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ABSTRACT The traditional Born iterative method (BIM) and distorted Born iterative method (DBIM) are
both effective for electromagnetic scattering inversion. But they are inefficient because of the computation
of forward scattering problem in each iteration. In this paper, a modified forward-solver scheme based on
Born series is proposed for improving the efficiency. By using this scheme, the traditional time-consuming
forward scattering procedure, matrix inversion, is replaced by a simple multiplication with low computation
complexity in each iteration. Numerical and experimental two-dimensional electromagnetic scattering
models are used to validate the proposed method. The imaging results and CPU times indicate that the
presented methods have good accuracy and can improve the efficiency greatly.

INDEX TERMS Born iterative method, Born series, electromagnetic inverse scattering, microwave imaging.

I. INTRODUCTION
Electromagnetic inverse scattering methods have wide appli-
cations in nondestructive testing, biomedical imaging, tar-
get identification, etc. Their goal is to solve the inherent
non-linear relationship between known and unknown infor-
mation. Usually, integral equations are used to describe this
relationship due to the accuracy and simplicity. Therefore,
based on it, the Born iterative method (BIM) was proposed to
reconstruct the permittivity in the region of interest (ROI) [1].
In this method, the Green’s function remains unchanged in
each iteration so it needs many iterative steps and much
CPU time to get accurate results. Distorted Born iterative
method (DBIM) updates the Green’s function by the new
computed permittivity of ROI in each iteration [2]. Therefore,
it can accelerate the convergence speed and save the compu-
tation time. But DBIM has worse robustness than BIM.

Both BIM and DBIM have attracted much attention
because they are effective and accurate approaches to
solve the nonlinearity of inverse scattering. In time-domain,
Chew et al. applied BIM to inverse the permittivity profiles
of electrically large scatterers [3] and utilized DBIM to image
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buried dielectric cylinder [4]. By taking the advantages of
BIM and DBIM, a hybrid iterative method is presented in [5],
where DBIM is used to accelerate the convergence speed
and BIM is used to stabilize the final solution, respectively.
For the strong scattering medium, multiple frequency DBIM
is developed in [6], where low frequency DBIM solution is
used to initialize the procedure at high frequency. However,
the forward scattering calculation in iterations is still time-
consuming. Subsequently, for the acceleration of the forward
solver, conjugate and biconjugate gradient method with fast
Fourier transform (BCGS-FFT) are used in [7] and [8]. In [9],
the multilevel fast multipole algorithm is utilized to solve
the forward scattering with DBIM to ameliorate the compu-
tation burden. In [10] and [11], subspace-based DBIM and
variational-BIM are proposed to achieve high efficiency and
accurate imaging. In [12], a new scheme of controlling the
balance factor to improve the convergence speed is proposed
based on BIM. Additionally, BIM and modified BIM have
implemented in medical electromagnetic imaging to retrieve
more accurate images in [13] and [14].

Although the forward procedure of BIM can be accelerated
by some techniques under some specific situation, it is still
complicated and time-consuming to calculate the inverse of
matrix. As we know, in the traditional BIM and DBIM,
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FIGURE 1. Schematic of inverse scattering model.

the forward-solver calculates the accurate total fields with
the updated permittivity distribution in each iteration. In fact,
it is unnecessary. The updated permittivity distribution is
not the final solution if the iteration continues. Therefore,
it can be concluded that the high precision forward scattering
calculation in the process can be avoided. In this paper, a fast
forward-solver scheme based on Born series is proposed
to avoid the traditional time-consuming forward scattering
calculation of BIM and DBIM. In the new scheme, the total
field in each iteration can be calculated quickly by the former
value and the updated permittivity distribution. It leads to the
acceleration of iteration. The proposed methods are validated
by numerical and experimental examples, which show that
they have good accuracy and high efficiency.

II. FORWARD PROBLEM
A. SCATTERING MODEL
A two-dimensional (2-D) medium imaging model is consid-
ered in Fig. 1, which consists of a bounded homogeneous
background domain D with known relative permittivity ε0.
The domain D contains an inhomogeneous medium with
unknown permittivity distribution in xoy-plane. In this paper,
the ROI is illuminated by transverse magnetic (TM) plane
wave from different directions. For each incidence, the scat-
tered field can be obtained by the receivers, R, which are
located around the domain D. For the total field inside the
domainD, the following scalar integral equation can be gotten
as:

E tz (r) = E iz(r)+ k
2
0 ·

∫∫
D

G(r,r′)·χ (r′) · E tz ( r
′)dr′, r ∈ D

(1)

where E tz (r) and E
i
z(r) denote the total and incident electric

field, respectively; k0 is the wavenumber of homogeneous
medium;

G(r,r′) = jH (1)
0 (k0

∣∣r− r′
∣∣)/4 (2)

is the 2-D Green’s function in homogeneous medium where
j represents the imaginary unit and H (1)

0 is the zero-order
Hankel functions of first kind; and

χ (r) = εr (r)− ε0 (3)

is the unknown relative permittivity distribution profile where
εr (r) is the real relative permittivity of inhomogeneous
medium. It is the key parameter which needs to be recon-
structed.

