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ABSTRACT An algorithm making use of hybrid features of Hilbert transform (HT) and Stockwell
transform (ST) to identify the single-stage and multiple (multi-stage) power quality disturbances (PQDs) is
introduced in this manuscript. A power quality index (PI) and time location index (TLI), based on the features
computed from the voltage signal by the use of HT and ST are proposed for recognition of the PQDs. Four
features extracted from the PI and TLI are considered for classification of the PQDs achieved using decision
tree driven by rules. The algorithm is tested on the PQDs generated with the help of mathematical models
(in conformity with standard IEEE-1159). Performance is evaluated on 100 data set of every disturbance
computed by varying various parameters, and efficiency is found to be greater than 99%. It is established that
an algorithm is effective for recognition of PQ events with an efficiency greater than 98% even in the presence
of high-level noise. Algorithm is faster compared to many reported techniques and scalable for application
to voltages of all range. Results are validated through comparison with the results of the algorithms reported
in the literature. Performance of the algorithm is effectively validated on the practical utility network. This
algorithm can be effectively implemented for designing the power quality (PQ) monitoring devices for the
utility grids.

INDEX TERMS Hilbert transform, rule based decision tree, power quality disturbance, power quality index,
Stockwell transform, time location index.

ABBREVIATIONS
DT Decision tree
FCM Fuzzy C-means clustering
GSS Grid sub-station
HT Hilbert transform
IEC International Electro-technical Commission
IEEE Institute of Electrical and Electronics Engi-

neers
IT Impulsive transient
LG Line to ground fault
MAF Maximum amplitude factor
MF Median factor
MI Momentary interruption
MN Multiple notches

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

MS Multiple spikes
OT Oscillatory transient
PI Power quality index
PP Power plant
PQ Power quality
PQD Power quality disturbance
PSO Particle swarm optimization
RBDT Rule based decision tree
RE Renewable energy
SF Summation factor
SNR Signal to noise ratio
ST Stockwell transform
SVM Support vector machine
TPP Thermal power plant
TTT Time-time transform
TLI Time location index
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I. INTRODUCTION
The utilities are aiming to feed good quality electric power to
the loads continuously at an economical rate with high relia-
bility. Disturbances such as swell, sag, momentary interrup-
tion (MI), harmonics, flicker, multiple spikes (MS), multiple
notches (MN) and transients, which degrade the quality of
the power are caused due to switching of heavy loads, use
of power electronic loads (non-linear nature) and short cir-
cuits [1]. Hence, it becomes essential to identify the sources
and causes of the PQDs, so that a mitigation action may
be taken to supply good quality power to the customers.
Methods and procedures, for identification and classification
of the PQDs are defined in the standards, which include the
IEEE-1159, the EN 50160 and the IEC 61000-4-30 [2].Math-
ematical, smart signal processing and intelligent techniques
play an important role in the identification and classification
of the PQDs. Mahela et al. [3], presented a detailed study
for the identification and classification of the PQDs and
impact of noise on performance of the PQD recognition algo-
rithms. This paper presented a detailed comparison between
the different PQ recognition approaches, their suitability to
identify a PQD, merits & demerits, limitations, computa-
tional complexity and effectiveness for implementation in PQ
monitoring devices. A detailed comparative study of various
techniques presented helps to select a method, which is the
most effective for a particular application. A method using
ST and time-time transform (TTT) for identification as well
as feature extraction of the PQDs and ant colony optimization
approach for classification of the PQDs is reported in [4].
This method achieved high accuracy by eliminating redun-
dant features using a set of 15 synthetic signals of PQDs.
A hybrid technique using Wavelet multiclass combined with
the support vector machine (SVM) for identification and
classification of the PQDs, simulated on practical power sys-
tem network modelled IEEE-14 bus test system, is reported
in [5]. This method is effective to reduce the processing
time of the PQDs by simplifying the design architecture.
Hooshmand et al. [6], introduced an approach using particle
swarm optimization (PSO) and fuzzy logic for recognition
of a set of 15 synthetic PQDs generated using mathemati-
cal models. This approach is effective for identification of
the single and multiple PQDs with high accuracy and low
computational burden. In [7], authors introduced a Stockwell
transform supported method for recognition of the PQDs
associated with operating events in the utility grid with pen-
etration of wind energy. These events are emulated using
a hardware set-up in the laboratory. Different operational
events are rated in terms of power quality (PQ) using the
proposed PQ index. Zhong et al. [8], designed an algorithm
for identification of the PQDs using time-frequency evalu-
ation and classification using decision tree supported rules.
Algorithm tested on a set of 12 synthetic PQDs gener-
ated in MATLAB using mathematical models. This method
gives better accuracy even in the presence of a noise level
of 30-50dB signal to noise ratio (SNR). A technique for

recognition of PQDs using ST based multi-resolution anal-
ysis and decision tree is reported in [9]. This method is
validated by recognizing 16 synthetic PQDs generated in
MATLAB using mathematical models. This method used
adjustment factors for achieving controllable time-frequency
resolution of the signals, which results in high accuracy of PQ
detection. Lin et al. [10], introduced a technique for recogni-
tion of 8 kinds of synthetic PQDs using image enhancement
approach and feature importance analysis. This method has
merits of high accuracy, reduced number of redundant fea-
tures and reduced computational complexity. The recognized
PQDs can be mitigated using PQ improvement methods,
and detection approaches help to initiate a suitable mitiga-
tion action. A detailed study on PQ mitigation method is
available in [11].

A technique using ST based processing of the voltage
signal to recognize both the single-stage andmultiple PQDs is
reported in [12] and [13] respectively, where the classification
of the PQDs is achieved using RBDT. This technique is
effective to identify the PQDs having transient-nature such
as oscillatory transient (OT) and impulsive transient (IT)
with high accuracy. However, this method is less effective to
identify the PQDs related to amplitude. A technique using
HT based processing of voltage signal with both single-stage
and multiple PQDs is reported in [14] and [15] respectively,
where the classification of the PQDs is achieved using rule
based decision tree (RBDT). This technique is effective for
identifying the amplitude-related PQDs such as sag, swell,
MI, MS and MN. However, this is less effective for identify-
ing the transient-related PQDs. Hence, this paper is aimed to
design a hybrid algorithm, which combines the merits of both
the HT and ST algorithms. This helps to detect all the PQDs
related to the amplitude, transients and frequency with high
accuracy. Main contributions of this paper are as follows:
• An algorithm making use of a hybrid combination of the
features of voltage signal computed using the Hilbert
transform and Stockwell transform is proposed. This
method is effective to identify both the single-stage (one
disturbance at a time) and multiple (two or more distur-
bances at a time) PQDs. This is achieved by keeping the
number of features to the minimum.

