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ABSTRACT While micro-CT systems are instrumental in preclinical research, clinical micro-CT imaging
has long been desired with cochlear implantation as a primary application. The structural details of the
cochlear implant and the temporal bone require a significantly higher image resolution than that (about
0.2 mm) provided by current medical CT scanners. In this paper, we propose a clinical micro-CT (CMCT)
system design integrating conventional spiral cone-beam CT, contemporary interior tomography, deep
learning techniques, and the technologies of a micro-focus X-ray source, a photon-counting detector (PCD),
and robotic arms for ultrahigh-resolution localized tomography of a freely-selected volume of interest (VOI)
at a minimized radiation dose level. The whole system consists of a standard CT scanner for a clinical CT
exam and VOI specification, and a robotic micro-CT scanner for a local scan of high spatial and spectral
resolution at minimized radiation dose. The prior information from the global scan is also fully utilized for
background compensation of the local scan data for accurate and stable VOI reconstruction. Our results
and analysis show that the proposed hybrid reconstruction algorithm delivers accurate high-resolution local
reconstruction, and is insensitive to the misalignment of the isocenter position, initial view angle and scale
mismatch in the data/image registration. These findings demonstrate the feasibility of our system design.
We envision that deep learning techniques can be leveraged for optimized imaging performance. With
high-resolution imaging, high dose efficiency and low system cost synergistically, our proposed CMCT
system has great promise in temporal bone imaging as well as various other clinical applications.

INDEX TERMS Clinical micro-CT, deep learning, high-resolution imaging, interior tomography,
photon-counting detector, robotic arms, temporal bone imaging, X-ray computed tomography.

I. INTRODUCTION
In the clinical practice of otology and neurotology, medical
imaging is critical for evaluation and treatment of many dis-
eases [1]. Magnetic resonance imaging (MRI) is an effective
imaging tool with excellent soft tissue contrast and invaluable
in detecting neoplasms with gadolinium contrast agent, but
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it is not good at evaluating bony structures [2]. Currently,
temporal bone CT is the primary method of choice for otolog-
ical imaging [3]. Chronic otitis media, otosclerosis, temporal
bone fracture, congenital aural atresia, cochlear implantation,
dehiscent superior semicircular canal, congenital labyrinthine
dysplasia, labyrinthine fistula are all disorders or therapies
where temporal bone CT is either absolutely necessary or
a commonly desired adjunct to surgical management, for
diagnosis or planning. In cochlear implantation, although
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psychophysical and physiological measures are of primary
importance, the ability to localize electrodes and depict their
3D anatomical environment in vivo is of great relevance to
understanding variations in threshold, uncomfortable level,
and channel interaction.

CT is widely used to image a variety of middle and inner
ear pathologies but it is limited by suboptimal image reso-
lution [4]. While most CT scanners are limited to, at best,
a spatial resolution of about 0.3 mm, the latest Cannon CT
scanner resolves details down to about 0.2 mm [5]. This level
of image resolution is still insufficient. For example, it is
common that a precise diagnosis is unavailable until direct
assessment during otologic surgery allows visual inspection
and palpation of the ossicular chain. Also, much-improved
image resolution of pre- and post-operative inner ear imaging
is required for detailed analysis of cochlear morphometry and
its relationship to an implanted electrode array [6]. In these
and many other research and clinical applications, there are
critical and immediate needs for ultra-fine spatial resolution
without compromising other image quality indices at a min-
imized radiation dose level. A breakthrough in CT image
resolution may greatly benefit diagnosis and treatment in
general, and otology and neurotology in particular, such as
for rational design and implantation of prosthetic devices.

In contrast to the classic CT system, the robotic-arm-based
X-ray imaging system allows a great flexibility of scan-
ning. It supports different scanning trajectories optimized
for diverse tasks focusing on various organs and locations.
Siemens developed a robotic X-ray system named Multi-
tom Rax, which can scan a patient under a natural weight
bearing condition. It enables a variety of clinical examina-
tions. Three-dimensional images acquired by Multitom Rax
improve diagnostic and planning performance compared to
what we obtained when a patient lies on a bed. Researchers
with Johns Hopkins University developed a mathematical
framework for the design of scanning trajectories optimal to
a particular task with cone-beam CT [7]. FirstImaging also
develops robotic image systems with excellent image quality.

The X-ray photon-counting detector (PCD) is an enabling
technology on the horizon for high-resolution (HR) and
low-noise imaging, which promises to add a spectral dimen-
sion to raw data and boost CT performance [8]. Different
from the energy-integrating detector (EID), PCD works in a
pulse-counting mode and directly converts individual X-ray
photons into the corresponding charge signals which are then
sorted into different energy bins based on the pulse heights.
Thus, the intensity and wavelength information of incoming
photons are simultaneously obtained. PCDs principally have
no electronic noise and provide quite small effective pixel
size; e.g., around 0.11mm×0.11mm. In contrast, EIDs suffer
from the dark current and readout noise with the element
size of typically about 1 mm × 1 mm. In addition, EIDs put
more weights on high-energy photons than on low-energy
photons but high-energy photons usually get attenuated less
than low-energy photons, leading to a reduced image con-
trast. On the other hand, with PCDs optimal weights can be

implemented on polychromatic photons for improved con-
trast and dose efficiency. More importantly, the energy dis-
crimination ability of PCDs helps reduce beam hardening
and metal artifacts, and enables K-edge imaging and material
decomposition.