Discretizing the domain D into N discrete squares
D1,D2, . . . ,DN , Eq. (1) can be expressed in matrix form as

EtD = EiD +GD · X · EtD, (4)

whereEtD andEiD are the total and incident field vector within
domain D, respectively. GD is the 2-D Green’s function
matrix counting for internal total field and X is the relative
permittivity vector of domain D.
If the relative permittivity distribution of the domain D is

known, it means X is known. Therefore, the total field vector
EtD can be gotten according to Eq. (4) by

EtD = (I−GD · X)−1 · EiD, (5)

where I is the identity matrix. The total field can be calculated
by Eq. (5) with known incident field and relative permittivity
distribution X. While it can be accelerated by some scheme
such as BCGS-FFT method in [8] under some specific situa-
tion, the computational cost of the matrix inverse is still large
especially for the large complicated cases.

If the total field inside the domain D is known, the scatter-
ing field at the receivers can be expressed from Eq. (1) as:

Esz (r) = k20 ·
∫∫
D

G(r,r′)·χ (r′) · E tz (r
′)dr′ r ∈ R. (6)

Therefore, in matrix form, Eq. (6) can be described as:

EsR = GS · X · EtD, (7)

where EsR is the scattered field vector at the receivers, GS is
the 2-D free space Green’s function matrix counting for the
scattered field, and EtD is the total field vector based on the
relative permittivity distributionX.With the distortedGreen’s
function, Eq. (7) can be transformed as

EsR − Es,nR = Gn
S · (X− Xn) · EtD = Gn

S ·1X · EtD, (8)

where n is the number of iteration, Es,nR and Gn
S are the

scattered field vector and the Green’s function matrix based
on relative permittivity distribution Xn, respectively.

B. BORN APPROXIMATION AND BORN SERIES
Since the total field is the sum of the incident and scattered
field, Eq. (4) can be written as

EsD = GD · X · (EiD + EsD), (9)

where EsD is the scattered field vector within the domain D.
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If the scattered field is small compared to the total field,
the first-order Born approximation can be gotten by using the
incident field to substitute the total field as

Et,1D = EiD +GD · X · EiD, (10)

where the Roman numeral, 1, represents the order of Born
approximation. It can be seen that only the first-order
scattering component is considered, which will limit the
scope of the method. Therefore, high-order approxima-
tion is considered, and the total field can be expressed
as

Et,n+1D = EiD +GD · X · E
t,n
D

= EiD +GD · X · EiD +GD · X · (GD · X · EiD)

+ · · · +GD · X · (· · · (GD · X︸ ︷︷ ︸
n+1

·EiD)). (11)

According to Born series expansion, the total field has
another expression as:

EtD =
∞∑
m=0

Es,mD , (12)

where Es,0D = EiD, E
s,m+1
D = GD · X · E

s,m
D . From it,

in can be found that the infinite nmakes the result in Eq. (11)
converge to the actual total field. Obvious, there is a certain
convergence range for above Born series and the range is
determined by whether ‖GD · X‖ ≤ 1.

III. INVERSE PROBLEM
A. BORN AND DISTORTED BORN ITERATIVE METHOD
The purpose of inverse scattering problem is to reconstruct
the relative permittivity matrix X of ROI with the known
data EsR and EiD. If the total field EtD is known, the inverse
scattering problem can be solved directly by inversing Eq. (7)
with the regularization scheme in [1].

However, in practice, the total field within the domain D is
unknown so that the inverse problem is nonlinear. By BIM or
DBIM, the solutions can approach to the real solution by the
iterations. The iteration scheme of the two methods is shown
in Fig. 2.

It can be found that in Step 2 the total field is updated by
the forward solver as

Et,nD = (I−GD · Xn−1)−1 · EiD. (13)

Based on Born series, Eq. (13) can be expanded as

Et,nD =EiD+GD ·Xn−1
· EiD +GD ·Xn−1

· (GD · Xn−1
· EiD)

+ · · · +GD ·Xn−1(· · · (GD · Xn−1(GD · Xn−1︸ ︷︷ ︸
∞

·EiD))).