• Both the single-stage and multiple PQDs are classi-
fied using the RBDT. This is achieved with high effi-
ciency greater than 99% by the use of features of PQDs,
extracted using HT and ST.

• Performance of the algorithm is least affected by the
availability of noise.

• Algorithm performs better compared to the ST & RBDT
algorithm, ST & DT + FCM (Fuzzy C-means cluster-
ing) and HT & RBDT algorithm.

• This approach has the low computational complexity.
• Algorithm has scalability for application to voltages of
all range.

All contents in the paper are divided into eight sections.
The introductory part is included in Section I. Generation of
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TABLE 1. Mathematical modeling of simulated single stage PQ disturbances.

TABLE 2. Mathematical modeling of simulated multiple PQ disturbances.

the single-stage, and multiple PQDs is detailed in Section II.
It also describes the proposed algorithm used for recogni-
tion of PQDs. Simulation results describing the identifica-
tion of the PQDs are detailed and discussed in Section III,
whereas the classification results of the PQDs are included
in Section IV. Performance computation of the proposed
algorithm is included in Section V. Section VI illustrates
the results to establish the suitability of the algorithm to
recognize the PQDs associated with the practical power sys-
tem network. A comparative study between the performance
of the proposed algorithm and algorithms reported in the
literature is included in Section VII. Detailed results for
analysis of effect of noise on performance and computational
complexity of algorithm are also discussed in this Section.
The concluding remark of the algorithm is incorporated in
Section VIII.

II. GENERATION OF PQDs AND PROPOSED ALGORITHM
This section describes the generation of the PQDs and algo-
rithm designed for detection and classification of these dis-
turbances. Mathematical and signal processing tools utilized
for designing the proposed algorithm are also detailed in this
section.

A. GENERATION OF PQ DISTURBANCES
Signals having a power frequency of 50 Hz with superim-
posed single-stage PQDs are generated in MATLAB soft-
ware with the help of mathematical formulation. These PQDs
are generated in conformity with IEEE-1159 standard using
models reported in [16], [17]. These signals are used to
establish the performance of the algorithm. Mathematical
equations of voltage signals with single-stage PQDs, stan-
dard parameters and their simulated values are tabulated
in Table 1 [17]. In this table symbol, PQD1 represents
the voltage signal without any disturbance. The symbols
PQD2 to PQD10 are used to represent the single-stage
PQ disturbances where only one disturbance is associated
with the signal. Multiple PQDs are generated by vari-
ous combinations of mathematical equations of single-stage
PQDs as detailed in Table 1 [17]. The combination of
single-stage PQDs formulates multiple PQDs (two or more
PQDs are associated with the signal). The mathematical
formulation, standard parameters and simulated parame-
ters of multiple PQDs are tabulated in Table 2, where
simulated values are also represented. In this table, sym-
bols PQD11 to PQD12 are used to represent the multiple
PQDs.
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FIGURE 1. Hybrid algorithm for recognition of PQ disturbances.

B. PROPOSED ALGORITHM
A block scheme of the algorithm proposed for recognition of
the PQDs is described in Fig. 1. This algorithm is based on
the use of features of the voltage signal extracted using the
Hilbert transform and Stockwell transform. Per unit values
of the voltage signal are used by this algorithm and PQ issues
are investigated using distortions in the voltage signals from
the standard pure sinusoidal nature, magnitude from unity and
frequency from the standard value of 50 Hz. Hence, this algo-
rithm has scalability for application to voltages of all range.
Further, tuning procedure is not required for the parameters
and features used by the algorithm because algorithm uses
deviations of parameters from standard values.

The voltage signals with PQDs are sampled at a sampling
frequency of 3.2 kHz (64 samples per cycle) for a period
of 10 cycles. The Hilbert transform (HT) is used for process-
ing the PQDs. This helps in the computation of the momen-
tary frequencies, as well as amplitudes, which can be used
for description of the signal. The mathematical formulation
reported in [18] is used for HT based decomposition of a volt-
age signal with PQD. The HT gives instantaneous physical
frequencies for the special class of function. As an example,
functions having non-zero mean values will results in nega-
tive frequency contributions with the help of HT. Hence, sig-
nals analysed with the help of HT should be restricted in such
a manner that evaluated instantaneous frequency functions
should have physical meaning [18]. The voltage signals with

PQDs are decomposed using Hilbert transform, and absolute
values of output are evaluated and designated as Feature F1,
which is described below.

F1 = abs(hilbert(S)) (1)

Voltage signal with PQDs is also decomposed using
multi-resolution analysis of ST at a sampling frequency
of 3.2 kHz and S-matrix is computed, which gives
time-frequency representation of the signal. ST is effective
to extract information of both the phase and amplitude of
the spectrum. The output of ST is obtained in the form of
a complex matrix which is represented as S-matrix. Each
row element in this matrix corresponds to a frequency,
and each column corresponds to a time instant. Matrix of
ST-amplitude (STA) is formed from absolute values of this
S-matrix. ST is utilized with the help of a multi-resolution
based on window width, which is changing inversely pro-
portional to the frequency and power data changing with
time. Hence, a great resolution of time at a high frequency
and a low time resolution at a low frequency are achieved.
There are different methods of achieving the ST [19]. If the
window of ST is wide in the time domain, the ST can be
used to provide high resolution of frequency when lower
frequency components are present in the signal. Similarly,
the window is narrow for achieving good time resolution
at the moments of high-frequency components available with
the signal. Information related to the frequency and amplitude
of the signal can be derived from the S-matrix [20], [21]. The
features F2, F3 and F4, have been extracted from this matrix
which is used to define the PI and TLI. Features F2 to F4 are
extracted from this matrix and described as below:

F2: Summation factor (SF). It is computed using the sum-
mation of each column of the S-matrix.

