
Received November 3, 2020, accepted December 13, 2020, date of publication December 21, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3046284

Autonomous Control of Combat Unmanned
Aerial Vehicles to Evade Surface-to-Air Missiles
Using Deep Reinforcement Learning
GYEONG TAEK LEE AND CHANG OUK KIM
Department of Industrial Engineering, Yonsei University, Seoul 03722, South Korea

Corresponding author: Chang Ouk Kim (kimco@yonsei.ac.kr)

This work was supported by the Agency for Defense Development under Grant UD170043JD.

ABSTRACT This paper proposes a new reinforcement learning approach for executing combat unmanned
aerial vehicle (CUAV) missions. We consider missions with the following goals: guided missile avoidance,
shortest-path flight and formation flight. For reinforcement learning, the representation of the current agent
state is important. We propose a novel method of using the coordinates and angle of a CUAV to effectively
represent its state. Furthermore, we develop a reinforcement learning algorithm with enhanced exploration
through amplification of the imitation effect (AIE). This algorithm consists of self-imitation learning and
random network distillation algorithms. We assert that these two algorithms complement each other and that
combining them amplifies the imitation effect for exploration. Empirical results show that the proposed AIE
approach is highly effective at finding a CUAV’s shortest-flight path while avoiding enemy missiles. Test
results confirm that with our method, a single CUAV reaches its target from its starting point 95% of the
time and a squadron of four simultaneously operating CUAVs reaches the target 70% of the time.

INDEX TERMS Deep reinforcement learning, combat unmanned aerial vehicle, deep learning, autonomous
flight management system, path planning, exploration.

I. INTRODUCTION
Combat unmanned aerial vehicles (CUAVs) will be an impor-
tant resource in future military systems because they can
replace humans in performing dangerous or important tasks.
Thus, CUAVs save human resources. In the future, it is
anticipated that CUAVs will have the ability to determine
reasonable actions by recognizing and evaluating changes in
a military environment, such as enemy surface-to-air threats,
in real time and without human intervention. In addition, such
CUAVs will be able to carry out tasks such as reconnaissance
and target attacks [1].

The aim of reinforcement learning (RL) is to learn an
optimal agent policy for a control problem by maximizing
the expected return. RL has shown high performance in dense
reward environments such as games [2]. However, in many
real-world problems, the rewards are sparse, and it is nec-
essary to explore the environment. The RL literature has
suggested various exploration methods to address this chal-
lenge, such as count-based exploration [3], [4], entropy-based

The associate editor coordinating the review of this manuscript and
approving it for publication was Santhosh Kumar Gopalan.

exploration [5], [6] and curiosity-based exploration [7]–[10].
In recent years, researchers have added an exploration bonus,
often called a curiosity or intrinsic reward, which is calcu-
lated as the difference between the predicted state and the
actual next state. The intrinsic reward approach is efficient for
exploration because the network that predicts the next state
can drive the agent to behave differently from its previous
action.

This paper focuses on combining self-imitation learning
(SIL) [11] and random network distillation (RND) [12]. SIL
is an algorithm that indirectly leads to deep exploration by
exploiting only the best historical decisions. The authors
proposed a method of evaluating whether an action is a good
decision by comparing the return values obtained through
actions taken by the agent in the past with the current value.
Thus, the authors demonstrated how the agent can seek a
good policy by exploiting good decisions. However, in hard
exploration environments, it does not make sense only to
exploit good past decisions by means of the SIL mechanism.
In other words, an exploration bonus is also required.

RND solves the hard exploration problem by award-
ing an exploration bonus using a deterministic prediction

226724 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6936-5409


G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

error approach. The RND bonus is based on the deterministic
prediction error of a neural network predicting features of
observations. The authors proposed the creation of a fixed
target network and a predictor network that learns the output
of the target network; then, the difference between the outputs
of the two networks can be used as an exploration bonus.
In this way, the authors demonstrated significant performance
gains in some hard exploration Atari games. However, under
the RND approach, catastrophic forgetting can occur during
learning because the predictor network learns only about the
states that the agent has visited most recently. Consequently,
the prediction error aggregates over time, and the exploration
bonus increases for previously visited states.Wewill describe
SIL and RND in detail in Section 3 and describe catastrophic
forgetting in detail in Section 4.3.

This paper introduces a new RL approach for execut-
ing CUAV missions. We define the CUAV’s mission as
follows: evade guided missiles, find the shortest path, and
reach the target destination. We have developed RL mod-
els for a single CUAV and for a CUAV formation. For
efficient RL in a multidimensional space, this paper pro-
poses amplification of the imitation effect (AIE) based on
a combination of SIL and RND to drive deep exploration.
In addition, we introduce techniques to enhance the strength
of the proposed network. Adding an intrinsic penalty to a
state that is repeatedly visited by the agent leads to devia-
tions from the current converged policy. Moreover, to avoid
catastrophic forgetting, we use a pool of stored samples to
update the predictor network during imitation learning such
that the predictor network can uniformly learn the visited
states. We experimentally demonstrate that these techniques
lead to deeper exploration. We verify the exploration perfor-
mance of the proposed algorithm based on experiments in a
two-dimensional grid environment and in a CUAV mission
environment.

We constructed the experimental environment by simulat-
ing the flight maneuvers of a CUAV in a three-dimensional
(3D) space. The objective of the RL agent is to learn the
maneuvers that will allow the CUAV to reach a target point
while avoiding missiles from an enemy air defense net-
work. The remainder of this study is organized as follows.
Section 2 reviews the relevant studies on RL and maneuver-
ing for CUAVs. Section 3 defines the problems we wish to
address through RL. Section 4 presents the proposed algo-
rithm. Section 5 presents the experimental results of the pro-
posed algorithm. Section 6 concludes the study and discusses
future research topics.

II. RELATED WORK
Experience replay [13] is a technique for exploiting past expe-
riences. The Deep Q-Network (DQN) algorithm has achieved
human-level performance in Atari games using this technique
[2], [14]. Prioritized experience replay [15] is a method for
sampling prior experiences based on temporal differences.
ACER [16] and Reactor [17] each utilize replaymemory in an

actor-critic algorithm [18], [19]. However, this method is not
efficient when the past policy is too different from the current
policy [11]. SIL is immune to this disadvantage because it
exploits only past experiences that garnered higher returns
than the current value.