(14)

Obviously, this procedure is time consuming due to the cal-
culation of matrix inverse.

Additionally, in Fig. 2, σ is the threshold value. The δn is
the relative residual sum of squares between the calculated

FIGURE 2. Iteration scheme of BIM and DBIM.

and real scattered field at the receivers, which is defined as

δn =
∥∥Es,nR − EsR

∥∥ 2
/∥∥EsR∥∥ 2

. (15)

B. EFFICIENT ITERATIONS BASED ON NEW
FORWARD-SOLVER SCHEME
According to the iteration scheme in Fig. 2, it can be found
that the traditional BIM and DBIM contains two kinds of
iteration. The first one is calculating the accurate total field
within Step 2 by inversing the matrix, which is equal to the
infinite-order Born series iteration in Eq. (14). The second
one is getting the accurate permittivity distribution by the
updated total field through Step 2 to 4. Obviously, as men-
tioned before, the first kind of iteration is unnecessary.
As long as the final total field converges to the accurate
solution through the second kind of iteration, the permittivity
distribution can be reconstructed correctly.

Therefore, a new forward solver based on high-order Born
approximation is proposed as

Et,nD = EiD +GD · Xn−1
· Et,n−1D . (16)

Substituting Eq. (16) for Eq. (13) in Step 2 of BIM andDBIM,
the total field can be expanded as

Et,nD =EiD+GD · Xn−1
· EiD+GD · Xn−1

· (GD · Xn−2
· EiD)

+ · · · +GD · Xn−1(· · · · (GD · X1(GD · X0︸ ︷︷ ︸
n

·EiD))).

(17)
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Similar to Eq. (11), Eq. (17) can also be considered as Born
series expansion as

Et,nD =
n∑

m=0

Es_fast,mD , (18)

where Es_fast,0D = EiD and Es_fast,m+1D = GD ·Xn−m
·Es_fast,mD .

C. DISCUSSION OF THE NEW FORWARD-SOLVER
It can be found that Et,nD in Eq. (17) will be close to the value
in Eq. (14) when n is infinite. Hence, Eq. (16) can also make
the final total field converge to real value by the second kind
of iteration with the increasing iterative steps n because the
high-order Born series is considered.

For the new forward-solver, it can be found that the values
of X0, X1, . . . ,Xn−1 are used in Eq. (17) while only the last
Xn−1 is used in Eq. (14). But it does not mean that they are
all stored in the memory. According to Eq. (16), only the last
Et,n−1D is used for the calculation of Et,nD . All previous values
are contained in Et,n−1D . Therefore, there is no extra memory
cost.

In terms of computation complexity, it is clear that, by the
new forward-solver of Eq. (16), an approximate total field
is gotten in Step 2 quickly because the previous calculated
total field is reused. This forward procedure avoids to dealing
with the large matrix inverse and results in low computation
complexity. If the matrix size of GD · Xn−1 is M × M ,
the complexity can be reduced from O(M3) to O(M2).
In addition, in terms of limitation, as mentioned in

Section II, the convergence is determined by whether
‖GD · X‖ ≤ 1. Therefore, for the proposed methods, they
are limited by the value of ||GD · Xn−1

||.

IV. RESULTS
A. NUMERICAL EXAMPLE
In this section, numerical and experimental examples are
given to validate the proposed methods. Since the proposed
forward-solver is implemented within the framework of BIM
and DBIM to improve the efficiency, the proposed methods
are mainly compared with them. A typical 2-D numerical
example with ‘‘Austria’’ permittivity distribution is consid-
ered, firstly. As shown in Fig. 3, the ‘‘Austria profile’’ consists
of two discs and one ring. More details of the ‘‘Austria
profile’’ can be referred in [10]. The operating frequency
is 0.15 GHz, which makes the domain D is 1.5λ × 1.5λ
(λ is the wavelength). To avoid inverse crime, the forward
scattering data is generated by finite-difference method in
frequency-domain (FDFD) where the mesh size is λ/60. The
inversion mesh size is λ/20. 36 receivers are set around
the domain D and the incident wave is illuminated from
18 different directions. In the inversion, since the initial scat-
tered field data, generated by FDFD, has numerical residual
itself, the threshold value σ is set as 0.05% based on the
initial numerical residual. And priori information that relative
permittivity parameter is real number and greater than 1 is
used.

FIGURE 3. Original ‘‘Austria’’ permittivity distribution.

TABLE 1. Comparison by the four methods (CPU time is relevant To a
3.2 GHz core i7-8700K processor, 32GByte RAM).