F2 = sum(abs(S − matrix)) (2)

F3: Maximum amplitude factor (MAF). It represents the
maximum amplitude in each column of the S-matrix.

F3 = max(abs(S − matrix)) (3)

F4: Median factor (MF). It represents the median of the
S-matrix concerning columns.

F4 = median(abs(S − matrix)) (4)

1) POWER QUALITY INDEX
A power quality index (PI) is introduced to detect various
PQDs. It is computed by multiplying the features F1, F2 and
F3 sample by sample as detailed below:

PI = abs(F1. ∗ F2. ∗ F3) (5)

This index is plotted for a period of 10 cycles of PQDs.
Patterns of these plots are utilized to identify all the inves-
tigated PQDs. This index is effective to recognize all types
of disturbances. However, its performance might be limited
for disturbances of low frequency and low magnitude. This
limitation can be overcome by combining the patterns of time
location index (TLI).
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2) TIME LOCATION INDEX
An index is introduced to localize the PQ events with respect
to time and designated as the time location index (TLI).
This is computed by multiplying the features F1, F2, F3 and
F4 sample by sample. TLI is detailed below.

TLI = (F1. ∗ F2. ∗ F3. ∗ F4). ∗ (1000); (6)

Here a weight factor of 1000 is used to obtain results with the
high resolution because feature F4 has an additive advantage
of detecting the patterns observed at the time of initiation and
end of a PQD, but its magnitude is low. Hence, the weight fac-
tor helps to increase the magnitude of TLI for clear visibility.
Further, this value of weight factor for TLI effectively detects
all the types of PQ disturbances in a real-time network of
the utility grid and can be used universally. During a healthy
condition, the TLI has nearly zero value and a non-zero value
for the incidence of a PQ disturbance. The TLI is plotted for a
period of 10 cycles. Analysis of the patterns of TLI indicates
the location of PQDs. This index is also effective to identify
high-frequency PQDs. The index effectively localizes the
voltage magnitude related to PQDs. However, multiple spikes
are observed for frequency-dependent PQDs. This limitation
is overcome if patterns of PI and TLI are used together to
recognize the PQDs. This index might be useful for recog-
nition of the operational events such as islanding, outage of
renewable energy (RE) generators and grid synchronization
of RE generators. This will be considered as future scope of
work.

C. CLASSIFICATION OF PQDs
The classification of the PQDs is achieved using the rules
supported by a decision tree. The rule-based decision
tree (RBDT) was introduced by the Breiman in 1980 and
applied in the field of power system by theWehenkel in 1989.
In this technique, decision supported rules are used for clas-
sification of PQ disturbances to predict the data responses.
For achieve this, decisions are followed in the form of a
tree starting from the root (starting point) node to a leaf
node (final decision node). Hence, the leaf node has the final
decision of classification. This classification tree is effec-
tive for giving a response which is effective and nominal
and can be implemented using the ‘true’ or ‘false’ decision
technique. Hence, it is supported by a set of rules which
can be applied to a set of data containing the features of
signals with PQ disturbances [22]. Features F5-F8 are used
as input to the decision tree to obtain results for classification
of the PQDs. The features F5 & F6 are computed from the
PI plot by calculating its variance and median, respectively.
Similarly, the features F7 & F8 are computed from the TLI
plot by calculating its variance and median, respectively.
These features are considered as input to the rule-based deci-
sion tree (RBDT) for classifying the PQDs. RBDT has the
merit of low computational burden due to its single-stage and
requirement of fewer data. These are calculated as detailed
below:

F5: It represents the variance of PI plot.

F5 = var(PI ) (7)

F6: It represents the median of PI plot.

F6 = median(PI ) (8)

F7: It represents the variance of TLI plot.

F7 = var(TLI ) (9)

F8: It represents the median of TLI plot.

F8 = median(TLI ) (10)

Performance of the algorithm is tested on 100 sets of
data for each PQD computed by varying the parameters like
magnitude, time of incidence of PQD, and frequency of PQD,
frequency of the voltage signal (50 Hz and 60 Hz). Perfor-
mance is also tested in a noisy environment by considering
a noise level of 20 dB SNR. This algorithm is effective for
implementation in the online PQ monitoring devices.

III. DETECTION OF PQ EVENTS: SIMULATION RESULTS
This section details the analysis of PQDs using the algorithm
proposed in this paper. The PI and TLI plots obtained with
the help of features F1 to F4 are used for detection of the
PQDs. These plots pertaining to the pure sine wave are con-
sidered as a reference curve for detection and localization
of the PQDs. Patterns of the PI and TLI plots are effective
to identify the parameters associated with the disturbances
such as magnitude of sag, swell, MI, OT, IT etc. Further,
the frequency components associated with the disturbances
can also be recognized using the patterns of PI and TLI plots.
Detailed results are discussed in the following sections.

A. VOLTAGE SIGNAL WITHOUT PQ DISTURBANCE
The voltage signal of a sine wave for a period of 10 cycles,
PI and TLI plots are illustrated in Fig. 2 and these plots are
considered as a reference for detecting the PQDs. Fig. 2 (a)
illustrates the pure sine wave where any PQD is not visible.
Fig. 2 (b) indicates that amplitude of the PI plot is constant at
unity value. In the presence of PQD associated with the sine
wave, magnitude of the PI plot either increase, or decrease
depending on the type of PQD. It is inferred from Fig. 2 (c)
that TLI plot also has constant magnitude with zero value.
At the moment of deviation of the waveform from pure
sinusoidal nature, the magnitude of TLI becomes high, which
indicates the incidence of a PQD. Hence, it is established that
PQD is not associated with the voltage signal.

B. VOLTAGE SIGNAL WITH SAG
The voltage signal of a sine wave with sag for a period
of 10 cycles, PI and TLI plots are illustrated in Fig. 3.
Fig. 3 (a) indicates that sine wave has a superimposed sag
between 0.06 s to 0.14 s. Fig. 3 (b) indicates that amplitude of
the PI plot has decreased at 0.06 s and again regains the origi-
nal value at 0.14 s. This effectively detects the sag associated
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FIGURE 2. Voltage signal without PQ disturbance (a) voltage signal
(b) power quality index (c) time location index.