Exploration has been a primary challenge in RL, and many
studies have proposed methods of exploration enhancement.
A count-based exploration bonus [20] is an intuitive and
effective mechanism for encouraging exploration in which
an agent receives a bonus when it visits a novel state, and
the bonus decreases if the agent visits a frequently visited
state. In some studies, the density of states has also been
estimated to generate bonuses in a large state space [3], [4],
[21], [22]. Recent studies have introduced the concept of the
prediction error (curiosity), which is the difference between
the next predicted state and the actual next state during explo-
ration [7]–[10], [23]. In these studies, the prediction error
was designed to function as an exploration bonus (it ) that
gives agents greater rewards when they perform unexpected
behaviors.

However, the prediction error is stochastic in nature
because the target function is stochastic. In addition,
the architecture of the predictor network tends to be too
limited to effectively generalize the state of the environ-
ment. To solve these problems, RND [12] was proposed,
in which the target network is made deterministic by fix-
ing its weights to randomized values and the predictor net-
work has the same architecture as the target network. Other
methods for efficient exploration include adding parameter
noise within the network [20], [24], maximizing entropy poli-
cies [5], [6], adversarial self-play [25] and learning diverse
policies [26], [27].

SIL can indirectly lead to deep exploration through the
imitation of good decisions made in the past [11]. To exploit
such past decisions, the authors used a replay buffer D =
{(st , at ,Rt )}, where st and at are the state and action, respec-
tively, at the t-th step and Rt = 6∞k=tγ

k−trk is the discounted
sum of the reward at the t-th step with a discount factor
γ . The authors proposed the following off-policy actor-critic
loss:

Lsil = Es,a,R∈D[Lsilpolicy + β
silLsilvalue], (1)

Lsilpolicy = −logπθ (a|s)(R− Vθ (S))+, (2)

Lsilvalue =
1
2
‖ (R− Vθ (S))+ ‖2, (3)

where (·)+ = max(·, 0); πθ and Vθ (s) are the policy (i.e.,
the actor) and the value function, respectively, parameterized
by θ ; and βsil ∈ R+ is a hyperparameter that controls
the value loss. Intuitively, for the same state, if the past
return value is greater than the current value (R > Vθ ),
then it can be inferred that the behavior in the past was a
good decision. Therefore, imitating this behavior is desirable.
However, if the past return is less than the current value
(R < Vθ ), then imitating this behavior is not desirable.
The authors focused on combining SIL with the advantage

VOLUME 8, 2020 226725



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

actor-critic (A2C) framework [28] and reported significant
performance gains in experiments based on hard exploration
Atari games.

The authors of RND proposed a fixed target network (f )
with randomized weights and a predictor network (̂f ) trained
using the output of the target network. The predictor neu-
ral network is trained via gradient descent to minimize the
expected mean squared error ‖ f̂ (x; θ ) − f (x) ‖2, and an
exploration bonus (it ) of ‖ f̂ (x; θ ) − f (x) ‖2 is introduced.
In other words, the difference between the outputs of the
predictor network and the target network for the state feature
is provided as an exploration bonus, and the two networks are
modules whose only purpose is to generate an exploration
bonus. Intuitively, the prediction error will increase for a
novel state and decrease for a state that has been frequently
visited. However, if the agent converges to a local policy,
then a nonzero prediction error (it ) may no longer arise.
Furthermore, using RND can cause catastrophic forgetting.
The predictor network may learn only a state that the agent
has visited frequently and forget about previously visited
states. Consequently, the prediction error will subsequently
increase for these past states, and the agent may begin to
follow a past policy.

Recently, some studies have used visibility graphs [29],
Voronoi diagrams [30] and RL [31]–[34] in UAV path plan-
ning. Furthermore, some studies have applied RL to CUAV
maneuvers [35]–[39]. However, the authors of those studies
simply defined the state and action and conducted experi-
ments in a dense reward environment. By contrast, we verify
our algorithm based on the execution of CUAV missions in a
sparse reward environment.

The main contributions of this paper are as follows:

• We show that SIL and RND are complementary and
that combining these two algorithms is a highly efficient
approach to exploration.

• We present several techniques for amplifying the imita-
tion effect.

• We propose a novel method of constructing state vectors
that represent coordinates and angles.

• The performance of the proposed RL approach when
applied to the CUAV control problem is excellent.
In addition to a single CUAV,we apply our algorithm to a
flight formation. Our learning method results in reason-
able CUAV maneuvers in a sparse reward environment.

III. PROBLEM DEFINITION
A. ENVIRONMENT
Fig 1 shows a visualization of the CUAV’s mission environ-
ment. This virtual environment is an area of 100× 200× 30
km in height, width, and depth, respectively, and includes
four air defense networks, each with a radius of 30 km. The
goal is to train the CUAV to reach the target from the starting
point within a limited time periodwhile avoidingmissiles.We
conducted experiments in the following two environmental
settings.

FIGURE 1. CUAV mission environment. The dimensions of the mission
environment are 100, 200, and 30 km along the x, y, and z axes,
respectively. A total of four air defense networks are deployed, two of
which overlap each other.

1) SINGLE CUAV ENVIRONMENT
In this environment, the goal is to for a single CUAV to travel
along the shortest path from the starting point to the target
while avoiding enemy missiles.

2) FLIGHT FORMATION ENVIRONMENT
In the flight formation environment, we assume that the
formation consists of four CUAVs. Similarly, the goal is for
the squadron to travel from the starting point to the target
point along the shortest distance for each CUAV. In this
case, we utilize four networks and add the CUAV formation
information to the state representation.

To model the dynamics of a CUAV, we apply the following
equations ofmotion for a 3-degree-of-freedom (3-DOF) point
mass model [40]:

ẋ = V cos γ cosψ,

ẏ = V cos γ sinψ,

ż = V sin γ,

V̇ =
T − D
m
− g sin γ,

ψ̇ =
gn sinφ
V cos γ

,

γ̇ =
g

V (n cosφ − cos γ ),
(4)

where (x, y, z) denotes the position of the CUAV, V is its
velocity,ψ is its heading angle and γ is its flight path angle.D
denotes air resistance,m is the mass of the CUAV, and g is the
gravitational acceleration. T , n and φ are the control inputs of
the CUAV and denote the engine thrust, load factor and bank
angle, respectively. We use these control inputs to implement
the actions determined by our RL framework. Fig 2 shows
the CUAV’s bank angle, flight path angle, and heading angle.
The engine thrust affects the velocity of the CUAV. The bank
angle and load factor affect the heading angle and flight path
angle.

