)

yi = yj ∀ i, j ∈ �c (24)

yS f = 1 (25)

Constraints (10), (11), and (15)–(24) differ from [22]
regarding how to identify open or de-energized branches.
In the new approach, where there is no variable xi,j for the
branches in �c, yi identifies if these branches are energized
or de-energized. Finally, constraints (26) and (27) define xi,j
and yi as binary variables.

xi,j ∈ {0, 1} ∀ i, j ∈ �o ∪�h (26)

yi ∈ {0, 1} ∀ i, j ∈ �b (27)

The model provides the optimal configuration, defining
the final status of all switches, the energization status of all
buses, and the operational conditions of the EDS in terms
of current, voltage, and power generation and flow, ensuring
topologies connected, radial and operationally feasible. The
switching operations are identified on the optimal solution by
comparing the initial and final status of each switch initially
candidate to be operated for restoration.

IV. TESTS AND RESULTS
The model (1)–(27) was used to define optimal post-fault
configurations on the 417-bus EDS [32], adapted in this
paper to have switches in 26% of the branches. The model
was programmed in AMPL [33] and solved with CPLEX
[34] using a computer with an Intel i7-4770 processor. The
stopping criterion was a maximum gap of 0% to guarantee
optimal solutions.

A. TEST SYSTEM
The 417-bus test system has 3 substation buses, 13 feeders,
473 branches and, under normal conditions, feeds 414 buses
with the radial base topology shown in Figure 2. It was

adapted to have 125 switches, 66 normally closed and 59
normally open, identified in Figure 2. Tie switches were
allocated in all normally open branches on base topology and
influence the allocation of the sectionalizing switches due to
radiality. Information about the 66 sections formed with this
allocation is shown in Table 1, and the fault scenarios in each
section are described in Table 2.

Data concerning the maximum current capacity were gen-
erated in [35], and the following additional changes have been
made in this paper in relation to [35] for greater operational
consistency, up to the feasibility limits: the demands in buses
12, 81, 90, 109, 125, 159, 168, 170, 175, 178, 195, 305, 307,
310, 370, 380, and 383were changed for 5+j3 kVA (17 buses,
in total), and the demands in buses 1, 3, 4, 8, 15, 16, 20, 27,
32, 37, 38, 43, 49, 53, 59, 75, 91, 116, 117, 118, 119, 122,
123, 124, 126, 127, 135, 157, 167, 186, 188, 189, 196, 197,
198, 199, 217, 233, 238, 242, 258, 261, 289, 344, 349, 350,
351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362,
363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375,
378, 379, 381, 382, 400, 401, 402, 403, 404, 405, 406, 407,
408, 409, 410, 411, 412, and 413 were reset to 0 (88 buses,
in total), as they are originally pass buses in [32] that had a
demand slightly greater than 0 in the database in [35].

With the new demands, the 417-bus EDS normally oper-
ates supplying 27440 kW and 13285 kVAr, the lowest volt-
age magnitude observed is 0.93 p.u. in bus 30, and the
active losses on the base topology are 709.39 kW. The
nominal voltage is 10.0 kV, and the lower and upper lim-
its of voltage magnitude assumed correspond to 0.90 and
1.0 p.u., respectively. Complete original data are in [35] and
at http://www.feis.unesp.br/#!/lapsee (Downloads section).

B. ANALYZED FAULT SCENARIOS
Single permanent faults on the 417-bus EDS were analyzed
in sections 263, 83, 1, 227, 207, 250, 214, and 283, located
mainly at the beginning of primary feeders, near substations,
representing very critical scenarios, as shown in Table 2. For
instance, section 263, located at feeder 02 and delimited by
switches 416–273, 262–263, and 263–264, consists of buses
273, 274, 275, and 263, demands 400 kW and 193 kVAr,
and is supplied by the substation 416. A fault in section
263, which keeps isolated without supply throughout the
restorative state, also interrupts supply to the downstream
sections 260, 264, 342, 128, 134, 136, 159, 129, and 133,
totalizing 49 buses and a recoverable DNS equal to 3289 kW
and 1590 kVAr to be restored. Results of these tests are shown
in Table 3 and were obtained without considering priority
loads or priority switches, using the following values for the
parameters of the objective function (1): all parameters αi,
representing costs per kW, were set to 0.1, and all parameters
βi,j and µi,j, representing costs per switching operation, were
set to 1.