FIGURE 3. Voltage signal with sag disturbance (a) voltage signal
(b) power quality index (c) time location index.

with the voltage signal. Fig. 3 (c) indicates that the TLI plot
has zero magnitudes except at 0.06 s (incidence of sag) and
0.14 s (end of sag) where there are sharp magnitude peaks.
These sharp magnitude peaks effectively localizes the voltage
sag. Hence, patterns of PI and TLI plots when combined
together, effectively identify and localize the sag associated
with the voltage signal.

Gaussian noise of 10 dB SNR is superimposed on the volt-
age signal of a sine wave with sag for a period of 10 cycles.
Voltage signal with sag and noise, PI and TLI plots are
illustrated in Fig. 4. Fig. 4 (a) indicates that voltage sag
between 0.06 s to 0.14 s and noise is observed over the
entire signal period. Fig. 4 (b) indicates that amplitude of
the PI plot has decreased at 0.06 s and again regains the

FIGURE 4. Voltage signal with sag disturbance in noisy environment
(10 dB SNR) (a) voltage signal (b) power quality index (c) time location
index.

original value at 0.14 s. However, small magnitude ripples are
observed over entire time range due to noise component. This
effectively detects the sag associated with the voltage signal
in noisy environment. Fig. 4 (c) indicates that the TLI plot has
ripples over entire time period of signal due to available noise.
However, peak magnitudes of high magnitude are observed
at 0.06 s (incidence of sag) and 0.14 s (end of sag) indicating
the start and end of the sag in voltage. Hence, patterns of PI
and TLI plots when combined together, effectively identified
and localized the sag associated with the voltage signal in the
presence of Gaussian noise of 10 dB SNR. Further, in the
presence of noise level higher than 10 dB SNR, voltage sag
has not been recognized effectively.

C. VOLTAGE SIGNAL WITH SWELL
The voltage signal of a sine wave with swell for a period
of 10 cycles, PI and TLI plots are illustrated in Fig. 5.
Fig. 5 (a) indicates that sine wave has a superimposed swell
between 0.06 s to 0.14 s. Fig. 5 (b) indicates that amplitude
of the PI plot has increased at 0.06 s and again regains the
original value at 0.14 s. This effectively detects the swell
associated with the voltage signal. Fig. 5 (c) indicates that
TLI plot has zero magnitudes except at 0.06 s (incidence
of swell) and 0.14 s (end of swell) where there are sharp
magnitude peaks. These sharp magnitude peaks effectively
localize the voltage swell. Hence, patterns of PI and TLI plots
when combined together, effectively identify and localize the
swell associated with the voltage signal.

D. VOLTAGE SIGNAL WITH MOMENTARY INTERRUPTION
The voltage signal of a sine wave with momentary interrup-
tion (MI) for a period of 10 cycles, PI and TLI plots are
illustrated in Fig. 6. Fig. 6 (a) indicates that sine wave has a
superimposedMI between 0.06 s to 0.14 s. Fig. 6 (b) indicates
that amplitude of the PI plot has decreased to shallow values
(below 10%) at 0.06 s and again regains the original value
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FIGURE 5. Voltage signal with swell disturbance (a) voltage signal
(b) power quality index (c) time location index.

FIGURE 6. Voltage signal with momentary interruption disturbance
(a) voltage signal (b) power quality index (c) time location index.

at 0.14 s. This effectively detects the MI associated with the
voltage signal. Fig. 6 (c) indicates that the TLI plot has zero
magnitudes except at 0.06 s (incidence of MI) and 0.14 s (end
of MI) where there are sharp magnitude peaks. These sharp
magnitude peaks effectively localize the momentary interrup-
tion. Hence, patterns of PI and TLI plots when combined
together, effectively identify and localize the MI associated
with the voltage signal.

E. VOLTAGE SIGNAL WITH HARMONICS
The voltage signal of a sine wave with superimposed 3rd ,
5th &7th harmonics for a period of 10 cycles, PI and TLI plots
are illustrated in Fig. 7. Fig. 7 (a) indicates the sine wave with
superimposed 3rd , 5th & 7th harmonics. Fig. 7 (b) indicates

FIGURE 7. Voltage signal with harmonics disturbance (a) voltage signal
(b) power quality index (c) time location index.

that there are ripples with regular pattern over entire time
range which effectively detects the harmonics associated with
the voltage signal. Fig. 7 (c) indicates that the TLI plot also
has ripples with regular pattern over entire time range which
effectively detect the harmonics associated with the voltage
signal. Here, both the PI and TLI plots effectively detects the
harmonics superimposed over the voltage signal.

F. VOLTAGE SIGNAL WITH FLICKER
The voltage signal of a sine wave with superimposed flicker
for a period of 10 cycles, PI and TLI plots are illustrated
in Fig. 8. Fig. 8 (a) indicates the sine wave with superimposed
flicker. Fig. 8 (b) indicates that magnitude has increased and
becomes greater than the standard value of 1 pu following the
regular pattern of crest and trough with ripples superimposed
on the crest. This specific pattern associated with the PI plot
effectively detects the presence of flicker superimposed on
the signal. Similarly, the Fig. 8 (c) also indicates that mag-
nitude has increased and becomes greater than the standard
value for a sine wave following the regular pattern of crest and
trough with flicker superimposed on the crest. This specific
pattern associated with the TLI plot effectively detects the
presence of ripples superimposed on the signal. Here, both the
PI and TLI plots effectively detect the flicker superimposed
over the voltage signal.

G. VOLTAGE SIGNAL WITH OSCILLATORY TRANSIENT
The voltage signal of a sine wave with superimposed OT
for a period of 10 cycles, PI and TLI plots are illustrated
in Fig. 9. Fig. 9 (a) indicates the sine wave with superimposed
OT between 0.08 s to 0.10 s. Fig. 9 (b) indicates that high
magnitude has been observed between 0.08 s to 0.10 s with
continuously increasing magnitude from 0.08 s to 0.10 s
where the continuous pattern of ripples is available on the
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FIGURE 8. Voltage signal with flicker disturbance (a) voltage signal
(b) power quality index (c) time location index.