For the missiles, we apply proportional navigation induc-
tion to enable them to chase the CUAV [41]. This algorithm
works by separating the 3D space into three perpendicular
planes: xy, xz and yz. If a missile can recognize the distance

226726 VOLUME 8, 2020



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

FIGURE 2. Bank angle, flight path angle and heading angle of a CUAV.
These 3 DOFs control the maneuvering of the CUAV. In other words,
the CUAV’s action is determined by these three factors.

and relative speed between itself and its target, then it can be
steered to accelerate and hit the target. We assume that when
a CUAV enters the radius of a missile, the missile is always
able to recognize the CUAV, and if the distance between the
CUAV and the missile is less than 0.5 km, then the CUAV is
unable to avoid the missile.

B. STATE
In general, in an environment such as an Atari game, the game
image is preprocessed and used as the state, and a convolu-
tional neural network (CNN) structure is employed. In this
study, however, the CUAV’s coordinate information and the
CUAV’s radar information for missile detection are vector-
ized to acquire the state for the CUAV control problem. Thus,
a multilayer perceptron (MLP) is more appropriate for this
problem than a CNN, which is generally adopted when the
state of an arcade game is represented as an image.

1) COORDINATE REPRESENTATION
In a coordinate system, the coordinate points do not have a
linear value relationship. For example, the two-dimensional
(2D) coordinates (10, 10) are not ten times more impor-
tant than the coordinates (1, 1). However, if the coordinates
(10, 10) are used as the input to an MLP, the output value will
be approximately 10 times larger than that produced when
using the coordinates (1, 1). Therefore, placing coordinates
into a state representation using real numbers is unreason-
able and will cause learning instability. One way to repre-
sent the coordinates in the learning environment is to use
a one-hot encoding vector. However, in one-hot encoding,
the dimensionality of the vector increases as the coordinate
range increases; moreover, this approach is usable only for
integer coordinates. In this study, we introduce a new method
of efficiently representing a spatial coordinate system.

In the proposed method, the coordinate for each axis is
converted into a one-hot encoding vector, and the axis vectors
are then concatenated. The basic one-hot encoding method
requires 40,000 (200× 200) rows to represent (1, 1) when x
and y each range from 1 to 200; by contrast, in our method,
the representation c(1,1) = [(1, 0, · · · , 0)(1, 0, · · · , 0)]′

requires only 400 rows (200+200). Using this approach,
we can dramatically reduce the dimensionality of the vector
representing the coordinates.

We extend this method to a real-valued coordinate system
as follows. Real-valued coordinates can be represented by
introducing weights within the vector. For example, 1.3 can
be regarded as a value consisting of approximately 70% of 1
and approximately 30% of 2; in other words, the number

FIGURE 3. Example of angle representation. Suppose that there is a circle
with a radius of 5 in a 2D space. The coordinates corresponding to a 17◦
rotation on the circle are (6.71, 9.698) in the Cartesian space. In the ECV
representation, these coordinates are transformed into
c(17◦) = (0, · · · , 0.71, 0.29, 0, · · · , 0, 0.302, 0.698)′ (20 rows).

1.3 is a number with a weight of 70% in 1 and 30% in 2.
Thus, 1.3 can be represented as c(1.3) = (0.7, 0.3, · · · , 0)′

(200 rows). Moreover, the resulting vector can be reduced
to smaller dimensions by reducing this coordinate to 1/10 of
its original size. Accordingly, the number 1.3 can be repre-
sented as c(1.3) = (0.13, 0, · · · , 0)′ (20 rows). This method
allows real-valued coordinates to be represented within lim-
ited dimensions. We call this method the efficient coordinate
vector (ECV) representation.

2) ANGLE REPRESENTATION
Formulating a state representation of an angle for RL is also
difficult because angles characteristically rotate through a
complete period of 360◦. For example, suppose that an angle
changes from 10◦ to 350◦. If we use either the real values or
the ECV method, the agent will perceive the result as a 340◦

change. However, this difference (340◦) is simultaneously
equivalent to only 20◦. Consequently, such an angle repre-
sentation will tend to confuse the RL agent. We solve this
problem by applying the ECV method to a polar coordinate
system. First, the polar coordinates r and θ are transformed
into the Cartesian coordinates x and y using the corresponding
trigonometric functions. Then, a state representation of the
transformed coordinates can be constructed using the ECV
method. In other words, the angle is converted into a position
on the upper part of a circle using the polar coordinate sys-
tem, and then it is represented as a state through the ECV
method. For example, as shown in Fig 3, the point on the
circle corresponding to 17◦ can be represented as c(17◦) =
(0, · · · , 0.71, 0.29, 0, · · · , 0, 0.302, 0.698)′ (20 rows) in the
ECV representation.

3) FINAL STATE
Finally, we use the following information to represent the
state for the CUAV control problem.

VOLUME 8, 2020 226727



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

a: SINGLE CUAV ENVIRONMENT
– Flight path of the CUAV, consisting of the five most

recent steps
– Path angle, heading angle and bank angle of the CUAV

for the two most recent steps
– Velocity and load factor of the CUAV
– Distance between the CUAV and a missile
– Horizontal and vertical angles between the CUAV and a

missile

b: FLIGHT FORMATION ENVIRONMENT
– States of the corresponding single CUAV environments
– Distance between the center of the formation and each

of the CUAVs

C. ACTION
An action consists of a combination of changes to the input
parameters used in equation 4, namely, the engine thrust, bank
angle and load factor. For each input parameter, there are three
possible changes: increase, hold, and decrease. In addition,
we add an action that initializes all input parameters to their
default values (a bank angle of 0◦, a load factor of 1g, and
an engine thrust of 50 kN ). This action allows the CUAV to
cruise. The total number of actions is 28.

D. REWARD
The default reward is zero, except for the following specific
situations:

c: SINGLE CUAV ENVIRONMENT
– As a result of a missile skirmish
– When the CUAV arrives at the target point
– Entering the cruise condition

d: FLIGHT FORMATION ENVIRONMENT
– Rewards for the corresponding single CUAV environ-

ments
– Distance between the center of the formation and each

of the CUAVs
We reward the cruise condition because the CUAV cannot

maintain its maximum speed during cruising. We impose a
penalty of -0.01 if the speed reaches the maximum speed.
In the formation flight environment, our goal is to maintain
certain preferred distances among the CUAVs in the forma-
tion during flight. Thus, we penalize an agent when it is too
far from the center of the formation or too close to another
CUAV.

