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ABSTRACT As one of the most powerful neural networks, Long Short-Term Memory (LSTM) is widely
used in natural language processing (NLP) tasks. Meanwhile, the BiLSTM-CRF model is one of the most
popular models for named entity recognition (NER), and many state-of-the-art models for NER are based
on it. In this paper, we propose a new residual BiLSTM model and perform it with a conditional random
field (CRF) layer together on NER tasks. Based on the most popular BiLSTM-CRF model, we replace
the BiLSTM with our residual BiLSTM blocks to encode words or characters. We evaluate our model on
Chinese and English datasets. We utilize both word2vec and BERT to generate word or character vectors.
Furthermore, we conduct experiments to compare the performance of NER by using different structures of
residual blocks. The experimental results show that our model can improve the performance of both Chinese
and English NER effectively without introducing any external knowledge.

INDEX TERMS Natural language processing, named entity recognition, residual bi-directional LSTM.

I. INTRODUCTION
As a fundamental task of natural language processing tasks,
named entity recognition (NER) aims to identify the named
entities from unlabeled sentences or texts. Named entities
are a series of special semantic types such as person (PER),
organization (ORG) and location (LOC), etc. Thus, NER is
a typical classification task that trains a model with texts
in which named entities have been labeled rightly, and then
predicts the named entities in other unlabeled texts. NER has
received much attention for it will impact the performance of
other downstream NLP tasks, such as relation extraction [1],
entity linking [2], etc.

In recent years, deep learning technologies have been
widely used in a variety of NLP and computer vision (CV)
tasks. Compared with convolutional neural network (CNN),
recurrent neural network (RNN) is more used for NLP tasks
because it can capture the semantic features about a long
sequence. The most popular RNN model is Long Short-Term
Memory (LSTM) [3] that has achieved success in many
NLP tasks [4], [5]. For NER, the state-of-the-art models are
usually based on BiLSTM-CRF [6] which uses BiLSTM to
extract the features of input sentences and connect them to
a conditional random field (CRF) layer to jointly predict
target labels. Among these models, many of them introduced
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external knowledge to the BiLSTM-CRF model, such as
radical features [7], character features [8], segmentation
features [9], sentence features [10], etc. Some other models
employed multi-task learning to perform NER tasks with
other related tasks jointly [11], [12]. However, almost all
above works are the combination of existing models or
methods. A few researchers [13]–[15] have attempted to
improve the structure of BiLSTM-CRF.

Meanwhile, in the area of CV, residual networks have
achieved state-of-the-art accuracy on image recognition and
some other related tasks. For instance, ResNets [16] use
identity mappings as the skip connections in layers to train
a very deep network with over 100 layers. DenseNets [17]
connect each layer to its all subsequent layers to build a deep
residual network. Compared with a convolution kernel as
the basic unit in CNNs, the LSTM kernel is more complex.
Hence, it is a challenge to design a residual network based
on LSTMs. Inspired by residual CNNs, we introduce a new
type of residual block to BiLSTM to build a residual BiLSTM
model for NER.

In this paper, we propose a new residual BiLSTM model
and connect it to a CRF layer to perform NER tasks. To
demonstrate the effectiveness of our model, we conduct
experiments on both Chinese and English NER datasets with
fixed vectors generated by word2vec [18] and GloVe [19]
as inputs respectively. Furthermore, we use BERT [20] the
generate higher quality input vectors for both Chinese and
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English NER to demonstrate our model can also benefit
from BERT. We choose BiLSTM-CRF, stack BiLSTM-CRF
and other state-of-the-art models that introduce external
knowledge or multi-task learning approaches as our baseline
models. Furthermore, we conduct experiments to investigate
the impacts of residual block structures and the number of
layers on the performance. The experimental results show
that our proposed residual BiLSTM model can improve the
performance of both Chinese and English NER effectively.

The contributions of this paper can be summarized as
follows:
• We propose a new residual BiLSTM model which
introduces a new type of residual block to improve the
capability of feature extraction of BiLSTM.

• We apply our model to NER tasks on English and
Chinese datasets without introducing any external
knowledge. The experimental results demonstrate the
effectiveness of our model.

• As a feature extractor, our model has the potential to be
applied to other NLP tasks.