In parallel to the development of X-ray detectors, inno-
vations of micro-focus X-ray tubes are also important. The
NanoX tube is an example [9], and consists of electron emit-
ting and receiving constructs. The receiving part is mainly
an anode with a photoconductor. The emission part includes
a backplate, a substrate, a cathode, a gate electrode, and an
array of field emission electron sources. A microstructured
array anode target (MAAT) X-ray source is another example,
which was recently designed [10] to offer a significantly
higher flux than an ordinary X-ray source in phase contrast
imaging applications. The key parameters were optimized in
the range of 40 keV to 130 keV. These types of technologies
could be combined into a micro-focus X-ray tube for tempo-
ral bone CT imaging; for example, with a focal spot size of
about 0.1 mm or less to match the PCD element size.
We envision a robotic-arm-based design of a clinical

micro-CT scanner to integrate a micro-focus tube, a PCD,
interior tomography, and deep learning into a novel device
that can be attached to a clinical CT scanner to form a clinical
micro-CT system (CMCT) or used separately. The proposed
CMCT workflow starts with a conventional volumetric scan
of a patient, and then proceeds to a subsequent image analysis
session by an expert or a smart software analyzer. After that,
the patient is smoothly translated into the robotic scanning
space for an interior photon-counting micro-CT scan, in reg-
istration to the previously performed global scan. Based on
interior tomography theory, the interior scan can target only
a region of interest (ROI) with a small detector panel and a
customized scanning trajectory so that the image quality can
be optimized. To facilitate accurate registration between the
global scan data/images and local counterparts, an optical 3D
surface scanner is used at the start of the local scan and it
continues to monitor the head movement of the patient [11]
during the local scan for motion compensation. This design
integrates all relevant cutting-edge hardware and software
elements, and systematically upgrades our earliest CMCT
design published in 2005 [12] as well as other follow-up
designs for similar purposes [13]–[18].

Compared to the above-mentioned prior designs, our
approach aims at a much higher resolution of 50 µm with
a high-power micro-focus source and a state-of-the-art PCD
with fine detector elements for electronic-noise-free spectral
imaging. Furthermore, the robotic arms add a great mechan-
ical flexibility compared to the C-arm gantry and enable a
moving VOI mask scanning for higher dose efficiency [14].

As far as the image reconstruction is concerned, the cur-
rent mainstream of interior tomography methods focuses
on improving reconstruction quality from truncated pro-
jections with no or little extra information [19]–[24].
Nevertheless, in our setting a global scan is available,
which is clinically natural and can be utilized for robust
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reconstruction at least for the initial imaging task. Sev-
eral methods that complete the HR projection data with
a low-resolution global scan have been developed for
truncation-artifacts-free reconstruction [12]–[15], [25], [26].
[27], in particular, is computationally-efficient without for-
ward projection operations that directly fuses global and local
reconstructions, but it is restricted to a certain type of scan-
ning geometry and inappropriate for our application. Instead
of completing the HR truncated projections to cover a global
FOV, we propose to directly perform a background compen-
sation on the HR local/interior scan with the global scan. The
main benefit is that the subsequent interior reconstruction
only involves a small portion of the sinogram, requiring
much less memory space and computational time. This is
critical since the projection resolution will be enhanced up
to 10 folds (from 1 mm to 0.11 mm), hence the amount of
interpolated 2D projection data will be increased 100 times
compared to that of the global scan, and handling such big
data for reconstruction can be very time-consuming or even
prohibitive. Furthermore, for quality enhancement at reduced
doses, deep learning techniques can be involved in multi-
ple reconstruction stages; e.g., projection deblurring, image
denoising and super-resolution, beam hardening correction
and material decomposition.

II. SYSTEM DESIGN
A. SYSTEM DESCRIPTION
The proposed CMCT system consists of a standard medical
CT scanner or a novel clincal CT system (such as a NanoX
system) and a robotic micro-CT scanner, as shown in Fig. 1.
The CT scanner performs a global scan. A standard CT algo-
rithm can be used to reconstruct head slices, which show the
inner ear region of interest. Then, the patient table transports
the patient into the robotic micro-CT system.

FIGURE 1. Schematic diagram of the proposed clinical micro-CT (CMCT)
system.

This robotic micro-CT system uses two robotic arms hold-
ing the X-ray source and the X-ray detector respectively,
as shown in Fig. 2. The micro-focus tube is a key com-
ponent for high spatial resolution imaging. The flat-panel
PCD is suitable for material decomposition and tissue char-
acterization. The robotic arms can perform a scan along an
arbitrary trajectory such as a circular or spiral trajectory.
A high-performance computer is in overall control. It sends

FIGURE 2. Robotic cone-beam micro-CT system.

instructions to the robotic arms, X-ray source and detector.
It also acquires raw data from the detector. Each robotic arm
needs one control box, which receives commands from the
computer and drives the servo system.

B. DESIGN PRINCIPLES
1) COORDINATED ROBOTS
The lightweight, highly flexible, and collaborative UR5e and
UR16e industrial robot arms with payloads of up to 5 kg
and 16 kg, respectively, are suitable for our CMCT
system [28]. The working radius of UR5e is 850 mm with
power consumption of 250 W, while the working radius of
UR16e is 900 mm with power consumption of 585 W. The
communication between the control computer and the robotic
arm control box is through an Ethernet cable using TCP/IP
1000BASE-T protocol. The 6-axis robotic arms have a high
position repeatability of 30 µm. Some models can be used
to achieve even higher accuracy. The existing Radalytica
robotic imaging platform can be modified for CMCT, push-
ing the limits of robotic imaging considerably further. The
robotic-arm cone-beam micro-CT sub-system can be made
to achieve a spatial resolution of 50 µm or higher to meet
temporal bone imaging requirements [29]. The power supply
can be from 100 to 240 VAC at 47 to 440 Hz.