By the inversion procedures, the results by four methods
are shown in Fig. 4, respectively. It can be found that both
BIM and DBIM can properly reconstruct parameter distribu-
tion and yield good results, where the two discs and one ring
are well distinguished. And the results by the modified BIM
and DBIM are almost the same with the results by BIM and
DBIM, respectively. Therefore, good agreement is achieved
in this paper.

Further, for evaluating the quality of results, the norm error
1ε is defined as

1ε =

N∑
i=1

[
εsimulatedr (ri)− εrealr (ri)

]2/ N∑
i=1

[
εrealr (ri)

]2
,

(19)

where εsimulatedr and εrealr are the simulated and real relative
permittivity. Table 1 gives a comparison of four methods
in terms of CPU time, iteration steps, and 1ε, respectively.
It can be found that BIM method completes the whole oper-
ation with the best quality and maximum CPU time. Com-
pared with BIM, aided by the proposed fast forward-solver,
the modified BIM can provide comparative result with much
less CPU time. Although the modified BIM needs more
iteration steps to converge, the total computation efficiency is
still very high due to the low computation complexity. As for
DBIM-based methods, similar conclusion can be gotten that
the modified DBIM can yield almost the same result with
DBIM but with less CPU time.

In order to further evaluate the convergence of themodified
methods, the convergence curves (scattered field difference
δn and defined norm error 1ε as functions of number of
iterations steps) of four methods are given in Fig. 5. It can
be observed that, compared to BIM and DBIM, the modified
BIM and DBIM take a few more steps to converge, respec-
tively. After the convergence is completed, the convergence
curves ofmodified BIM andDBIM are almost consistent with
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FIGURE 4. Inversion results. (a) BIM, (b) modified BIM, (c) DBIM,
(d) modified DBIM.

FIGURE 5. Scattered field difference δn and defined norm error 1ε as
functions of number of iterations steps. (a) BIM-based method,
(b) DBIM-based method.

the convergence curves of BIM and DBIM, respectively. The
above phenomenon proves that proposed fast forward-solver
can maintain the same precision level meanwhile reducing a
lot of CPU time.

B. EXPERIMENTAL EXAMPLE
The second example is based on experimental data with real
noise, which is collected by Institute Fresnel in database [15].
The configuration of experiment is shown in Fig. 6.

FIGURE 6. The geometry of experiment configuration.

FIGURE 7. Inversion results. (a) BIM, (b) modified BIM, (c) DBIM,
(d) modified DBIM.

In experiment, 49 receivers and 36 transmitters are placed on
the receiver rail and transmitter rail, respectively. A dielectric
cylinder with 1.5 cm radius is placed 3 cm below the center
of circle rail. The relative permittivity of cylinder is 3 ± 0.3
and the data at 1GHz is used. The mesh size is 0.3 cm in
both directions, which results in 61 × 61 pixels in the ROI
domain S. More details of the experiment can be referred
in [15].

The supplied data only contains the received incident
field and total field at receivers. The incident field in ROI,
which is not contained in the supplied experimental data,
is an essential input information to start the inversion and
it usually needs to be estimated [15]. There are several
methods [15]–[17] which can approximate the incident field.
In this paper, a complex coefficient factor is used to produce
the raw data as [16].

The reconstructed results by four methods are shown
in Fig. 7, respectively. It can be found that the object is
well reconstructed. The accuracies by the BIM- and DBIM-
based methods are almost same with each other, respectively.
The experimental example proves that the proposed fast
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TABLE 2. Comparison by the Four Methods (CPU Time is Relevant To a
3.2 GHz Core i7-8700K Processor, 32GByte RAM).

forward-solver can also handle real noisy data. A comparison
of four methods is also given in Table 2. It can be found that
the CPU time of the modified-BIM and DBIM is much less
than those by the conventional methods and the errors are
almost same.

V. CONCLUSION
In this paper, a new forward-solver scheme based on Born
series is proposed and applied in BIM and DBIM. Compared
with the traditional calculation of the total field, the proposed
forward-solver yields an approximate solution to improve
the efficiency. Therefore, the total field can finally converge
to the accurate solution by considering high-order compo-
nents, which guarantees the veracity of the whole inver-
sion operation. The proposed method is well validated by
two typical examples based on numerical and experimental
data, respectively. The reconstructed results and convergence
curves of numerical example show that the modified methods
can fit in the framework of BIM and DBIM well and improve
the efficiency greatly. Meanwhile, the experimental example
shows that modified methods are also capable of dealing with
realistic case. In general, the fast computation speed of the
proposed method is very helpful for imaging systems.
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