In 7 cases (87.5%), there was no load shedding, i.e.,
all recoverable DNS, which is the sum of loads down-
stream of the isolated section, was restored. The loads were
restored with up to 4 switching operations in 6 cases (75%).
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FIGURE 2. Base topology of the radial 417-bus EDS adapted from [32].
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TABLE 1. Information about the 66 sections on the 417-bus EDS.
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TABLE 2. Information about fault scenarios in each section on the 417-bus EDS.

TABLE 3. Summary of the obtained results.

In three of them, only 1 switch was indicated for oper-
ation, which means that the de-energized loads in each
case were transferred to a single support feeder without
overloading it.

The solution with load shedding corresponds to the fault in
section 83 at feeder 03. In the proposed solution, sections 123
and 21, which sum 979 kW and 474 kVAr, were restored with
6 switching operations, and sections 95, 111, 94, 107, and
102, which sum 1278 kW and 617 kVAr, were not restored
because there are no tie switches that could connect them
to other feeders or to energized sections on feeder 03. The
restored sections were transferred to feeders 02 and 08 as
follows: by opening the sectionalizing switch 76–58 on feeder
08 and closing the tie switch 65–383 between feeders 08 and
09, section 58 was transferred from feeder 08 to feeder 09,

relieving the feeder 08 to receive section 21 from feeder 03,
whose transfer was made closing the tie switch 35–44; by
opening the sectionalizing switch 20–56 on feeder 08 and
closing the tie switches 124–127 between feeders 03 and 08
and 56–146 between feeders 08 and 02, section 123 at feeder
03 was connected to section 56 at feeder 08 and both were
transferred to feeder 02.

The fastest resolution took 19 seconds and corresponds to
the fault in section 227 at feeder 05, where the de-energized
sections 225 and 220 were transferred to feeder 09 by closing
the tie switch 220–219. The other solutions with only one
switch operated correspond to the faults in sections 250 at
feeder 08 and 283 at feeder 13. In first case, sections 71, 58,
73, 20, 38, and 56 were transferred to feeder 03 by closing the
tie switch 124–127. In second case, sections 285, 300, 306,
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303, 309, and 310 were transferred to feeder 12 by closing
the tie switch 289–288.

The second fault on feeder 08 was simulated in section
207, upstream of section 250. In this case, 3 switching oper-
ations were needed for restoring the de-energized loads, an
additional 1326 kW and 644 kVAr compared to the fault in
section 250, representing an average increase of 51.4%. In the
proposed solution, the sectionalizing switch 89–369 on feeder
08 was opened, dividing the de-energized sections into two
blocks, and the closure of the tie switch 124–127 transferred
the same sections 71, 58, 73, 20, 38, and 56 to feeder 03,
whereas the closure of the tie switch 358–250 transferred
sections 229, 252, and 250 to feeder 09. This test shows the
sensibility and robustness of the model to avoid overloading
the system.

The solution for the fault scenario in section 214 at
feeder 09 also required 3 switching operations, but it took
less than half the runtime than the case previously analyzed,
whose recoverable DNS is almost 5 times bigger. The open-
ing of the sectionalizing switch 20–71 on feeder 08 followed
by the closing of the tie switch 124–127 between feeders 08
and 03 transferred sections 20, 38, and 56 at feeder 08 to
feeder 03, and the closing of the tie switch 65–383 between
feeders 08 and 09 restored the sections 222, 240, and 248.

In the fault case in section 263 at feeder 02, whose solution
had 4 switching operations, by opening the sectionalizing
switch 345–128 on feeder 02, the de-energized sections were
divided into two blocks; then section 260 was transferred to
feeder 08 by closing the tie switch 258–260, sections 264 and
342 were transferred to feeder 12 by closing the tie switch
335–336, and sections 128, 134, 136, 159, 129, and 133 were
transferred to feeder 10 by closing the tie switch 159–179.
It should be noted that downstream of switch 345–128 there
are 15 candidate switches, generating thousands of possible
combinations to reconnect the transferred sections to feeder
10, but only switch 159–179 was operated. This shows the
effect of minimizing the switching operations in the objective
function.

The most onerous case corresponds to the fault scenario
in section 1 at feeder 04, whose solution took approximately
6 minutes and required 8 switching operations. The de-
energized loads were transferred to feeders 03 and 09 as
follows: sections 2, 3, and 61 were transferred to feeder 09
by opening the sectionalizing switches 2–19 and 57–61 on
feeder 04, closing the tie switches 2–9 between sections 2
and 3 and 87–88 between sections 3 and 61 on feeder 04,
and closing the tie switch 84–243 between feeders 04 and
09; and sections 19 and 23 were transferred together with
sections 20, 38, and 56 at feeder 08 to feeder 03 by closing
the tie switch 33–46 between feeders 04 and 08, opening the
sectionalizing switch 20–71 on feeder 08, and closing the tie
switch 124–127 between feeders 08 and 03.