IV. AMPLIFICATION OF THE IMITATION EFFECT (AIE)
A. COMBINING SIL AND RND
In this section, we explain why combining SIL and RND
amplifies the imitation effect and leads to deep exploration.
In SIL, an update is performed only when the past R is
greater than the current Vθ ; then, the agent imitates the past
decision. Intuitively, if we combine SIL and RND, then the

value of R − Vθ will be larger than the corresponding value
in SIL alone because of the exploration bonus. During the
process of optimizing the actor-critic network to maximize
Rt = 6∞k=tγ

k−t (it + et )k , where it is the intrinsic reward and
et is the extrinsic reward, an increase in the it value generated
by the predictor network will cause R to increase. In other
words, learning progresses through appropriate weighting of
past good decisions. In this type of learning, the learning
history is comprehensively considered. If the policy starts
to converge as learning progresses, then it will be lower for
more frequently visited states. One might think that learning
would be slower because Rt − Vθ > Rt+k − Vθ , where
k > 0 for the same state and it decreases. However, SIL
exploits past good decisions, which leads to deep exploration.
With the addition of the exploration bonus, the agent will
be encouraged to further explore novel states. Consequently,
a nonzero exploration bonus is likely to continue to be earned.
In addition, when prioritized experience replay is used [15],
the sampling probability is determined by R − Vθ ; thus,
there is a high probability that a previous transition will be
exploited in SIL even if it decreases. In other words, the two
algorithms are complementary, and SIL is immune to the
phenomenon in which a nonzero prediction error it no longer
occurs.

B. INTRINSIC PENALTY
Adding an exploration bonus to a novel state that the agent
visits is clearly an effective incentive encouraging explo-
ration. However, when the policy and predictor networks
converge, no exploration bonus will be earned for a novel
state. In other words, the exploration bonus method provides
a reward when the agent itself performs an unexpected action
but not when the agent is induced to take the unexpected
action. Therefore, an exploration method that entices the
agent to take unexpected actions is necessary. We propose a
method in which an intrinsic penalty is applied to an action
that causes the agent to revisit a frequently visited state in
addition to simply rewarding the agent when it makes an
unexpected action. This intrinsic penalty drives the agent to
escape from a converged local policy and helps it to experi-
ence more diverse policies. Specifically, we apply the penalty
by transforming the current intrinsic reward into λlog(it ),
where λ is a penalty weight parameter if the current intrinsic
reward is less than a certain quantile α of the past N intrinsic
rewards. This reward mechanism prevents the agent from
remaining stuck in the same policy. In addition, adding a
penalty to the intrinsic reward indirectly amplifies the imi-
tation effect. Because Rt − Vθ decreases due to the penalty,
the probability of the corresponding transition being sampled
from the replaymemory is smaller than that of a nonpenalized
transition. Thus, the SIL updates are more likely to exploit
nonpenalized transitions. Even ifRt−Vθ < 0 due to a penalty,
this does not affect SIL because it is not updated according
to the SIL objective presented in equation 3. In other words,
the intrinsic penalty allows the policy network to deviate from

226728 VOLUME 8, 2020



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

FIGURE 4. Procedural overview of the proposed algorithm in the CUAV environment. In the simulation stage, the CUAV maneuvers using the
trained networks and stores the results of the episodes in the replay buffer. In the learning stage, the networks are further trained based on
the collected data. The simulation stage and learning stage are repeated until a specified termination condition is met.

states that are repeatedly visited by the agent and indirectly
amplifies the imitation effect for SIL.

C. CATASTROPHIC FORGETTING IN RND
The predictor network in RND mainly learns about the states
that the agent has recently visited; thus, a catastrophic for-
getting process can occur that is similar to the phenomenon
in continual task learning in which knowledge learned from
previous tasks is forgotten. If the prediction error increases
for a state that the agent has visited before, the agent might
assume that the previous state is a novel state, which would
prevent the agent from exploring effectively. The method of
mitigating this phenomenon is simple but effective. We store
the output of the target network and the corresponding state
feature in the memory of the predictor network, similar to
using a replay memory, so that the predictor network will not
forget past state features, and we train the predictor network
in batch mode. The use of such a predictor memory reduces
the prediction error for states that the agent has previously
visited, making the agent more likely to explore novel states.
Even if the agent returns to a past policy, the prediction error
of the state visited by the policy will be low, an intrinsic
penalty will be applied to the state, and the probability of
escaping from that state will be high.

D. PROPOSED ALGORITHMS FOR THE CUAV
ENVIRONMENT
Fig 4 describes the interaction between the simulation and
learning stages in the CUAV environment. In the simulation
stage, the CUAV state composed of the coordinates and the
relationship information between the CUAV and a missile is
fed into the A2C network. In addition, the output difference
between the predictor network and the target network for
the current state feature is calculated to obtain the intrinsic
reward. The next position of the CUAV is determined from
the actor-critic output. If the distance between the CUAV and
a missile is within the missile radius, the missile is launched,

and the extrinsic reward and the next state of the CUAV are
derived. Once the next coordinates of the CUAV are known,
the step ends, and the state, action, reward, next state and
state feature are stored in replay buffers. An episode ends
when the CUAV reaches the target point from the starting
point, leaves the mission environment, is shot down by a
missile, or does not reach the target point within 600 sec-
onds. This state transition process continues until the end
of the current episode, and multiple episodes are conducted.
Once the simulation stage ends, the learning stage begins.
In this stage, the A2C network is optimized, and SIL is
performed by randomly sampling an instance (consisting
of a state, an action, the reward and the next state) from
the replay buffer. Then, the RND predictor network is opti-
mized using the state features stored in the replay buffer.
After the learning stage ends, the simulation stage starts
again. Each stage is performed repeatedly. In the current
study, a total of 60,000 episodes were executed in the single
CUAV environment, and 80,000 episodes were performed
in the flight formation environment. The notations used in
Algorithm 1 are defined in Table 1.

In Algorithm 1, we provide the pseudocode corresponding
to this interactive procedure. Three RL algorithm variants are
proposed for use in the learning stage. The first proposed
AIE algorithm (AIE1) combines A2C-based SIL (ASIL) and
RND, as described by Algorithm 1 without lines 15-18 and
lines 33-38. The second (AIE2) is equivalent to AIE1 with
the addition of the intrinsic penalty, which is described in
lines 15-18. The third (AIE3) is equivalent to AIE2 with
the further addition of the replay memory for the predictor
network, as described in lines 36-38.