The structure of our paper includes four main parts. In the
first part, we introduce the existing state-of-the-art models for
NER and some related works. In the second part, we elaborate
the motivation and the architecture of our model. In the third
part, we perform our model on a variety of English and
Chinese datasets to evaluate our model. In the fourth part,
we conduct ablation study to investigate the impact of each
component in the residual block and the number of layers.

II. RELATED WORK
A. NAMED ENTITY RECOGNITION
Recurrent neural network such as LSTM has shown its
advantages in a variety of NLP tasks. [6] proposed the
BiLSTM-CRF model that is widely used for NER in
various languages. Most of the state-of-the-art models
for NER are based on the BiLSTM-CRF model. There
are several approaches to improve the performance. The
first approach is to introduce external knowledge or some
other existing models to the BiLSTM-CRF model, such
as character, segmentation, context, etc. Both Chinese and
English characters contain semantic information that can
contribute to NER tasks. For English NER, [8] used BiLSTM
to encode characters in OOV words. [21] and [22] combined
LSTMwith CNNwhich is used to encode English characters.
For Chinese NER, [7] introduced radical features as the
input of a BiLSTM-CRF model instead of Chinese words.
[23] proposed a lattice LSTM model which utilized both
characters and words as the inputs. In this model, it utilized
the results of segmentation by using a lexicon as the
extra input for LSTM. [24] can be treated as an improved
version of lattice LSTM model that integrated the results
of segmentation into characters as the final input of LSTM.
[25] combined CNNs and self-attention mechanism with
BiLSTM-CRF together which used global self-attention layer
to capture the information form characters and sentence con-
texts. Besides character features, segmentation features [9]

and sentence features [10] can also be utilized as external
knowledge. The second approach is to adopt a multi-task
learning strategy to train the NER task and other related
tasks together. [11] trained the NER task with Chinese word
segmentation task jointly. [12] introduced adversarial transfer
learning framework and self-attention mechanism to learn
NER tagging and Chinese word segmentation jointly. [26]
incorporated coreferential relation to enrich CNN-BiLSTM-
CRF. The third approach is to improve the representations of
inputs. Language models such as BERT [20] and ELMo [27]
achieved state-of-the-art results in a variety of NLP tasks.
They can generate dynamic vectors according to different
contexts rather than fixed vectors.

B. RESIDUAL NEURAL NETWORKS
[28] proposed Highway Network that first trained very deep
end-to-end networks. ResNets [16] improved the Highway
Network by adding identity mappings as the skip connections
in layers. DenseNets [17] made shortcut connections between
each layer and its subsequent layer to build a deep residual
network. Furthermore, [29] analyzed the impacts of various
usages of activation. In addition to the above works based
on CNNs, there are also several works that built residual
networks based on LSTMs. [14] proposed stack residual
LSTM networks to generate paraphrase. [15] proposed
residual LSTMs for distant speech recognition. A similar
work to ours is [13] which employed stack residual LSTMs
for NER.

III. OUR MODEL
In this section, we first introduce the motivation and the
difference between the residual structure we proposed and
that of ResNets. Then we elaborate the architecture of our
model in three sections. As shown in Figure 3, we take a
3-layer residual BiLSTM model as an example to illustrate
the residual structure. Note that the number of layers can be
changed. Figure 3 shows the overall architecture of 3-layers
residual BiLSTMs with a CRF layer. The whole model
consists of three main parts. The bottom part is an input layer
and the top part is a CRF layer, which is similar to most of
the models based on BiLSTM-CRF. Our innovation is the
residual BiLSTM blocks in the middle part.

A. COMPARISONS OF STRUCTURES BETWEEN
RESNETS AND OUR MODEL
In this section, we compare the structure of our model with
the model in [13] that uses the same structure of ResNets.
Then we analyze the impact of the residual structure on
LSTMs and show the motivation of our model. From the
results of [13]–[15] we can see that applying the same
residual structure of ResNets to BiLSTM is not as effective
as CNN. The reason is that residual LSTMs are not only deep
networks, but each LSTM layer contains the information of
long-term dependencies, which is the main difference from
residual CNNs. Figure 1 and Figure 2 show two different
structures of residual LSTMs respectively. The structure of
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FIGURE 1. Residual LSTMs with the same structure of ResNets.