FIGURE 9. Voltage signal with oscillatory transient disturbance (a) voltage
signal (b) power quality index (c) time location index.

upper surface of the PI plot. This specific pattern associ-
ated with the PI plot effectively detects the presence of OT
superimposed on the signal. Fig. 9 (c) indicates that sharp
magnitude peaks are associated with the TLI plot at 0.06 s
(incidence of OT) and 0.14 s (end of OT) which effectively
localize the OT. Hence, patterns of PI and TLI plots when
combined, effectively identify and localize the OT associated
with the voltage signal.

H. VOLTAGE SIGNAL WITH IMPULSIVE TRANSIENT
The voltage signal with superimposed IT for a period
of 10 cycles, PI and TLI plots are illustrated in Fig. 10.
Fig. 10 (a) indicates that sine wave has a superimposed

FIGURE 10. Voltage signal with impulsive transient disturbance
(a) voltage signal (b) power quality index (c) time location index.

OT between 0.085 s to 0.088 s. Fig. 10 (b) indicates that
the sharp peak of very high magnitude has been observed
between 0.085 s to 0.088 s. This very high magnitude peak
effectively detects the presence of IT superimposed on the
signal. Similarly, Fig. 10 (c) indicates that sharp peak of very
high magnitude has been observed with the TLI plot between
0.085 s to 0.088 s which helps to effectively localize the IT.
Hence, it is established that the rise time and fall time of the
disturbances have been tracked by the PI and TLI plots in the
same way as it is in the actual signal. There is no delay in
the tracking of rising time and fall time of the disturbances.
Further, the speed of response in PI and TLI plots is similar to
the actual disturbance. Hence, the speed of response cannot
be adjusted.

I. VOLTAGE SIGNAL WITH MULTIPLE NOTCHES
The voltage signal with MN for a period of 10 cycles, PI and
TLI plots are illustrated in Fig. 11. Fig. 11 (a) indicates
that the sine wave has a superimposed MN with a regular
pattern. Fig. 11 (b) indicates that a series of regularly spaced
sharp peaks with two peaks at the top surface is present. This
specific pattern, with two peaks pattern associated with the
high magnitude peaks, effectively detects the presence ofMN
superimposed on the signal. Fig. 11 (c) also indicates that a
series of regularly spaced sharp peaks, with two peaks at the
top surface, is present. However, rise and decay time for these
peaks are lower compared to the peaks observed in the PI plot.
This specific pattern, with two peaks pattern associated with
the high magnitude peaks, effectively detects the presence of
MN superimposed on the signal.
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FIGURE 11. Voltage signal with multiple notches disturbance (a) voltage
signal (b) power quality index (c) time location index.

FIGURE 12. Voltage signal with multiple spikes disturbance (a) voltage
signal (b) power quality index (c) time location index.

J. VOLTAGE SIGNAL WITH MULTIPLE SPIKES
The voltage signal with MS for a period of 10 cycles, PI and
TLI plots are illustrated in Fig. 12. Fig. 12 (a) indicates that
the sine wave with superimposedMSwith the regular pattern.
Fig. 12 (b) indicates that a series of regularly spaced sharp
peaks with a single peak at the top surface is present. This
specific pattern, with single peak pattern associated with the
high magnitude peaks, effectively detects the presence of
MS superimposed on the signal and also discriminated from
the MN. Fig. 12 (c) also indicates that a series of regularly
spaced sharp peaks with a single peak at the top surface is
present. However, rise and decay time for these peaks are
lower compared to the peaks observed in the PI plot. This
specific pattern, with single peak pattern associated with the

high magnitude peaks, effectively detects the presence of
MS superimposed on the signal and also distinguished from
the MN.

K. VOLTAGE SIGNAL WITH SAG AND HARMONICS
The voltage signal of a sine wave with superimposed sag and
3rd , 5th & 7th harmonics for a period of 10 cycles, PI and TLI
plots are illustrated in Fig. 13. Fig. 13 (a) indicates the sine
wave with superimposed 3rd , 5th & 7th harmonics with regu-
lar pattern and sag between 0.06 s to 0.14 s. Fig. 13 (b) indi-
cates that amplitude of the PI plot has decreased at 0.06 s
and again regains the original value at 0.14 s, which detects
the sag. Further, the ripples with the regular pattern observed
over the entire time range of PI plot effectively detect the
harmonics. Hence, multiple PQ disturbance of sag and har-
monics associated with the voltage signal has been detected
effectively.

FIGURE 13. Voltage signal with sag and harmonics disturbance
(a) voltage signal (b) power quality index (c) time location index.

Fig. 13 (c) indicates that the TLI plot has zero magni-
tudes except at 0.06 s (incidence of sag) and 0.14 s (end
of sag) where there are sharp magnitude peaks. These sharp
magnitude peaks effectively localize the voltage sag. Further,
Fig. 13 (c) indicates that the TLI plot also has ripples with the
regular pattern over the entire time range, which effectively
detects the harmonics associated with the voltage signal.
Hence, multiple PQ disturbance of sag and harmonics associ-
ated with the voltage signal has been detected effectively and
simultaneously; the sag has been localized with respect to the
time range.

L. VOLTAGE SIGNAL WITH FLICKER AND HARMONICS
The voltage signal of a sine wave with superimposed flicker
and 3rd , 5th & 7th harmonics for a period of 10 cycles, PI and
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FIGURE 14. Voltage signal with flicker and harmonics disturbance
(a) voltage signal (b) power quality index (c) time location index.

TLI plots are illustrated in Fig. 14. Fig. 14 (a) indicates
the sine wave with superimposed harmonics and flicker with
the regular pattern. Fig. 14 (b) indicates that there are rip-
ples with the regular pattern observed over the entire time
range of PI plot, which identifies the presence of harmonics.
Further, the amplitude of the envelope evaluated by joining
the peaks is changing in a regular pattern which detects the
presence of flicker. The similar pattern is also observed in
the Fig. 14 (c) where TLI plot also has ripples with the
regular pattern over the entire time range, which identify the
presence of harmonics. Further, the amplitude of the enve-
lope evaluated by joining the peaks is changing in a regular
pattern which detects the presence of flicker. Hence, multiple
PQ disturbance of flicker and harmonics associated with the
voltage signal has been detected effectively with the help of
both the PI and TLI plots.