2) X-RAY SOURCE
The Hamamatsu L12161-07 tube is selected as the X-ray
source for CMCT. It is an RS-232 controlled 40-150 kV
X-ray source with a focal spot size adjustable among 7, 20,
and 50 µm. Its maximum tube power output is 75 W. The
anode target material is Tungsten. The tube window is made
of Beryllium of 0.2 mm thickness. The effective cone beam
angle is 43◦. Its weight is 13.5 kg, manageable with the larger
robot arm.

3) PHOTON-COUNTING DETECTOR
The photon-counting detector ADVACAM WIDEPIX-5 × 5
of 1280× 1280 pixels fits the need for human temporal bone
micro-CT. Its continuous sensitive surface is supported by an
array of 5 × 5 detector tiles. Each tile consists of a single
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Timepix hybrid detector (256× 256 pixels) with an edgeless
CdTe sensor. Each pixel counts the number of X-ray photons,
allowing a large dynamic range. The Timepix technology also
allows for the use of multiple energy thresholds. The intrinsic
spatial resolution is defined by the detector pitch of 55 µm.
That is, the imaging sensor covers a 7 cm × 7 cm area. The
detector weighs 3.3 kg and can be easily carried by the smaller
robotic arm. If we use the detector in a 2 × 2 binning mode,
image resolution is 50 µm, and the diameter of the volume
of interest (VOI) is 3.5 cm, assuming a magnification factor
of 2. This should be sufficient to cover the human inner and
middle ear. In addition to the Timepix detector, we can also
customize the Medipix3 detector tiles, whose pixels have two
integrated 12-bit digital counters and two energy discrimina-
tion thresholds. If we use the detector in a 2×2 binningmode,
there are 8 spectral bins for data collection in a single scan.

4) RADIATION DOSE
Radiation dose is mainly determined by the tube voltage, cur-
rent and exposure period. With the use of the PCD, there is no
electronic noise when recording projection data but Poisson
noise cannot be avoided. In the interior scanning mode, the
X-ray source only radiates about 1/10 of the diameter of
the field of view but improvement in image resolution by
four times (roughly, from 200 µm to 50 µm) would increase
radiation dose significantly (two orders of magnitude) [12].
Thanks to the latest advancement in deep-learning-based
low-dose CT imaging techniques [30], we can reduce radi-
ation dose by an order of magnitude. With all of these factors
coupled together, we should be able to maintain approxi-
mately the current head CT dose for an interior micro-CT
scan to achieve about 50 µm resolution.

5) SPATIAL RESOLUTION
We define the center of the focal spot as S, the center of
the detector as D, and the rotation center as O which is the
center of a VOI. These three points should always be kept
in a straight line. In Fig. 3, a is the source to VOI distance,
b is the VOI to detector distance, and c is the source to
detector distance. The geometric magnification factorsM and
M ′ are c/a and c/b for the focal spot and the detector aperture
respectively [31]. The spatial resolution r of the imaging
system can be approximated as a convolution of the detector

FIGURE 3. Geometry of a robotic imaging chain.

size d and the focal spot size x respectively scaled by M
and M ′:

r =

√
(
x
M

)2 + (
d
M ′

)2 (1)

In our initial CMCT system design, x is no more
than 50 µm, and d is equal to 110 µm (due to 2 × 2
binning). The source to VOI distance can be from 150 to
250mm, and the VOI to detector distance is in the same range.
Consequently, the magnification factor can be adjusted from
1.60 to 2.67 with the imaging field of view from 26 to 44 mm
in diameter. According to the above equations, the system
spatial resolution can be made close to 50 µm.

6) GEOMETRIC ALIGNMENT
In the CMCT process, global and local projection data
are obtained in different scanning geometries. An optical
3D surface scanner is preferably used for image registra-
tion, as shown in Fig. 4. The clinical CT scan obtains a
3D image of a patient who may wear landmarks such as
a firmly-attached helmet. A boundary detection algorithm
extracts the facial/helmet surface and key points for mesh
generation as a basis for image registration [32]. The fact is
utilized that the inner ear and the face surface are in a rigid
relation. As an example of 3D surface scanners, the laser
scannerMicro-Epsilon LLT2910-100 is a high-quality profile
sensor. The height range may be set from 125 to 390 mm,
and the width range can be fixed to 143.5 mm, with spatial
resolution of 12 µm at a profiling frequency of 300 Hz.
The compact size of 96 mm × 85 mm × 33 mm and low
weight of 380 grams are ideal for static, dynamic and robotic
applications. The wavelength of the semiconductor laser is
switchable between 658 nm (red) and 405 nm (blue). The
measurement data can be output via an Ethernet UDP, Mod-
bus TCP, or serial communication protocol. The power supply
is 24 VDC 500 mA. The optical scanner and the two robotic
arms are mounted on the same pedestal so that they share the
same coordinate system. The optically scanned patient head
surface needs to be registered with the clinical CT originated
head surface. Then, the coordinate conversion is carried out
to delineate a VOI for a robotic micro-CT scan. The temporal
bone data and images by medical CT and micro-CT also
need to be registered and fused to achieve the best imaging
performance.