FIGURE 2. Residual LSTMs with the structure we proposed.

the network in Figure 1 is the same with that of ResNets,
and Figure 2 shows the structure we proposed. Given a loss
function J of the network in Figure 1:

J = F(hnt + hn−1t + . . .+ h1t ) (1)

We take the first LSTM layer as an example, the derivative of
J with respect to c1t can be written as follows:

∂J

∂c1t
= F ′

(
n−2∏
i=0

∂hn−it

∂hn−i−1t

)
∂h1t
∂c1t

+F ′
(
n−2∏
i=1

∂hn−it

∂hn−i−1t

)
∂h1t
∂c1t

+ . . .+ F ′
∂h2t
∂h1t

∂h1t
∂c1t
+ F ′

∂h1t
∂c1t

(2)

In (2) we can see that F ′ ∂h
n
1

∂c1t
which have fewer product

terms than F ′
(∏n−2

i=0
∂hn−it

∂hn−i−1t

)
∂h1t
∂c1t

, will yield bigger value

than the items with more product terms. Thus, the value
of (2) mainly depends on the last several items. As we
know, F ′ contains the addition of direct outputs from each
layer. If we use the result of (2) to update the weight
c1t in the process of back propagation, the weight c1t will
contain much direct information of each layers. As a result,
the all long-term dependencies of each layer are confused
and distributed in each layer. However, the cell state of
each LSTM layer should be relatively independent from
other layers, which allow the residual LSTMs to learn more
information. Thus, the motivation of our model is to make
the long-term dependencies of each layer more different to
improve the capability of residual LSTMs. We adopt a ‘‘local
residual’’ strategy to build the structure. We suppose that two
adjacent LSTM layers have relatively strong correlation, and
only keep the shortcut connections between them, which is
shown in Figure 2. The loss function J̃ and the derivative of
J̃ of our model can be written as follows:

J̃ = F(hnt + hn−1t ) (3)

∂ J̃

∂c1t
= F ′

(
n−2∏
i=0

∂hn−it

∂hn−i−1t

)
∂h1t
∂c1t

+F ′
(
n−2∏
i=1

∂hn−it

∂hn−i−1t

)
∂h1t
∂c1t

(4)

We can observe that our model is simpler and mitigate the
direct influence of the outputs of each layers on c1t .

B. INPUT LAYER
In this section we illustrate the approach of encoding the
input for our model. We denote an input sentence as X =
{x1, x2, . . . , xn}, where xi represents the i-th token in the
sentence. A token represents an English word or a Chinese
character in our model. In the look-up layer, we map each
token to a vector as inputs of the BiLSTM. Word2vec, GloVe
and BERT are all available and adopted to generate input
vectors. Specifically, BERT can generate dynamic vectors of
English word and Chinese characters.Word2vec can generate
fixed vectors of Chinese characters. GloVe can generate
fixed vectors for English words. On account of that many
English named entities are out of vocabulary words, we use
the same method proposed by [8] to help generating fixed
vectors, which uses BiLSTM to encode each character in a
word. Thus, the final fixed vector of an English word is the
concatenation of the word vector and each character vectors.
Note that we use only independent tokens as inputs and do
not introduce any external knowledge.

C. RESIDUAL BiLSTM BLOCKS
In this section we illustrate the structure of the residual
BiLSTM blocks we proposed. As shown in Figure 3,
a residual BiLSTM block consists of a BiLSTM layer,
a shortcut connection and four additional layers which are
fully-connected layer, layer normalization [30], ReLU [31]
and dropout [32] which are used to prevent overfitting and
the vanishing gradient problem. Inspired by ResNets and
DenseNets, we design a type of BiLSTM-based residual
block which refers to an order of ‘‘BN-ReLU-Weight’’
recommend by [29]. We take the l-th blocks as an example
to illustrate the structure of residual BiLSTM blocks.

In the l-th block, we denote the output of (l−1)-th block as
rl−1t for position t . Then the output of the dropout layer can
be written as follows:

dlt = Gl(Wfc · rl−1t ) (5)

where Wl
fc denotes the weight matrix of the fully-connected

layer, and Gl denotes the composite function of layer
normalization, ReLU and dropout. Then the vector dlt is used
as the input to the BiLSTM in this block. The basic LSTM
function can be written as follows:

c̃lt
olt
ilt
flt

 =

tanh
σ

σ

σ

(Wl
p

[
dlt
h̃lt−1

]
+ blp

)

clt = ilt � c̃lt + flt � clt−1
h̃lt = olt � tanh(clt ) (6)

where clt , i
l
t , o

l
t , f

l
t denote cell state, input gate, output gate and

forget gate respectively.Wl
p, b

l
p, σ ,� denote weightmatrices,

bias matrices, sigmoid function and element-wise product
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FIGURE 3. The architecture of 3-layer residual LSTMs with a CRF layer.