M. VOLTAGE SIGNAL WITH FLICKER AND OSCILLATORY
TRANSIENT
The voltage signal of a sine wave with superimposed flicker
and OT (0.08 s to 0.10 s ) for a period of 10 cycles, PI and TLI
plots are illustrated in Fig. 15. Fig. 15 (a) indicates that the
sine wave has a superimposed flicker with a regular pattern
and an OT between 0.08 s to 0.10 s. Fig. 15 (b) indicates that
high magnitude has been observed between 0.08 s to 0.10 s
with continuously increasing magnitude from 0.08 s to 0.10 s
where the continuous pattern of ripples is available on the
upper surface of the PI plot which indicates the presence of
the OT. Further, a regular pattern of crest and trough with rip-
ples superimposed on the crest over the entire time range indi-
cates the presence of flicker. This specific pattern associated
with the PI plot effectively detects the presence of multiple

FIGURE 15. Voltage signal with flicker and oscillatory transient
disturbance (a) voltage signal (b) power quality index (c) time location
index.

PQD comprising of an OT and a flicker. Fig. 15 (c) indicates
that sharp magnitude peaks are associated with the TLI plot at
0.08 s (incidence of OT) and 0.1 s (end of OT) which help to
effectively localize the OT. Hence, multiple PQ disturbance
comprising of flicker and harmonics associated with the volt-
age signal has been detected effectively and simultaneously,
the OT has been localized concerning the time range.

N. VOLTAGE SIGNAL WITH HARMONICS AND IMPULSIVE
TRANSIENT
The voltage signal with superimposed multiple PQD of 3rd ,
5th & 7th harmonics and IT for a period of 10 cycles, PI and
TLI plots are illustrated in Fig. 16. Fig. 16 (a) indicates that
the sine wave has superimposed harmonics with a regular
pattern and IT between 0.085 s to 0.088 s. Fig. 16 (b) indicates
that the sharp peak of very high magnitude has been observed
between 0.085 s to 0.088 s. This very high magnitude peak
effectively detects the presence of IT superimposed on the
signal. Further, there are ripples with the regular pattern over
the entire time range, which effectively detects the harmon-
ics associated with the voltage signal. Fig. 16 (c) indicates
that there is a sharp peak of very high magnitude between
0.085 s to 0.088 s, which helps to effectively detect and
localize the IT. Hence, multiple PQ disturbance comprising
of IT and harmonics associated with the voltage signal has
been detected effectively and simultaneously the IT has been
localized concerning the time range.

O. VOLTAGE SIGNAL WITH SPIKE AND SAG
The voltage signal of a sine wave with sag and MS for a
period of 10 cycles, PI and TLI plots are illustrated in Fig. 17.
Fig. 17 (a) indicates the sine wave with superimposedMS and
MNwith a regular pattern. Fig. 17 (b) indicates that a series of
regularly spaced sharp peaks which have a single peak at the
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FIGURE 16. Voltage signal with harmonics and impulsive transient
disturbance (a) voltage signal (b) power quality index (c) time location
index.

top surface are present where peak amplitude of the PI plot
has decreased at 0.06 s and again regains the original value
at 0.14 s. This effectively detects the sag and MS associated
with the voltage signal. Fig. 17 (c) also indicates the similar
pattern of a series of regularly spaced sharp peaks with single
peak present at the top surface and simultaneously the peak
amplitude of the PI plot has decreased at 0.06 s and again
regains the original value at 0.14 s. However, rise and decay
time for these peaks is lower compared to the peaks observed
in the PI plot. Hence, multiple PQ disturbance comprising
of spike and sag associated with the voltage signal has been
detected effectively.

P. VOLTAGE SIGNAL WITH OSCILLATORY TRANSIENT, SAG,
HARMONICS AND IMPULSIVE TRANSIENT
The voltage signal of a sine wave with a sag, an OT, 3rd , 5th

& 7th harmonics and IT for a period of 10 cycles, PI and
TLI plots are illustrated in Fig. 18. Fig. 18 (a) indicates
that sine wave has 3rd , 5th & 7th harmonics with regular
pattern, sag between 0.06 s to 0.14 s, an OT between 0.08 s to
0.10 s, and an IT between 0.022 s to 0.025 s. Fig. 18 (b) indi-
cates that amplitude of the PI plot has decreased at 0.10 s
and again regains the original value at 0.16 s indicating the
presence of sag. Fig. 18 (b) indicates that high magnitude
has been observed between 0.08 s to 0.10 s with continu-
ously increasing magnitude from 0.08 s to 0.010 s where
the continuous pattern of ripples is available on the upper
surface of the PI plot which indicates the presence of an OT.
Fig. 18 (b) indicates that sharp peak of very high magni-
tude has been observed between 0.022 s to 0.025 s which
effectively detects the presence of IT superimposed on the
signal. Further, there are ripples with the regular pattern over

FIGURE 17. Voltage signal with spike and sag disturbance (a) voltage
signal (b) power quality index (c) time location index.

the entire time range, which effectively detect the harmonics
associated with the voltage signal. Fig. 18 (c) indicates that
the TLI plot has sharp magnitude peaks at 0.06 s (incidence
of sag) and 0.14 s (end of sag). These sharp magnitude peaks
effectively localize the voltage sag. Fig. 18 (c) indicates that
sharp magnitude peaks are associated with the TLI plot at
0.08 s to 0.10 s, which helps to effectively localize the OT.
Further, Fig. 18 (c) indicates that there is a sharp peak of very
high magnitude between 0.022 s to 0.025 s which helps to
detect and localize the IT effectively. Hence, multiple PQ dis-
turbance comprising of sag, OT, harmonics and IT associated
with the voltage signal has been recognized effectively.