FIGURE 4. CMCT image registration integrating standard temporal bone
CT and our robotic micro-CT imaging.
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III. IMAGING ALGORITHM
It is well known that the CT interior problem is not uniquely
solvable in an unconstrained space [33]. By introducing addi-
tional prior knowledge on the image to be reconstructed; e.g.,
an interior sub-region with known attenuation values or a
piece-wise constant model of underlying images, the image
reconstruction from local projection profiles that are trun-
cated on both sides becomes uniquely solvable. However,
those assumptions often do not exactly hold in practical cases,
which potentially results in shifting and cupping in recon-
structed attenuation values. To address this problem, we pro-
pose to use a low-resolution (LR) global CT scan to estimate
the background attenuation in the sinogram of the HR local
scan that involves the surrounding volume of the VOI, and
obtain an accurate HR local reconstruction of the VOI.

The general idea of background compensation is illustrated
in Fig. 5 in a 2D case without loss of generality. The transfor-
mation between the underlying/reconstructed image and its
projection data is linear and invertible, and we can partition
an underlying image into the two parts, the region of interest
and the background. Given the sinogram of the background
Pbackground and the global sinogram Pglobal , we can easily
obtain the pure sinogram of the region of the interest (ROI)
PROI as follows:

PROI = Pglobal − Pbackground . (2)

The above relationship becomes nontrivial with laterally trun-
cated projection data. Let trunc(·) denote the truncation oper-
ation, and Eq. 2 becomes

trunc(PROI ) = trunc(Pglobal)− trunc(Pbackground ), (3)

where trunc(Pglobal) stands for a local scan Plocal . By inten-
tionally letting the local scan cover the ROI, the truncated
parts of PROI are all zeros, and we have

PROI = Plocal − trunc(Pbackground ). (4)

This equation suggests that the ROI within a local scan can
be accurately reconstructed from the laterally truncated scan
after background subtraction. Clearly, this compensation will
improve the stability of interior tomography.

For CMCT, a VOI can be accurately reconstructed at
high resolution, given the HR local projection dataset PHRlocal
and an appropriate background estimation. Suppose that we
have a prior LR CT scan of the object PLRglobal , the LR
background estimation PLRbackground can be easily obtained
as shown in Fig. 5(a), which can be used to approximate
the HR background closely via interpolation. This is based
on the assumption that residual high-frequency background
estimation errors will mostly cancel out during the integration
which makes the LR estimation sufficiently accurate for our
purpose.

A. CMCT RECONSTRUCTION
In clinical applications, a standard (relatively low resolution)
global CT scan is first performed. Those regions with pos-
sible pathology or of physiologic importance can be further

FIGURE 5. Illustration of the proposed ROI reconstruction through
background compensation.

examined with a local micro-CT scan, which provides a HR
local/interior reconstruction of a VOI. With interior tomog-
raphy, a minimized additional dose will be involved. The
prior information obtained through the global CT scan can be
utilized to help the interior image reconstruction (at ultrahigh
resolution).

The whole scanning procedure is summarized as follows:

1) Perform a global head CT scan Pglobal with a scanning
geometry Gglobal ;

2) Determine a VOI and then plan a scanning geometry
Glocal for a local micro-CT scan;

3) Scan the patient optically with a surface scanner to
generate the surface model Slocal for data/image reg-
istration between the global and local scans at the start
of the local scan;

4) Perform the micro-CT scan Plocal followingGlocal (see
the registration step below). During the local scan,
the optical scanner continuously scans the patient head
(preferably with optical markers) for tracing uncon-
scious head movement.

Then, the VOI reconstruction mainly consists of the fol-
lowing three steps: data/image registration, background com-
pensation, and image reconstruction. For brevity, in the fol-
lowing we assume that the head movement effects have
already been compensated for in the local projections Plocal
with the feedback from the optical scanner using advanced
correction techniques, like, locally linear embedding motion
correction [34], [35].

1) Registration: Find the relative geometry between
Gglobal and Glocal in reference to the facial surface
model Slocal .
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FIGURE 6. Head phantom with resolution patterns. (a) The original head image, (b) two resolution bar
patterns placed along horizontal and vertical directions respectively with an amplitude of 600 HU in the
inner ear region, (c) an enlarged region around the patterns, and (d) the profiles of the resolution
patterns.

a) Reconstruct the global volume Vglobal from
Pglobal ;

b) Render the surface model Sglobal from the global
reconstruction Vglobal ;

c) Register the two surface models to align the ori-
entation and position of Sglobal with Slocal . The
registration result is used to guide the micro-CT
scan;

d) From Plocal , directly reconstruct a volume of
interest Vlocal which contains fine structures but
may be subject to distorted attenuation values;

e) Refine the registration parameters (obtained in
Step 1c) in reference to the registration between
Vglobal and Vlocal .

2) Compensation: Correct the attenuation offsets inPlocal
to form a pure sinogram of the VOI PVOI .

a) Set the attenuation values inside VOI to zero
in the aligned global reconstruction to form the
background volume V align

background ;
b) Digitally reproject the background volume

V align
background following the geometry Glocal to form

the LR background estimation PLRbackground ;
c) Interpolate PLRbackground to the same resolution

as the local HR projection Plocal , and obtain
PHRbackground ;

d) TruncatePHRbackground to the same size asPlocal , and
obtain trunc(PHRbackground );

e) Correct Plocal with the estimated attenuation
background as Plocal − trunc(PHRbackground ) to form
the pure sinogram of the VOI PVOI ;

3) Reconstruction: Reconstruct the VOI from PVOI with
geometry Glocal using a cone-beam reconstruction
algorithm, and preferably one developed in the deep
learning framework.