respectively.We denote the hidden state of the forward LSTM

as
−→
hlt and that of the backward LSTM as

←−
hlt . Then we

concatenate the two hidden states and get the vector hlt =

[
−→
hlt ;
←−
hlt ]. Then the final output of the l-th residual block can

be written as follows:

rlt = hl−1t + hlt (7)

Thus, we introduce a new type of identity shortcut
connection to BiLSTMs to build a residual BiLSTM model.
In order to illustrate the structure of the residual BiLSTM
blocks more clearly, we re-written the output of l-th residual
block as follows:

rlt = hl−1t +Hl(rl−1t ) (8)

where Hl is the composite function of all operations in the
l-th residual block.

D. CRF LAYER
The CRF layer is usually used as the top layer in each model
for NER. Compared with LSTMs that predict output labels
independently, CRF can capture the dependency information
across the output labels. For example, a label B-PER cannot
follow B-PER. As BiLSTM-CRF, we use a CRF layer

to predict output labels with residual BiLSTMs together.
We denote an output label sequence as y = {y1, y2, . . . , yn},
the score of the sequence can be written as follows:

s(X, y) =
n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi (9)

where A denotes the transition score matrix and P denotes
a score matrix of the probabilities of labels predicted by
residual BiLSTMs. Thus, the probability for the sequence y
is:

p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ)

(10)

where YX denotes all possible label sequences. We use
Viterbi algorithm to calculate the highest score label sequence
as the result of prediction, which can be written as follow:

y∗ = argmax
ỹ∈YX

s(X, ỹ) (11)

TABLE 1. Statistics of the datasets.

IV. EXPERIMENT RESULTS
A. DATASETS AND EXPERIMENTAL SETTINGS
We use four most widely used datasets which are CoNLL-
2003 [33], MSRA [34], Weibo [11], OntoNotes 4.0 [35] and
OntoNotes 5.0 [36] to evaluate our model on English and
Chinese NER tasks respectively. The statistics of sentences
of the datasets is shown in Table 1. We apply the schema of
BIOES (B-begin, I-inside, O-outside, E-end, S-single) to for
all NER datasets as baselines did. For example, the entity
‘‘Kurdistan Democratic Party’’ with 3 words is labeled as
‘‘B-ORG I-ORG E-ORG’’, where ‘‘ORG’’ denotes the entity
type as organization. The entity ‘‘Ramallah’’ with single word
is labeled as ‘‘S-LOC’’, where ‘‘LOC’’ denotes the entity
type as location. Our model has nearly the same type of
hyper-parameters as that of BiLSTM-CRF, which is much
simpler than previous sophisticated models.

In the experiments, we adopt pre-trained English word
vectors published by GloVe [19] and Chinese character
vectors published by [37] as the fixed input for all datasets.
Furthermore, we utilize BERT as the dynamic input for
CoNLL-2003 and MSRA to demonstrate the robustness of
our mode. The hyper-parameters of fixed input and BERT
are shown in Table 2 and 3 respectively. We use Adam
optimizer [38] with a gradient clipping of 5.0. Compared the
hyper-parameters in Table 3, we increase the batch size and
LSTM hidden size in Table 2, because our model has less
parameters than BERT that we can increase these parameters
to accelerate the training speed.
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TABLE 2. Hyper-parameters of NER with fixed input vectors.

TABLE 3. Hyper-parameters of NER with BERT.

B. RESULTS ON ENGLISH NER DATASETS
In this section, we perform our model on English NER
Datasets ConLL-2003 and OntoNotes 5.0. We take the same
approach proposed by [8] to generate English input vectors
for English NER, where the inputs of English NER are
composed of pre-trained word vectors from GloVe1 and
character vectors learned by a BiLSTM network. The results
are shown in Table 4 and Table 5. Our model achieves
a F1-score of 92.22% and 89.65% on CoNLL-2003 and
OntoNotes 5.0 respectively, which outperform the baselines
on the both datasets. Our model also outperforms the
residual LSTM model in [13] significantly. Meanwhile,
we can observe that stacked BiLSTM model performs
worse that [13]. It demonstrates that shortcut connection
can improve the performance of stacked BiLSTM, and
the residual structure in our model is more effective and
reasonable than [13] which uses the same structure of
ResNets.