V. EXPERIMENT
A. TEST ALGORITHMS
We chose DQN, DQN with prioritized experience replay
(PerDQN), A2C and ASIL as the algorithms for comparison,
where ASIL denotes the combination of the A2C framework

VOLUME 8, 2020 226729



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

Algorithm 1 Amplification of the Imitation Effect (AIE)
1: Initialize A2C network parameters θa2c
2: Initialize predictor network parameters θp
3: Initialize and fix target network parameters θt
4: Initialize replay buffer D← ∅
5: Initialize episode buffer E ← ∅
6: Initialize feature buffer F ← ∅
7: Input State
8: Output Action
9: procedure AIE
10: for episode = 1, M do
11: \\ Simulation stage.
12: for each step do
13: Execute an action st , at , et , st+1 ≈ πθ (at |st )
14: Extract the state feature of st+1 to obtaion

φst+1
15: Calculate the intrinsic reward it
16: if it < penalty condition threshold then
17: it ← λlog(it )
18: end if
19: rt = rt + et + it
20: Store transition E ← E ∪ {(st , st+1, at , rt )}
21: F ← F ∪ {(φst+1 , θt (φst+1 ))}
22: end for
23: if st+1 is terminal then
24: Compute returns Rt = 6∞k γ

k−trk in E
25: D← D ∪ {(st , at , rt )}
26: Clear episode buffer E ← ∅
27: end if
28:

29: \\Learning stage.
30: θa2c← θa2c − η∇θa2cLa2c
31: F Optimize actor-critic network
32: for k= 1, M do
33: Sample a minibatch {(s, a,R)} from D
34: θa2c← θa2c − η∇θa2cLsil
35: F Perform SIL
36: Sample a minibatch {(φst+1 , θt (φst+1))} from

F
37: θp← θp − η∇θpLp
38: F Optimize predictor network
39: end for
40: end for
41: end procedure

and SIL. In addition, we tested the three AIE algorithms
introduced in the previous section.

B. HARD EXPLORATION IN A 2D ENVIRONMENT
1) SPARSE REWARD SETTING
We conducted a simple experiment to determine the effec-
tiveness of the proposed algorithms in promoting exploration.
We constructed a 2D grid environment in which the goal is for
the agent to learn a sequence of simple stepwise movements

TABLE 1. Parameter notations.

FIGURE 5. Path visualization for each algorithm in a 2D grid environment
(x-axis: latitude, y-axis: longitude). The color changes from blue to red as
the agent visits a state more frequently. (a) ASIL fails to reach the target
point. (b) The AIE1 results show that the agent reaches the target point.
(c), (d) AIE2 and AIE3 explore larger areas than AIE1.

(up, down, left, or right) beginning from a starting point and
ending at a goal point. The reward was set to zero except
when the agent reached the target point (a reward of 30) or
left the environment (a reward of -30). RL was performed for
a total of 10,000 episodes for each algorithm. Fig 5 shows
a visualization of the agent’s movement paths. Because the
reward was too sparse, the agent implementing ASIL failed
to reach the target point. In contrast, all of the proposed
algorithms successfully reached the target point because of
the exploration bonus. For AIE1, the results show that the
agent quickly reached the target point. However, AIE2 and
AIE3 (which include the intrinsic penalty) conducted deeper
explorations than AIE1, as seen from the fact that these
two algorithms arrived at the target point via more diverse
paths.

2) NO-REWARD SETTING
We performed an additional experiment in the same environ-
ment but with no target point. Hence, the agent conducted
only exploration in each episode. We argue that catastrophic

226730 VOLUME 8, 2020



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

FIGURE 6. Visualization of the paths of the agent and the losses of all coordinate states for each algorithm in
the no-reward 2D grid environment (x-axis: latitude, y-axis: longitude). In the plots showing the agent’s
paths, the color gradient from blue to red indicates areas that the agent visits more frequently. In the loss
plots, the color gradient from blue to yellow indicates areas where the loss is larger. Panels (a) - (c) show the
exploration of the AIE1 agent. (a) The dark blue region on the right side of the loss plot corresponds to the
region that the agent has recently explored very frequently. (b) As the agent further explores the left region,
the dark blue loss region on the right fades. (c) As the agent explores the upper left, the dark blue loss
regions on the lower left and right fade. Panels (d) - (f) show the exploration of the AIE2 agent. (d) The agent
intensively explores the lower left region. (e) As the agent explores the lower left region, the dark blue loss
region on the right side fades. (f) As the agent explores the upper left region, the dark blue loss region in the
lower left does not lighten, but the right-side loss is considerably lessened. Panels (g) - (i) show the
exploration of the AIE3 agent. (g) The agent explores mainly the lower right region. (h) The agent mainly
explores the upper right region, but the color of the loss plot in the unexplored lower region remains blue.
(i) The agent explores only the upper region, but the color of other areas of the loss plot remains blue. These
results illustrate that AIE3 allows the agent to remember more information about areas explored farther in
the past than AIE1 and AIE2 do.

forgetting hinders effective exploration when an exploration
bonus is implemented because the agent has less chance of
searching for a novel state if the prediction error remains
high for previously searched states. Furthermore, we argue
that using a replay memory for the predictor network (AIE3)
enables more efficient exploration because the memory miti-
gates catastrophic forgetting.

Fig 6 shows visualizations of the movement paths of the
agent in 5,000 episodes (left-hand plots) and the losses of
the predictor network at all coordinates (right-hand plots).
In the right-hand plots, the color gradient from blue to yellow
indicates where the loss is larger. We observe that the losses
in the regions explored by the agent are lower than the losses
in other regions. As the number of elapsed episodes increases,
the agent tends to explore novel spaces with higher prediction
errors. At this time, the losses in the regions that the agent
has explored in recent episodes are increased compared to the
losses in the regions explored during previous episodes. For
instance, in the first loss figure for AIE1, it is apparent that the
agent has visited the blue region on the right more frequently,
while in the second figure, the agent has recently visited the
blue region on the left more frequently than the right region.
In addition, the blue color on the right is paler than that in the
first plot. This is because the agent has most recently visited
the left region more frequently and has begun to forget about
the right region.

By contrast, with AIE3, the losses in the previously
explored regions remain relatively low. From these plots,
we can confirm that AIE3 is less susceptible to catastrophic
forgetting than AIE1 and AIE2. In the sparse reward envi-
ronment, the agents implementing DQN, PerDQN, and A2C
remains almost stationary, and the ASIL agent explored
only a small area, circulating throughout this area repeat-
edly with an increasing number of episodes; by contrast,
the three proposed algorithms explored many different loca-
tions. Table 2 presents scores quantifying the extent to which

TABLE 2. The exploration area score for each algorithm in the 2D
no-reward grid environment, representing the average area explored by
the agent in 30 repeated experiments.