IV. RESULTS
A. CMCT ACCURACY AND RESOLUTION
A simulation study was performed to demonstrate the fea-
sibility of our proposed VOI reconstruction through back-
ground compensation. When the PCD is used, projections are
collected in a number of energy bins. For inner ear imaging,
we may initially focus on all the counts in a wide energy
window to study the reconstruction performance; i.e., 40keV
to 110keV (120 kVp source), for the following considera-
tions: (1) to avoid the blurring from the X-ray fluorescence
in the CdTe crystal; (2) to collect most photons that have
penetrated through the head; and (3) to reduce the influence
of pile-up effects. One head CT image containing the inner
ear structures from the Visible Human Project [36] was used
as a realistic image phantom, as shown in Fig. 6(a). The
original phantom matrix is of 512 × 512 pixels with pixel
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FIGURE 7. Reconstructed ROI in the same display window, including the direct reconstruction with FBP from local data, FBP
reconstruction after background compensation, the ground truth reconstructed from the HR global scan with 0.11mm pixel size, and
the HR ground truth from the HR global scan with 0.04mm pixel size. The attenuation value is in cm−1.

size of 0.4981 mm. In our study, the phantom image was
first interpolated to 10, 240 × 10, 240 pixels with a pixel
size of 0.025 mm to generate the HR phantom. Note that
the bicubic interpolation method was used to generate pixel
values. Then, two resolution bar patterns in horizontal and
vertical orientations were embedded in the inner ear region as
shown in Fig. 6(b) to (d). The amplitude of the added patterns
is 600 HU, and the radius of the ROI is 23mm as marked with
a red circle in Fig. 6(b). A global CT scan was performed
with 1.024 mm detector pixel size, and the HR local CT scan
covered a region of radius 35.05mmwith a detector pixel size
0.11 mm. Both scans had the same system magnification fac-
tor of 2 and tube voltage of 140kVp, and were simulated with
an industrial CT simulator CatSim [37]. Two additional HR
global scans were also performed with fine detection pixels
of 0.11mm and 0.04mm to produce the reference reconstruc-
tions as the ground truth (GT) of the attenuation value and
image resolution, respectively. In Fig. 7, large deviations of
attenuation values from the GT and strong cupping effects are
observed for the direct local scan reconstruction with filtered
back projection (FBP). In contrast, the reconstruction from
the background compensated projections demonstrates accu-
rate attenuation values. The negligible artifacts around the
ROI boundary may come from minor mismatches between
the background estimation. Interestingly, for the direct recon-
struction, in spite of the attenuation value shifting, the fine
details are still clearly discernible except for the distorted ROI
boundary, which might be sufficient in those applications that
only need structural features.

To evaluate the potential influence of the proposed method
on the attenuation value and image resolution, the profiles
along and around the vertical and horizontal midlines of
the ROI and through the resolution bar patterns are shown
in Fig. 8. The lines overlap well with the ground truth inside
the ROI as demonstrated in Fig. 8(a) and 8(b), demonstrating
the high fidelity of the reconstructed attenuation values. Sim-
ilarly in Fig. 8(c) and (d). The overlapped profiles of the GT
and FBP reconstruction show that the proposed local recon-
struction method does not compromise image resolution as
compared with the global HR scan. Particularly, the 50 µm
gap is not resolved while the 75 µm gap is well resolved,

FIGURE 8. Attenuation profiles of the local reconstructions after
background compensation relative to the ground truth. (a) and (b) The
profiles along the horizontal and vertical midlines for attenuation value
comparison; (c) and (d) the profiles through the horizontal and vertical
resolution bar patterns for image resolution assessment.

which indicates the resolution of the local scan protocol is
between 50µm and 75µm. This agrees well with our analysis
on the imaging parameters.

B. MIS-REGISTRATION EFFECTS
While the accuracy and resolution have been demonstrated
above, the feasibility of the proposed reconstruction method
will be illustrated in this subsection in terms of the robustness
to the a potential mis-registration due to imperfect hardware
components and their suboptimal coordination; i.e., with
respect to mismatches in position, orientation and/or scale.
The direct effects of these mismatches on the reconstruction
process are an isocenter offset, a falsely tilted initial view
angle, and an incorrect magnification factor messing up the
interpolation between the local scan and the re-projection
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through a globally reconstructed image volume for back-
ground estimation.

First, the mismatches in the isocenter position were set to
the range from 0 to 4.483mmwith an increment of 0.498mm
along the horizontal direction. The corresponding results
with misaligned background compensation are in Fig. 13.
The absolute and relative error maps were calculated against
the GT. Then, the profiles along the horizontal and vertical
midlines of the error maps corresponding to 6 selected mis-
matches are in Fig. 9. It is observed that the maximum relative
error of the well-aligned compensated local reconstruction is
within ±5%, which came mainly from the error in the back-
ground estimation, while themisalignment along the horizon-
tal direction seems having little effect on the vertical profiles
while there are significant drops off the horizontal profiles.
Specifically, the maximum relative error remains around 6%
when the misalignment is 0.498 mm, and it becomes close to
10% when the misalignment reaches 0.996 mm. The above
observations suggest the robustness of the compensated local
reconstruction with respect to the isocenter misalignment
which remains quite accurate even with an up to 0.498 mm
mismatch.