Q. MISCELLANEOUS PQ DISTURBANCES
The proposed approach is also tested to recognize the DC
offset and phase jump. It is observed that the algorithm effec-
tively detects these disturbances. Further, the algorithm is
based on the identification of deviation in the waveform from
pure sinusoidal nature. Hence, it is adequate to recognize
every disturbance associated with a waveform of voltage or
current signals.

IV. RBDT BASED CLASSIFICATION OF PQDs
The features F5 to F8 defined in section II(c) are taken as
input to the decision tree supported by rules for classifying
the PQDs. Numerical values of these features utilized to
design decision rules for classification of the investigated
PQDs are provided in Table 3. These features are effective for
recognizing the various characteristics of the PQDs. These
are also effective to identify deviation of system voltage
waveform from the nature of pure sine wave. Therefore,
these features are effective in identifying the type of a PQD.
Threshold magnitudes of features F5 to F8 to classify the
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FIGURE 18. Voltage signal with oscillatory transient, sag, harmonics and
impulsive Transient disturbance (a) voltage signal (b) power quality index
(c) time location index.

PQDs using RBDT are decided after testing the algorithm
for recognition of 100 data sets of each PQD computed by
varying the parameters like magnitude, time of incidence of
PQD, frequency of PQD, frequency of voltage signal (50 Hz
and 60 Hz) and different levels of noise. Selected threshold
magnitude for a feature will help for effective identification of
all the PQDs. The feature F7 initializes the classification. The
PQDs with F7> 103 are included in the group PQ1, whereas
the PQDs with F7< 103 constitute the group PQ2.
PQ disturbances included in group PQ1 are further

sub-classified using the values of feature F7. The PQDs
having F7> 106 constitute the group PQ11, whereas the
PQDs with F7< 106 are included in group PQ12. The dis-
turbances included in group PQ11 are further classified using
feature F6. The PQD14 (Voltage with harmonics) has values
greater than 2, whereas the PQD7 (Voltage with IT) has
valued less than 2. The PQDs included in group PQ12 are
further sub-classified using the feature F5. The PQDs with
F5> 100 are included in group PQ121, whereas the PQDs
with F5< 100 are included in group PQ122. The disturbances
included in the group PQ121 are further classified one by
one. The PQD13 (voltage with flicker & OT) has F8> 5.
Subsequently, the PQDwith F6> 1.5 is PQD16 (voltage with
OT, sag, harmonics & IT) and disturbance with F6< 1.5 is
PQD6 (Voltage with OT). The disturbances included in the
group PQ122 are further classified one by one. The PQD9
(voltage with MN) has F8> 2. Subsequently, the PQD with
F5> 2.25 is PQD10 (voltage with MS) and disturbance with
F5< 2.25 is PQD15 (voltage with MS & sag).
The PQ disturbances included in group PQ2 are fur-

ther sub-classified using the feature F7. The PQDs having
F7> 50 constitute the group PQ21, whereas the PQDs

with F7< 50 are included in group PQ22. The disturbances
included in the group PQ21 are further classified one by
one. The PQD12 (voltage with flicker & harmonics) has
F8> 25. Subsequently, the PQD with F5> 0.40 is PQD11
(voltage with sag & harmonics) and disturbance with F5<
0.40 is PQD8 (Voltage with Harmonics). The PQ distur-
bances included in group PQ22 are further sub-classified
using the feature F6. The PQDs having F6> 1 constitute the
group PQ221, whereas the PQDs with F6< 1 are included
in group PQ222. The disturbances included in the group
PQ221 are further classified one by one. The PQD5 (voltage
with flicker) has F7> 5 whereas the PQD3 (voltage with
swell) has F7< 5. The disturbances included in the group
PQ222 are further classified one by one. The PQD4 (voltage
with MI) has F5> 0.10. Subsequently, the PQD with F5>
0.05 is PQD2 (voltage with sag) and disturbance with F5<
0.05 is PQD1 which pure sine wave without any disturbance.
Decisions supported by rules based classification of the PQDs
are illustrated with the help of a flow chart in the Fig. 19,
where the decision rules are also included for each step.
Threshold magnitudes of features are decided by testing the
algorithm on 100 data set of each PQ disturbance by changing
the different parameters (refer Table 1 and 2).

V. PERFORMANCE EVALUATION
Performance of the algorithm for recognition of the PQDs
supported by the features computed with the help of HT
and ST is evaluated in terms of accurately classified and
inaccurately classified PQDs (in numbers). The algorithm
is tested for recognition of the PQDs, on 100 data set of
each PQ disturbance with a noise level of 10dB SNR, and
without noise. This data set is obtained by changing different
parameters (refer Table 1 and 2). Table 4 demonstrates the
performance of the algorithm in terms of accurately classi-
fied and inaccurately classified PQDs. It is established that
algorithm is effective for recognition of the PQDs with very
high accuracy which is greater than 99% in the absence of
noise and greater than 98% with a noise level of 10 dB SNR
superimposed on the voltage signals in addition to the PQD.
The noise level of 10 dB SNR is the maximum noise level
observed with the electrical signals. Hence, the proposed
algorithm is effective to recognize the PQ disturbances even
when the noise is variable between 10 dB SNR to 100 dB
SNR.

Performance of algorithm is tested for recognition of wide
range of different PQ disturbances. Results for recognition
of voltage sag magnitude ranging from 20% to 80% are
described in Fig. 20. Further, the values of features F5, F6,
F7 and F8 for sag in voltage with 20%, 40%, 60% and 80%
are detailed in Table 5. It is observed that sag in voltage for
all possible range has been identified effectively and features
F5 to F8 have values in the category of sag in voltage. Voltage
sag with different range of magnitude have been classified in
the category of voltage sag. Similar results are obtained for
wide range of all the investigated PQ disturbances.

VOLUME 8, 2020 229195



R. Kaushik et al.: Hybrid Algorithm for Recognition of PQDs

TABLE 3. Numerical values of features used as input to the RBDT.

FIGURE 19. Decision rules and classification of PQDs.