VOLUME 8, 2020 226731



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

each algorithm uniformly explored the four quadrants of the
2D grid space throughout 30,000 episodes. The formula used
to calculate the exploration area score is

score = mean(EQq)× σEQ × 100, (5)

where EQq is the explored portion of the total area of each
quadrant. From the results, we can confirm that the proposed
algorithms (particularly AIE3) are very effective in promot-
ing exploration.

C. EXPERIMENTS ON CUAV MISSION EXECUTION
1) SINGLE CUAV ENVIRONMENT
We performed an experiment to investigate CUAV control in
a sparse reward environment and compare the performances
of the algorithms. In addition, we analyzed how a CUAV can
maneuver to avoid missiles. Fig 7 (a) shows the performance
curves of ASIL and the three proposed algorithms in an exper-
iment consisting of 60,000 episodes. The curves displayed in
light colors and normal colors represent the worst and aver-
age performances, respectively, of the compared algorithms.
Table 3 shows the performance scores for each algorithm

FIGURE 7. (a) Learning curves in the CUAV mission execution
environment. The x- and y-axes represent the episode number and the
average reward, respectively. The plot shows the average reward over
10 experiments for each algorithm. The lighter-colored curves represent
the worst performance results for each algorithm. (b) Cumulative
probability of being shot down by a missile. In the early learning stage,
as the CUAV moved forward, the probability increased. However,
as learning progressed, the CUAV learned a control policy that could
effectively avoid missiles, and as a result, the probability of being shot
down decreased.

TABLE 3. Performance scores for each algorithm in the CUAV mission
environment. We conducted ten experimental trials with different
simulation seeds for each algorithm.

in the CUAV mission environment. The first column lists
the algorithms used in the experiment. The second column
reports the number of episodes elapsed to complete a mis-
sion in the CUAV environment, and the third column reports
the percentage of the trial that each algorithm converged
in 10 repeated experiments.

First, since our experimental environment had a sparse
reward structure, DQN, PerDQN, and A2C failed to converge
to a policy that could generate the shortest path from the
origin to the target point while avoiding enemy missiles. The
results show that AIE2 and AIE3 succeeded in converging
to the desired policy, while ASIL and AIE1 fell into a local
minimum in one in two trials and one in three trials, respec-
tively. In particular, AIE3 outperformed the other algorithms
in terms of convergence speed and stability, as shown in Fig 7.
Similar to the previous exploration experiment, we confirmed
that the three proposed algorithms showed better performance
than ASIL (the baseline model) in the CUAV control envi-
ronment. Fig 8 presents snapshots of the learning process (an
animation is available here1). During early learning episodes,
the CUAV performed random actions and occasionally left
the battlefield. As the number of episodes increased, it tended
to move forward gradually but eventually be shot down by
a missile. This result is confirmed by the plot of the cumu-
lative probability of the CUAV being shot down presented
in Fig 7 (b). As the learning process continued, the CUAV
learned how to avoid the missiles and began to move to new
coordinates (attempting to increase the intrinsic reward). The
CUAV attempted to reach the target via various paths. After
training was complete, in 1000 test trials, the CUAV could
reach its target with a 95% probability. Fig 9 shows a 3D
representation of the path taken by a single CUAV to reach
the target while avoiding missiles. When the CUAV passes
through the center of an air defense network, its probability of
being shot down by a missile increases. Therefore, the CUAV
learned a safe path that passes through the overlapping areas
of the air defense networks at a low altitude.

2) FLIGHT FORMATION ENVIRONMENT
In the flight formation environment, we utilized four actor
networks (analogous to four single CUAV environments) and
additionally considered the state of the formation and the
reward for the formation. We adopted the AIE3 algorithm,
which performed best in the single CUAV environment. The
goal was for the squadron to move from the starting point to
the target point while maintaining a certain distance between
the CUAVs. We trained a total of 10 networks, including the
actor and critic networks for each CUAV and the target and
predictor networks for RND.

Fig 10 presents snapshots of the learning process, and
Fig 9 (b) presents a 3D representation of the paths taken
by the CUAVs in the formation. Similar to the behavior in
the single CUAV environment, each CUAV in the squadron
initially appeared to fly randomly and then gradually began

1https://youtu.be/7R5lZAsCs2c

226732 VOLUME 8, 2020



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

FIGURE 8. 3D visualization of the learning process of a single CUAV (x-axis: latitude, y-axis: longitude,
z-axis: altitude). Each red circle represents an air defense network, the black solid lines represent the
movement paths of the CUAV, and a red dotted line represents a missile’s movement path. From
panels (a) - (c), it can be seen that early in the learning process, the CUAV performed almost random
maneuvers. Panels (d) - (f) show the CUAV gradually moving towards its destination and learning
maneuvers for evading missiles. In later episodes, as shown in panels (g) - (i), the CUAV had learned
an effective control policy for finding the best path to the destination through the air defense
networks while avoiding missiles.

FIGURE 9. 3D views of CUAV paths after learning (x-axis: latitude, y-axis:
longitude, z-axis: altitude): (a) a single CUAV and (b) a formation of
CUAVs. The CUAV agents take paths that pass through the overlapping
areas of the air defense networks to minimize the risk of being shot
down by missiles and the flight distance to the target point.

to move towards the target point. Fig 11 shows the overall
average distance between CUAVs by episode. This plot con-
firms that the distance between the CUAVs decreased as the

learning process progressed. In this environment, we trained
the networks for 60,000 episodes over three weeks. In addi-
tion to the flight paths of each CUAV, the information on the
relationships between the CUAVs in the formation needed to
be learned; therefore, the learning time had to be increased.
Fig 12 shows the mission completions rate for different flight
formations in the test experiment. The third bar indicates that
there was a 99% chance that three or more of the CUAVs in
the squadron would be successful. Furthermore, the proba-
bility of all four CUAVs reaching the target from the starting
point was approximately 70%.

3) TEST ENVIRONMENT
We conducted test experiments using the pretrainedmodels in
a more difficult environment than the learning environment.
Table 4 shows the experimental results for various scenarios
in the single CUAV environment and the flight formation
environment. Scenario 1 refers to an environment in which
the missile performance is better than that in the learning
environment. Scenario 2 refers to an environment in which
the locations of the air defense networks have been randomly
adjusted relative to the learning environment in addition
to improved missile performance. In the flight formation
environment, conditions 1, 2, and 3 refer to 1, 2, and 3 of
the 4 CUAVs reaching the target point, respectively, and con-
dition 4 means that all CUAVs reach the target point. For both
the single CUAV environment and the flight formation envi-
ronment, a slight decrease in performance is evident in the
test environment compared with the learning environment.