FIGURE 9. Profiles of the attenuation error in the reconstructions with
isocenter misalignment after background compensation. (a) The
horizontal and (b) vertical profiles of the attenuation error through the
VOI center; (c) and (d) the corresponding relative error profiles. The
profiles are associated with isocenter mismatches from 0 to 2.490 mm in
a step of 0.498 mm.

The initial view angle mismatches were simulated in the
range from −4.39◦ to 4.39◦ with an increment of 1.098◦.
The resultant reconstructions are in Fig. 14. The error maps
were calculated in the same way as for the positional mis-
matches, and the through-center profiles of the error maps are
in Fig. 10. Similarly, the mismatches have stronger influences
on the horizontal profiles than on the vertical ones, by the

FIGURE 10. Profiles of the attenuation error in the reconstructions with
misaligned initial view angles for background compensation. (a) and
(b) The horizontal and vertical profiles through the center of the
attenuation error map, (c) and (d) the corresponding relative
reconstruction error profiles. The profiles correspond to angular
mismatches from −2.2◦ to 2.2◦ with an increment of 1.1◦.

directional asymmetry of the background compensation.
Themaximum relative error is in the range [−10%, 5%]when
the angular errors are within ±2.2◦. Especially, the relative
reconstruction errors are mostly contained within±6% if the
angular errors are within ±1.1◦.
The magnification errors were also simulated in the range

from −20% to 20% in a step of 5%, and the corresponding
reconstructions are in Fig. 15. Interestingly, the ‘‘effective’’
ROI of reconstruction is determined by the applied magnifi-
cation factor, with the regions outside the effective ROI hav-
ing opposite attenuation shifting as compared to that inside
the effective ROI. The relative reconstruction error profiles
are in Fig. 11 with the corresponding magnification mis-
matches from −10% to 10%. Different from the distortions
observed in the cases of positional and angular misalign-
ments, which are mainly concentrated around a peripheral
region, the magnification error causes a global attenuation
shift inside the effective ROI. As shown in Fig. 11(a) and (b),
the attenuation shift is proportional to the magnification mis-
match and seems much more sensitive than other types of
misalignments. Fortunately, this global shift can be effec-
tively addressed by a bias correction method introduced
below.

C. BIAS CORRECTION
The global shift, especially observed in the case with mag-
nification errors, can be addressed with bias correction to
make the attenuation value of a known region agree with the
target value; i.e., to make the air value close to zero. Other
known values can be used for the same purpose, such as that
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TABLE 1. Quantitative metrics of the reconstructions with isocenter misalignment for background compensation (r=21mm). Bold indicates the reference.

TABLE 2. Quantitative metrics of the reconstructions with initial angular misalignment for background compensation (r=21 mm). Bold indicates the
reference.

FIGURE 11. Profiles of the attenuation error in the reconstructions with
incorrect magnification factors for background compensation. (a) and
(b) The horizontal and vertical profiles through the reconstruction error
maps; (c) and (d) the corresponding relative reconstruction error profiles.
The profiles correspond to magnification mismatches from −10% to 10%
with an increment of 5%.

obtained from the global reconstruction; for example, we can
select a relatively flat region and calculate its mean value as
a benchmark.

Quantitative metrics, including SSIM, Peak Signal-to-
Noise Ratio (PSNR), MSE and Root Mean-Squared Relative
Error (RMSRE), were used to quantify the reconstructions
with these misalignments in reference to the ROI in the GT,

with and without additional bias correction. The actual radius
of the ROI was set to 21 mm. The evaluation results with
respect to isocenter position, initial angle, and magnification
errors are summarized in Tables 1, 2 and 3 respectively. The
results after bias correction are denoted with the abbreviation
‘Crt’ in the Tables.

The reconstructions are quite robust with respect to the
isocenter positional and initial angular errors, and the bias
correctionmethod can further improve the accuracy, as shown
in Tables 1 and 2. The attenuation deviation from GT in the
reconstruction with aligned background compensation is very
small, with MSE 0.454 × 10−5 and RMSRE only 1.07%.
By increasing the position error, the SSIM and PSNRmetrics
decrease while MSE and RMSRE increase, as expected. The
RMSRE value is still below 2.0% when the position error
reaches 0.996 mm, and the tolerance is extended to up to
1.992mm after the bias correction, which demonstrate the
robustness of our method. Similarly, in Table 2 the RMSRE
remains below 2.0% for all angular errors within ±4.39◦.

The bias correction substantially improves the
magnification-error-affected image reconstruction, as shown
in Table 3. To be noted, since the effective ROI is scaled with
the magnification factor, the intersection of these effective
ROIs and the original ROI (radius 21 mm) was used for
evaluation, with the radius being set to 16.8 mm. The metrics
on the reconstruction before the bias correction dramatically
change as the magnification error varies, demonstrating a
relative high sensitivity. Fortunately, with the bias correction
method RMSRE in the case of −20% magnification error
is significantly reduced to 1.67% from 10.43% within the
effective ROI, demonstrating a decent robustness.

An interesting phenomenon is that if we perform the bias
correction on the aligned reconstruction, the metric scores
drop slightly in the inner region within the radius of 16.8 mm
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TABLE 3. Quantitative metrics of the reconstructions with magnification mismatch for background compensation (r=16.8 mm). Bold indicates the
reference.

in contrast to a tiny boost when evaluated on the whole
ROI region (radius 21 mm). This suggests that the recon-
struction must already be very accurate in the inner region
when the compensation is well aligned. The attenuation esti-
mation from the global reconstruction cannot be perfect due
to differences in resolution and existence of artifacts, and the
linearity of the model to support our compensation method
is just an approximation to the polychromatic X-ray imaging
process, which may bring residual errors into the peripheral
region of the ROI. Thus, there is no need to perform bias
correction if the system is well calibrated and we are sure
about the accuracy of the registration for background com-
pensation. Otherwise, bias correction can be used for better
performance.