Sincemost NLP task can benefit fromBERT, we also adopt
BERT 2 to generate dynamic input vector for ourmodel on the
ConLL-2003 dataset. We use the official BERT tools3 offered
by Google to program which adopts AdamW [39] algorithm
for optimization. On account of that our model is more
complex to fine tune with BERT, we use the method proposed
by [40]which contains two steps to fine tune a complexmodel
with BERT. Table 6 shows the F1-scores on ConLL-2003.
The baselines also adopt BERT or ELMo as the input. We can
see that our model work with BERT more effectively than
baselines, which again shows the effectiveness and robustness
of our model.

1http://nlp.stanford.edu/data/glove.6B.zip
2https://storage.googleapis.com/bert_models/2018_10_18/cased_L-

12_H-768_A-12.zip
3https://github.com/google-research/bert

TABLE 4. Results of the CoNLL-2003 dataset with fixed input vectors.

TABLE 5. Results of the OntoNotes 5.0 dataset with fixed input vectors.

TABLE 6. Results of the CoNLL-2003 dataset with BERT.

C. RESULTS ON CHINESE NER DATASETS
In this section, we perform our model on Chinese NER
Datasets MSRA, Weibo and OntoNotes 4.0. We use
pre-trained Chinese character embeddings proposed by [37]
for all datasets. The results of the 3 datasets are shown
in Table 7 to Table 9 respectively. Our model achieves
a F1-score of 92.17% on MSRA, which gains 1.67%
improvement in F1-score compared with BiLSTM-CRF.
And it also outperforms baselines on OntoNotes 4.0. For
the Weibo dataset, the F1-score of our model is slightly
worse than [25]. The reason is that the Weibo dataset is a
relatively small dataset that our model use only character as
inputs, but [25] utilizes sentences as external information.
Nonetheless, the performance of our model is still better than
most baselines.Meanwhile, we can observe that the F1-scores
of the model in [13] on the 3 Chinese datasets are all lower
than our model, which is consistent with the results of English
NER.

For Chinese NER, we also adopt BERT and BERT-based
language model to generate dynamic input vectors to evaluate
our model on the MSRA dataset. We use Chinese BERT-
Base,4 BERT-wwm5 [41] and ERNIE 1.0 Base6 [42] to

4https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-
12_H-768_A-12.zip

5https://pan.iflytek.com/#/link/A2483AD206EF85FD91569B498A3C
3879

6https://ernie.bj.bcebos.com/ERNIE_stable.tgz

227714 VOLUME 8, 2020



G. Yang, H. Xu: Residual BiLSTM Model for Named Entity Recognition

TABLE 7. Results of the MSRA dataset with fixed input vectors.

TABLE 8. Results of the OntoNotes 4.0 dataset with fixed input vectors.

TABLE 9. Results of the Weibo dataset with fixed input vectors.

generate Chinese character vectors. We take the same tool
and optimization method in the previous section, and the
fine-tune learning rates are 3e−5, 4e−5 and 5e−5 for BERT-
Base, BERT-wwm and ERNIE respectively. The results in
shown in Table 10. We can see that the results of using
BERT or BERT-based models are much better than the
models [23]–[25] using external knowledge, which again
demonstrates that our model can benefit from BERT and
achieves better performance than baselines. It also shows that
a good pre-trained model can make an improvement on NER
tasks significantly.

TABLE 10. Results of the MSRA dataset with BERT and ERNIE.

V. ANALYSIS AND DISCUSSION
A. IMPACT OF RESIDUAL BLOCK STRUCTURE
In this section, we perform Chinese NER on the MSRA
dataset with several different types of residual block struc-
tures. We use the same hyper-parameters shown in Table 2.
Figure 4 shows four different representative structures of the

FIGURE 4. Four different structures of residual blocks.

residual block. Type A builds shortcut connections in a way
that is similar to ResNets, where the element-wise addition
is before the identity mapping. Note that Type A has the
same structure with the model in [13]. Like Type A, Type B
just moves the element-wise addition before the BiLSTM
layer. Type C can be treated as a simplified version of our
model. It removes fully-connected layer, layer normalization,
ReLU and dropout from the residual block. Type D builds
residual LSTMs for forward LSTMs and backward LSTMs
separately. Furthermore, we conduct further experiments by
removing the fully-connected layer and layer normalization.
We choose Chinese NER for that the model for English NER
needs an extra BiLSTM network to encode characters, which
may influence the results of the experiment.