VOLUME 8, 2020 226733



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

FIGURE 10. 3D visualization of the CUAV learning process in the formation environment (x-axis: latitude,
y-axis: longitude, z-axis: altitude). The red circles represent the air defense networks, the black solid lines
represent the movement paths of the CUAVs, and a red dotted line represents a missile’s movement path.
From panels (a) - (c), it can be seen that the CUAVs in the formation performed random maneuvers early in
the learning process, but by the episodes depicted in panels (d) - (f), the CUAVs had been trained to find
ways to move towards their destination. Finally, as shown in panels (g) - (i), they learned the best control
policy to reach the destination while minimizing the missile risk.

TABLE 4. Experimental results for various scenarios in the single CUAV environment and the flight formation environment. In Scenario 1, the proportional
constant for the launching of a missile is adjusted from 3 to 5, corresponding to improved shooting performance of the missiles compared with the
learning conditions. In Scenario 2, the missile performance is improved, and the locations of the air defense networks are also changed. Specifically,
we randomly adjusted the locations of the air defense networks by 3 km. We conducted 1,000 tests for each scenario. Conditions 1, 2, and 3 are fulfilled
when 1, 2, and 3 of the 4 CUAVs reach the target point, respectively, and similarly, condition 4 means that all CUAVs reach the target point.

FIGURE 11. Plot of the overall average distance between CUAVs by
episode. The x- and y-axes represent the episode number and the
average distance, respectively. As the number of learning episodes
increased, the average distance between the CUAVs decreased.

In particular, when the locations of the air defense networks
have changed, there is a high probability that a CUAV will
not reach its target point. The reason is that in the learning

FIGURE 12. Plot of the mission completion rates for the flight formation
during testing. The first bar indicates a 99% probability that one or more
of the CUAVs in the squadron will succeed in the mission.

environment, the CUAVs are effectively seeking routes to
avoid rather than learning evasive maneuvers against mis-
siles. This phenomenon is particularly apparent in the flight
formation environment. Accordingly, Scenario 2 shows sig-
nificantly lower mission completion rates than Scenario 1.

226734 VOLUME 8, 2020



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an RL algorithm for guid-
ing a CUAV to achieve multiple goals through actions in
a manner similar to human behavior. We defined the mis-
sion goals as finding the shortest path for the CUAV while
avoiding threats and using the thrust, bank angle and load
factor, which a human pilot uses to control a fighter, to exe-
cute actions. In addition, we conducted RL experiments for
missions involving both a single CUAV and a squadron of
four CUAVs. We set three goals in the flight formation
environment: missile avoidance, finding the shortest path
to the target point, and adjusting the distance between the
CUAVs in the formation. To improve the efficiency of RL,
we developed a novel method of representing the coordinates
and angle of a CUAV. Furthermore, we proposed several
AIE algorithm variants by combining SIL and RND for deep
exploration. In the AIE2 algorithm, an intrinsic penalty is
imposed on states that the agent has frequently visited, which
prevents the agent from falling into a local optimal policy.
The AIE3 algorithm additionally adopts a replay memory
to mitigate catastrophic forgetting by the predictor network.
These two algorithms amplify the imitation effect, leading
to deep exploration and thereby enabling the policy network
to quickly converge to the desired policy. In a 2D grid envi-
ronment, we experimentally demonstrated that the proposed
AIE algorithms could successfully explore wide areas of the
grid space. In particular, AIE3 explored an area that was more
than 4 times larger than the area explored by ASIL in the 2D
grid environment. In addition, for the CUAV control problem,
we observed that the proposed algorithms quickly converged
to the desired policy both for a single CUAV and in a squadron
environment. AIE3 showed more than twice the learning
convergence speed and more than twice the convergence
success rate of ASIL. In both experimental environments,
it was confirmed that the proposed AIE approach is superior
to existing algorithms in terms of both convergence speed and
learning stability.

In future work, more efficient ways to train a squadron
should be addressed. In this study, we trained a total of 10 net-
works for the flight formation environment, but the learning
process required a total of three weeks. Thus, it will be
necessary in future work to consider using transfer learning
based on a pretrained network trained for a single CUAV
to achieve more efficient learning. Furthermore, RL does
not always guarantee an optimal policy because it learns
only from the experience of the agent. In our experiments,
when the air defense networks were tightly overlapped,
the CUAV learned to fly closer to the ground. If the CUAV
could be trained based on human guidelines, it would be
possible for it to learn an optimal policy as desired by
humans.

REFERENCES

[1] M. Franklin, ‘‘Unmanned combat air vehicles: Opportunities for the guided
weapons industry,’’ Occasional Papers, Roy. United Services Inst. (RUSI),
London, U.K., Sep. 2008.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep
reinforcement learning,’’ 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

[3] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, ‘‘Unifying count-based exploration and intrinsic motivation,’’
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1471–1479.

[4] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos, ‘‘Count-
based exploration with neural density models,’’ 2017, arXiv:1703.01310.
[Online]. Available: http://arxiv.org/abs/1703.01310

[5] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, ‘‘Reinforcement learn-
ing with deep energy-based policies,’’ 2017, arXiv:1702.08165. [Online].
Available: http://arxiv.org/abs/1702.08165

[6] B. Ziebart, ‘‘Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,’’ Ph.D. dissertation, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2010.

[7] P. J. Silvia, ‘‘Curiosity and motivation,’’ in The Oxford Handbook of
Human Motivation, R. M. Ryan, Ed. Oxford, U.K.: Oxford Univ. Press,
2012, pp. 157–167.

[8] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, ‘‘Curiosity-driven
exploration by self-supervised prediction,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), 2017, pp. 16–17.

[9] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros,
‘‘Large-scale study of curiosity-driven learning,’’ 2018, arXiv:1808.04355.
[Online]. Available: http://arxiv.org/abs/1808.04355

[10] N. Haber, D. Mrowca, L. Fei-Fei, and D. L. K. Yamins, ‘‘Learning to play
with intrinsically-motivated self-aware agents,’’ 2018, arXiv:1802.07442.
[Online]. Available: http://arxiv.org/abs/1802.07442

[11] J. Oh, Y. Guo, S. Singh, and H. Lee, ‘‘Self-imitation learning,’’ 2018,
arXiv:1806.05635. [Online]. Available: http://arxiv.org/abs/1806.05635

[12] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, ‘‘Exploration by ran-
dom network distillation,’’ 2018, arXiv:1810.12894. [Online]. Available:
http://arxiv.org/abs/1810.12894

[13] L.-J. Lin, ‘‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,’’ Mach. Learn., vol. 8, nos. 3–4, pp. 293–321,
1992.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized
experience replay,’’ 2015, arXiv:1511.05952. [Online]. Available:
http://arxiv.org/abs/1511.05952

[16] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, ‘‘Sample efficient actor-critic with experience replay,’’ 2016,
arXiv:1611.01224. [Online]. Available: http://arxiv.org/abs/1611.01224

[17] A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and
R. Munos, ‘‘The reactor: A fast and sample-efficient actor-critic agent
for reinforcement learning,’’ 2017, arXiv:1704.04651. [Online]. Available:
http://arxiv.org/abs/1704.04651

[18] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, ‘‘Policy gradi-
ent methods for reinforcement learning with function approximation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[19] V. R. Konda and J. N. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[20] A. L. Strehl and M. L. Littman, ‘‘An analysis of model-based interval
estimation for Markov decision processes,’’ J. Comput. Syst. Sci., vol. 74,
no. 8, pp. 1309–1331, 2008.