V. DISCUSSION
In this study, we have proposed a novel CMCT system which
incorporates a micro-focus source, a PCD, robotic arms and
advanced imaging algorithms into a synergistic companion of
a conventional CT scanner. The designed HR local scan pro-
tocol not only improves the dose efficiency but also reduces
the area of detectors. The cost of PCDs currently remains
high due to the complex manufacturing techniques, and the
situation is likely to continue in the near future. Hence,
this hybrid system for interior tomography can reduce the
system cost and radiation dose without compromising the
required performance. In the local/interior scan, the advanced
robotic arms allow the free selection of a VOI, which is
preferable compared to the traditional rotating gantry. In addi-
tion, the mobility of the robotic system enables surgeons to
take projections from any view angle without moving the
patient, which can be extremely helpful in many applications,
such as high-quality evaluation in emergencies and real-time
feedback in surgeries. It is worth mentioning that besides the
exemplary application in inner ear imaging, the system can
also work for other clinical imaging tasks that demand high
resolution in a VOI/ROI, such as tumor examination in breast,
nodule characterization in lung, bone quality analysis, and
plaque imaging in the heart and the neck.

Besides the hybrid design as one imaging system shown
in Fig 1, the robotic micro-CT scanner can also be separately
used. The reconstruction results from a traditional CT scanner
can be used as the prior knowledge following the same proce-
dure described in Section III. However, this may impose extra

work in registration due to different positions of the patient
in the local scan and an earlier global scan. Luckily, as ana-
lyzed in Section IV-B, the proposed reconstruction method
has a good tolerance to geometric misalignment. Although
the reconstruction is relatively sensitive to the magnification
mismatch, the resultant attenuation shifting can be addressed
with the proposed bias correction method. In addition, with
the rapid development of face recognition technology [38],
human facial surface measurement techniques have matured
with high accuracy in real-time [32], [39]–[41]. The regis-
tration between surfaces have been studied for many years.
High-quality toolboxes, such as 3D slicer [42], can be directly
used or adapted for our purpose.

A. PROJECTION DEBLURRING
Another challenge for CMCT comes from the X-ray source.
The intensity of an X-ray source with micro-focus has usually
an insufficient flux to produce an appropriate signal to noise
ratio through a human head during a reasonably short time.
To obtain an appropriate contrast, an X-ray source with a
slightly larger focal spot may be used to provide enough
power. The increased focal spot could generate shadows in the
projections and blur structural details. In addition, the balance
between the X-ray intensity and image resolution can be opti-
mized using a deep learning deblurring method. Although the
cone-beam projection with the finite focus spot is no longer
a spatially invariant linear system, which is a challenge with
traditional deblurring methods, advanced deep learning tech-
niques have the capability to perform shift-variant deblurring
tasks [43]. The big data of paired blurred-original projections
may be difficult to obtain for training a deblurring network.
Alternatively, a forward projection model can be easily built
to realistically synthesize the paired data. Then, the network
trained with simulated data is fine-tuned with a small amount
of paired real projection data. Finally, the trained network
can be applied on blurred projections for inference, similar
to what we did in an optical deblurring study [44].

B. IMAGE DENOISING
Deep denoising techniques can be used to reduce radi-
ation dose and improve image quality. According to the
level of supervision during training, three types of deep
denoising methods have been developed, i.e., supervised
learning, weakly-supervised learning, and unsupervised
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learning. Supervised learning methods were designed for
image denoising and achieved the best performance, such
as deep CNNs with residual learning [45], [46] or with
recurrent persistent memory units [47]. Weakly-supervised
learning methods relax the requirement of paired noisy-clean
data to unpaired noisy-clean data [48] or paired noise-to-
noise data [49]. Using the unpaired noisy-clean data, [48]
proposed GAN-based learning to create pairs of correspond-
ing noisy-clean images as the training data. Recently, [49]
demonstrated that paired noise-to-noise images are equiva-
lent to the paired noisy-clean images in training a model,
achieving a denoising performance competitive with super-
vised learning methods. For the applications where even
the unpaired noisy-clean or paired noise-noise images are
unavailable, unsupervised leaning methods were proposed
using only single noisy images for training. Deep image
prior [50] is a generation process that maps the random noise
to a single noisy image, and when they terminate the training
process at the right moment the network produces a denoised
image. Most recently, Noise2Void [51] and its variants [52],
[53] achieved promising results only using individual noisy
images in training a network. Basically, a Noise2Void net-
work estimates a blind-spot in an image so that the network
learns to map the surrounding pixels to the blind-spot, achiev-
ing excellent denoising results.

In our inner ear imaging application, paired noise-clean
images can be synthesized via Monte-Carlo simulation, and
single real noisy images can be acquired with the proposed
CMCT system. The former data type can support super-
vised training although the noise may not perfectly match
the real counterpart, while the latter type of data contains
realistic noise and texture. Combining these two types of
datasets, we can design a semi-supervised leaning method
to learn from the data with and without ground truth labels
simultaneously. For example, the model can be trained in
the Noise2Void mode first and then fine tuned with the
paired noisy-clean data or vice versa. An alternative is to
train the model in the Noise2Void and supervised modes
simultaneously.