Although 6 minutes is an onerous time for service restora-
tion in real time, the resolution time was less than 3 minutes
in 87.5% of cases, which is acceptable, considering achiev-
ing an optimal configuration after very critical faults for a

relatively large system and a very complex problem using
exact techniques. In addition, faster computers can decrease
the resolution time and make it more treatable. Another
important aspect to be observed is that there is a preventive
operational control in the distribution control centers that
allows anticipating solutions to restoration problems based
on information about the operating conditions of the system
obtained by themanagement systems. In this context, the time
to obtain preventive solutions is less urgent than solving the
problem in real time, and this allows focusing on achieving
optimal solutions.

All solutions were found with a gap of 0% and were con-
firmed being operationally feasible as defined in (13)–(16)
and radial as defined in (8). The equality in (12) was satisfied
in all solutions, which means that the constraint (12) is active
in the found solutions and that they are optimal for both the
model (1)–(27) and the equivalent non-linear model with (12)
not relaxed.

V. CONCLUSION
AMISOCP mathematical model has been proposed to define
optimal post-fault configurations in balanced radial EDSs.
Themodel is based on [22] and consists of spot improvements
related to the representation of the EDS. The new approach
is important mainly by reducing the number of binary vari-
ables in the new model. The model is proposed to solve the
problem without simplifying the topological structure of the
EDS typically arranged in load sections. As a typical EDS
has switches only at strategic locations for its operational
optimization, several sections are formed on the EDS without
switching devices allocated in their internal configurations.
This characteristic favors the simplification of these sections
as single elements to facilitate the problem resolution since
the solution basically consists of deciding which switches
must be operated for restoration, not including decisions
regarding the internal structure of the sections. A classical
representation in the literature is simplifying the topology
of the EDS in load blocks and switchable lines [25], [30].
However, it is necessary to comply with operational require-
ments within the sections; thus the restoration methods must
allow the assessment of the operational conditions of the EDS
in full. In general, heuristic methods decide the switching
operations and evaluate the operating conditions of the sys-
tem separately, whose evaluation process is carried out after
solving a power flow problem for solution proposals with
the complete topological structure or by means of heuristics
that avoid overloading the feeders. In mathematical mod-
els solved by exact techniques, the process of deciding the
switches and evaluating the operation of the EDS is unique;
thus, the complete topological structure is more accurate and
realistic to allow a better assessment of the operational con-
ditions. The new approach differs from [22] because the new
model represents the complete topological structure of the
EDS and the real allocation of the switches, disregarding the
need for previous adaptations before solving the restoration
problem. The improvements applied in contrast to [22] were
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highlighted in section that presents the proposed mathemati-
cal model.

The strategy presented in this work is especially relevant
because the number of binary variables that control the ener-
gization state of the different elements within the sections is
also significantly less than other proposals in the literature
[25]. A problem with an expressive number of binary vari-
ables is a difficult problem to solve. Another aspect that can
make the problem more complex is the way of representing
the radiality constraint. The new model keeps the radiality
constraint simple and does not require any additional vari-
ables to ensure radial configurations in addition to those that
represent the status of the switches.

The new model was used to solve the restoration problem
after very critical faults near substations in a relatively large
EDS with the main aim of evaluating its ability to obtain
optimal operationally reliable solutions in highly complex
problems with low computational effort. The more important
information about the complexity of the problem is related
to the number of switches available for restoration, and the
analyzed scenarios were simulated on a radial 417-bus EDS
with 473 branches, adapted to have 125 switches. The size
of the test system and the number of switches allocated
make the problem very complex. Therefore, the system used
and the tests chosen are adequate to show the satisfactory
performance of the model to solve highly complex problems.
Results show that the model is robust and can be effective in
solving complex restoration problems in systems larger than
the test EDS,mainly in an offline or preventive way. Solutions
were obtained by exact techniques using commercial solvers
and are optimal in terms of maximum supply and minimum
number of switching operations through a hierarchical objec-
tive function. The longest resolution time was approximately
6 minutes and the shortest one was 19 seconds, and there was
no load shedding in both cases. In addition, faster computers
can make the runtimes even more treatable; however, as com-
plexity increases, resolution times can become prohibitive,
which is a characteristic common to all mathematical models
that solve highly complex combinatorial problems through
exact techniques. In cases of prohibitive application in real
time, but not prohibitive for offline solutions, the model can
be used to define preventive restoration proposals.
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