[21] L. Fox, L. Choshen, and Y. Loewenstein, ‘‘Dora the explorer: Directed
outreaching reinforcement action-selection,’’ in Proc. Int. Conf. Learn.
Represent., 2018.

[22] M. C. Machado, M. G. Bellemare, and M. Bowling, ‘‘Count-based
exploration with the successor representation,’’ 2018, arXiv:1807.11622.
[Online]. Available: http://arxiv.org/abs/1807.11622

[23] B. C. Stadie, S. Levine, and P. Abbeel, ‘‘Incentivizing exploration
in reinforcement learning with deep predictive models,’’ 2015,
arXiv:1507.00814. [Online]. Available: http://arxiv.org/abs/1507.00814

[24] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen,
X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz, ‘‘Parameter space
noise for exploration,’’ 2017, arXiv:1706.01905. [Online]. Available:
http://arxiv.org/abs/1706.01905

VOLUME 8, 2020 226735



G. T. Lee, C. O. Kim: Autonomous Control of CUAVs to Evade Surface-to-Air Missiles Using Deep RL

[25] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam,
and R. Fergus, ‘‘Intrinsic motivation and automatic curricula via
asymmetric self-play,’’ 2017, arXiv:1703.05407. [Online]. Available:
http://arxiv.org/abs/1703.05407

[26] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, ‘‘Diversity is all you
need: Learning skills without a reward function,’’ 2018, arXiv:1802.06070.
[Online]. Available: http://arxiv.org/abs/1802.06070

[27] T. Gangwani, Q. Liu, and J. Peng, ‘‘Learning self-imitating
diverse policies,’’ 2018, arXiv:1805.10309. [Online]. Available:
http://arxiv.org/abs/1805.10309

[28] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[29] A. Majeed and S. Lee, ‘‘A fast global flight path planning algorithm based
on space circumscription and sparse visibility graph for unmanned aerial
vehicle,’’ Electronics, vol. 7, no. 12, p. 375, 2018.

[30] H. Tong, W. W. Chao, H. C. Qiang, and X. Y. Bo, ‘‘Path planning of
UAV based on Voronoi diagram and DPSO,’’ Procedia Eng., vol. 29,
pp. 4198–4203, Jan. 2012.

[31] H. X. Pham, H.M. La, D. Feil-Seifer, and L. Van Nguyen, ‘‘Reinforcement
learning for autonomous UAV navigation using function approximation,’’
in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot. (SSRR), Aug. 2018,
pp. 1–6.

[32] W. Koch, R. Mancuso, R. West, and A. Bestavros, ‘‘Reinforcement learn-
ing for UAV attitude control,’’ ACM Trans. Cyber-Phys. Syst., vol. 3, no. 2,
pp. 1–21, 2019.

[33] N. Imanberdiyev, C. Fu, E. Kayacan, and I.-M. Chen, ‘‘Autonomous nav-
igation of uav by using real-time model-based reinforcement learning,’’
in Proc. 14th Int. Conf. Control, Autom., Robot. Vis. (ICARCV), 2016,
pp. 1–6.

[34] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, ‘‘Energy-efficient uav
control for effective and fair communication coverage: A deep reinforce-
ment learning approach,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 9,
pp. 2059–2070, Sep. 2018.

[35] P. Liu andY.Ma, ‘‘A deep reinforcement learning based intelligent decision
method for UCAV air combat,’’ inProc. Asian Simulation Conf. Singapore:
Springer, Aug. 2017, pp. 274–286.

[36] Y. Zhang, W. Zu, Y. Gao, and H. Chang, ‘‘Research on autonomous
maneuvering decision of UCAV based on deep reinforcement learning,’’
in Proc. CCDC, 2018, pp. 230–235.

[37] C. Minglang, D. Haiwen, W. Zhenglei, and S. QingPeng, ‘‘Maneuvering
decision in short range air combat for unmanned combat aerial vehicles,’’
in Proc. Chin. Control and Decis. Conf. (CCDC), 2018, pp. 1783–1788.

[38] Q. Yang, J. Zhang, G. Shi, J. Hu, and Y. Wu, ‘‘Maneuver decision of UAV
in short-range air combat based on deep reinforcement learning,’’ IEEE
Access, vol. 8, pp. 363–378, 2019.

[39] H. Zhang and C. Huang, ‘‘Maneuver decision-making of deep learning for
UCAV thorough azimuth angles,’’ IEEE Access, vol. 8, pp. 12976–12987,
2020.

[40] S. Kim and Y. Kim, ‘‘Three dimensional optimum controller for multiple
UAV formation flight using behavior-based decentralized approach,’’ in
Proc. Control, Autom. Syst., Int. Conf. (ICCAS), 2007, pp. 1387–1392.

[41] I. Moran and T. Altilar, ‘‘Three plane approach for 3D true proportional
navigation,’’ in Proc. AIAA Guid., Navigat., Control Conf. Exhibit, 2005,
p. 6457.

GYEONG TAEK LEE received the B.S. degree in
statistics from Sungkyunkwan University, South
Korea, in 2016. He is currently pursuing the
Ph.D. degree in industrial engineering with Yonsei
University. His current research interests include
machine learning and reinforcement learning
for manufacturing and unmanned aerial vehicle
combat systems.

CHANG OUK KIM received the Ph.D. degree
in industrial engineering from Purdue University,
West Lafayette, IN, USA, in 1996. He is cur-
rently a Professor with the Department of Indus-
trial Engineering, Yonsei University, South Korea.
He has published more than 100 papers in journals
and conference proceedings. His current research
interests include data science for manufacturing
and defense analysis.

226736 VOLUME 8, 2020