From Table 11 we can observe that the performance of
Type C is better than Type A and Type B, which demonstrates
that it is more reasonable and effective to build a residual
BiLSTM model with the structure we proposed. Meanwhile,
it also shows that the order of ‘‘BN-ReLU-Weight’’ proposed
by [29] for the block also works in residual LSTMs.

B. IMPACT OF NUMBER OF RESIDUAL BiLSTM LAYERS
In this section, we repeat the Chinese NER tasks on
the MSRA dataset by changing the number of residual
BiLSTM blocks. Meanwhile, we choose the traditional
stacked BiLSTM-CRFmodels as the baseline model which is
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TABLE 11. Results of the MSRA dataset with different structures of
residual blocks.

TABLE 12. Results of the MSRA dataset with different number of BiLSTM
layers.

without shortcut connections and uses the output of previous
LSTM as the input of next LSTM directly. The results
are shown in Table 12. We can observe that increasing
the number of stacked BiLSTM-CRF contributes slightly to
the performance compared to the BiLSTM-CRF model. For
our model, the highest F1-score is achieved by the 4-layer
residual BiLSTM-CRF. The F1-score begins to drop when
the number of layers is more than 4, which is consistent
with the results of [13]. The reason might be that the
structure of a LSTM kernel is more complex that has much
more parameters that a CNN kernel. It is easier to overfit
for a deep LSTM network with multiple layers. Hence,
it is relatively difficult to train it effectively and to learn
high-quality long-term dependencies information for each
LSTM layer. Nevertheless, our model with 4 layers still
outperforms stacked BiLSTM-CRF models significantly.

TABLE 13. Results of ablation study on the MSRA dataset.

C. ABLATION STUDY
In this section, we investigate the effectiveness of each
layer in the residual BiLSTM blocks by the ablation study
on MSRA. The results are shown in Table 13. Obviously,
layer normalizationmakes themost contribution.Meanwhile,
ReLU and dropout which are used to prevent overfitting both
contribute to our model. And we introduce a dense layer to
further improve the performance slightly. We conduct two
extra experiments where we replace the ReLU and LSTM
with ELU [57] and GRU [58] respectively, but it makes little

contribution to the F1-score. In particular, GRU is not suitable
for the residual BiLSTM units. Because the hidden state and
cell state of GRU are the same state, which will easily break
the long-term dependencies of each layer when using GRU to
build a residual network. Compared to GRU, LSTM has two
different states to keep hidden state and cell state respectively
that LSTM is more suitable for the residual structure.

TABLE 14. Results of case study on the CoNLL-2003 dataset.

D. CASE STUDY
In this section, we conduct a case study on the stacked
BiLSTM, residual BiLSTM and our model with CRF. The
number of layers is set to 3. The results are show in Table 14.
We can see our model predict the entities in the two sentences
correctly. By contrast, the stacked BiLSTM model does not
predict either the boundary in the first sentence or the entity
type in the second sentence correctly. The residual BiLSTM
model in [13] only predicts the entity type correctly. The
results show that our model can capture richer semantic
information from texts for NER.

VI. CONCLUSION AND FUTURE WORK
We present a novel residual BiLSTM model for NER
tasks. We introduce a new type of residual block based on
BiLSTMs. Being different from most other state-of-the-art
models that introduce external knowledge or multi-task
learning, we make efforts to innovate on the structure of
residual network based on BiLSTMs. We evaluate our model
on Chinese and English NER datasets. The experimental
results show that our model can improve the performance
of both Chinese and English NER effectively without
introducing external knowledge. Meanwhile, our model
performs well with both fixed and dynamic inputs, which
demonstrates the robustness of our model. Furthermore,
we conduct experiments with several different structures of
residual blocks. The results demonstrate the effectiveness of
the structure of the residual block we proposed.

In the future, we will also try to combine our model
with attention mechanism. For example, we can use attention
layers to control the weight of each layer. And we will try to
introduce external knowledge such as contextual information
as the extra input to enhance our model. On the other hand,
we will apply our model to other NLP tasks. For example, our
model can be used to encode sentences for relation extraction
and extract the features of texts for text classification instead
of BiLSTM.
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