C. MATERIAL DECOMPOSITION AND BEAM HARDENING
CORRECTION
In addition to the high resolution advantage, if the
local/interior scan is performed in the multi-channel photon-
counting mode, the energy information can be used for spec-
tral analysis; e.g., K-edge imaging, material decomposition,
beam hardening correction, and metal artifact reduction.
Compared with traditional dual-energy CT, the PCD provides
more energy channels and is more informative while the
potential spectral distortion issues at high imaging speed
can be overcome with a deep learning based correction
method [54]. In principle, the direct spectral measurement
with the PCD allows better spectral separation than dual-
source, fast kVp-switching, and dual-layer detector tech-
niques. Most relevant to this inner ear imaging application is

FIGURE 12. The simulated spectrum p(E) of our tungsten X-ray source
operated at 120 kV .

to utilize the X-ray energy dependent attenuation information
for beam hardening correction, metal artifact reduction and
material decomposition [8] so that the effects of the implanted
electrodes and micro-environments can be optimally
modeled.

VI. CONCLUSION
In conclusion, we have proposed a clinical micro-CT
(CMCT) system empowered with a number of cutting-edge
technologies for regional ultrahigh resolution imaging of
a VOI, which is particularly suitable for human inner
ear/temporal bone imaging. The background compensation
technique has been proposed for fast and accurate local recon-
struction with high resolution at a minimized X-ray dose,
taking full advantage of prior information from a conven-
tional medical CT scan. The HR feature, attenuation fidelity
and robustness to geometric misalignment in the registration
between the global and local scans have been demonstrated,
establishing the feasibility of CMCT. Overall, our CMCT
system is promising for inner ear imaging and other clinical
applications.

APPENDIX I. THE X-RAY TUBE POWER JUSTIFICATION
To justify the selection of our X-ray source, we measured
the number of photons emission per solid angle per second
from a similar micro-focus X-ray source (Source-Ray, SB-
120-350, a spot size of s0 = 75 µm) with a PCD (CZT-
Medipix3RX, 110 µm pitch size d0, with anti-charge sharing
ASICs) as a reference. The source to detector distance c0 was
272 mm. The tube was operated at 120 kV and I0 = 19 µA
with a 1.96mm aluminumfilter. Themeasured average counts
per second is 1.03 × 104 per pixel, corresponding to N0 =

6.30×1010 counts per solid angle per second. The distribution
of photons p(E) over the energy range was simulated with
SpekCalc [55], as shown in Fig. 12.

According to one study in the United States [56], the aver-
age human head circumference is 56.9 cm in males and
53.4 cm in females, corresponding to diameters of∼ 18.2 cm
and ∼ 17.0 cm respectively. Without loss of generality,
the value 20 cm is a reasonable estimation of the maximum
length of the X-ray beam passing through the head during
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FIGURE 13. ROI Reconstructions with misalignment of isocenter position in background compensation,
together with the ground truths (GT and GT HR), are displayed in the same window (unit of cm−1). The
misalignment errors are from 0 to 4.483mm with an increment of 0.498mm.

a scan. Considering the mean thickness of skull of 6.32 mm
[57], we further assume that the path consists of lb = 1.2 cm
bones and lt = 18.8 cm brain tissues.
Based on the CMCT design (the source to detector distance

of cm = 400mm, and the detector element size of dm =
0.11mm), when the selected source is operated at 120 kV
and Im = 500µA with a focus spot of sm = 50µm and
assumed with a similar electron-to-photon conversion effi-
ciency as that of our experiment source, the minimum counts
(with the maximum length of path through head) received
per second by one pixel on the detector can be estimated after
the corrections of the tube current and focus size as follows:

Nm = N0
d2m
c2m

Ims2m
I0 s20

∫
p(E)e−lbµb(E)−ltµt (E)dE=474.3 (5)

Note that this is the counts received by the darkest pixel in
the projections which still provides a decent signal. In our
VOI-centered scan, the projections of the other views could
be much brighter than this worst case; e.g., if we reduce the
lt by half, the counts per second reaches Nm = 3185.0. Not
to mention that the selected source can be operated at 150 kV
which offers a much higher penetration ability. Hence, by tak-
ing 720 projections with 1-second exposure, we can fin-
ish the scan within 12 minutes and obtain a good-quality
reconstruction.

In addition, innovative technologies like NanoX tube [9]
and MAAT tube [10] can significantly raise the brightness
of the micro-focus X-ray source by several folds, which will

FIGURE 14. ROI Reconstructions with misalignment of initial view angle
in background compensation displayed in the same window (unit: cm−1).
The misalignment errors are from −4.39◦ to 4.39◦ with an increment
of 1.098◦.

definitely facilitate our undertaking and shorten the scan time.
On the other hand, deep learning techniques can be employed
for further scan acceleration and dose reduction. For example,
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FIGURE 15. ROI Reconstructions with misalignment of magnification
factor in background compensation displayed in the same window
(unit: cm−1). The misalignment errors are from −20% to 20%
with a step of 5%.

deep denoising and few-view reconstruction can be utilized to
reduce exposure time and the number of views, respectively,
while maintaining the reconstruction quality. Thus, it is fea-
sible to reduce the scanning time to 3 minutes or less and still
provide a good-quality reconstruction.

APPENDIX II. ROI RECONSTRUCTIONS WITH
MIS-ALIGNMENTS
ROI reconstructions through background compensation with
various mis-alignments in terms of isocenter position,
initial view angle, and magnification factor, as shown
in Fig. 13, 14 and 15.
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