VI. VALIDATION OF ALGORITHM TO RECOGNIZE PQ
DISTURBANCES IN PRACTICAL POWER
SYSTEM NETWORK
The algorithm proposed for recognition of power quality
disturbance is tested on a practical power system network of
Rajasthan State of India reported in [23]. A brief description
of the grid sub-stations (GSS) and transmission lines of the

network is provided in Table 6. Generation contribution by
the thermal power plants (TPP), power plants (PP) based
on nuclear, hydro and renewable energy (RE) is detailed
in Table 7 [24].

The network designed in the MiPower software and used
for the planning and operational studies are considered for
validation of the proposed PQ recognition algorithm and
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TABLE 4. Performance of algorithm for recognition of PQDs.

FIGURE 20. Performance of algorithm to recognize voltage sag of
different magnitudes.

TABLE 5. Numerical values of features used as input to the RBDT for
different magnitudes of voltage sag.

study is performed on 132 kV GSS Engineering College,
Jodhpur. There are two 37.5/50 MVA, 132/33 kV transform-
ers installed on this GSS to feed a load of the region. There
are total eight 33 kV outgoing distribution feeders emanating
from this GSS which are feeding 11 MW (approximate) load
to eight 33/11 kV GSS from where the load is supplied to the
consumers. These outgoing feeders are designed in addition
to the network already used for the planning purpose.

TABLE 6. Existing grid substation and transmission lines in Rajasthan.

TABLE 7. Generation contribution by different power plants.

FIGURE 21. Voltage signal during event of LG fault (a) voltage signal
(b) power quality index (c) time location index.

Faulty events are sources of voltage sag and transient
disturbances in the network of the power system. A line to
ground (LG) fault is simulated at time 0.1 s at the middle
of the first outgoing feeder which is 4.32 km long. The
voltage signal recorded on the 33 kV bus of the 132 kV GSS
Engineering College is recorded for a period of 10 cycles.
This voltage signal is processed using the proposed algorithm
to compute PI and TLI plots which are described in Fig. 21.
Fig. 21 (a) indicates the recorded voltage signal for a period
of 0.2 s. It is observed that due to the incidence of LG fault,
the voltage magnitude decreases and fault transients are asso-
ciated for the short time duration. Fig. 21 (b) indicates that
amplitude of the PI plot has decreased at 0.1 s indicating the
presence of sag in voltage. Further, high magnitude available
in the PI plot at the time of fault incidence indicates the pres-
ence of transients. Fig. 21 (c) indicates that TLI plot has sharp
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magnitude peak at the time of fault incidence. This is due to
the combined effect of the initiation of the sag in voltage, and
the presence of transient components. Hence, patterns of PI
and TLI plots when combined together, effectively identify
and localizes the sag in the practical network and also identify
the transient components associated with the fault events.
Further, the features F5, F6, F7 and F8 have values of 0.58,
1.98, 108.32, and 0.35, respectively. Hence, this disturbance
is classified in the category of voltage sag and harmonic
transients. Further, the algorithm is also successfully tested to
identify the voltage swell due to switching on of a 2 MVAR
capacitor bank.

VII. PERFORMANCE COMPARATIVE STUDY
Performance of the algorithm is compared with the
Hilbert transform and Stockwell transform-based techniques
reported in the literature. A technique using variance fea-
tures extracted from the amplitude, median and kurtosis plots
obtained by ST based decomposition of voltage signal with
single-stage PQ and multiple PQ is reported in [12] and [13]
respectively, where the classification of PQDs is achieved
using the RBDT. This technique has the average efficiency
of 97.033% and 96.67% for recognition of single-stage and
multiple PQ disturbances, respectively. Further, a technique
using variance features extracted using HT decomposition
of voltage signal with single-stage PQ and multiple PQ is
reported in [14] and [15], respectively, where the classifica-
tion of PQDs is achieved using the RBDT. This technique
has the average efficiency of 98.20% and 97.33% for recog-
nition of single-stage and multiple PQ disturbances, respec-
tively. The algorithm proposed in this paper has combined
the Stockwell transform and Hilbert transform to improve
performance of the PQ recognition, and average efficiency
of 99.625% is achieved which is higher compared to the
efficiency of algorithms reported in [12]–[14] and [15]. These
papers have been considered for comparative study because
waveforms of PQDs investigated in these papers are similar to
that considered in this paper. Further, the algorithm based on
ST and RBDT and reported in [17] has an average efficiency
of 98.5% for recognition of single-stage PQ disturbance in the
presence of noise level of 20dB SNR whereas the algorithm
introduced in this paper has an efficiency of 98.81% in the
presence of higher noise level of 10dB SNR. A compar-
ative study indicating the performance of proposed algo-
rithm and algorithm reported in [17] in noisy environment is
detailed in Fig. 22. It is inferred that performance of proposed
approach is superior compared to the approach reported
in [17] during the noisy conditions. Hence, it is established
that the proposed algorithm is more effective compared to the
various techniques reported in the literature and can be used
for the design of the online PQ monitoring devices for the
utility grids.

The 640 samples of each investigated PQ disturbances
are generated for comparing computational time of proposed
approach with the method reported in [17]. A laptop of 64-bit
operating system, 4 GB RAM, Intel(I) Core(TM)i5-3230M

FIGURE 22. Comparative study for performance of algorithms in
identification of voltage sag in noisy environment.

FIGURE 23. Computational time comparison.

CPU@2.60 GHz processor is used to compute the computa-
tional time. The computational time involved in the compu-
tation of PI and TLI plots (detection of PQDs) is observed
to be 0.256791 s, and computation time for classification
of PQDs is 0.100326 s. Hence, the total computational time
for detection and classification of a PQD using the proposed
approach is 0.357117 s. Further, computational time involved
in the computation of different ST based plots (detection of
PQDs) is observed to be 1.8257 s, and computation time for
classification of PQDs is 0.34561 s using method reported
in [17] which is based on ST and decision tree (DT) initialized
Fuzzy C-means clustering (FCM). A comparative study of
computational time of algorithm with algorithm based on
ST+DT+FCM and reported in [17], using a bar chart is
detailed in Fig. 23. Hence, it is established that proposed
method is more faster compared to the many techniques
reported in literature.

VIII. CONCLUSION
This paper introduced an algorithm based on the hybrid
combination of features of voltage signals extracted using
the Hilbert transform and Stockwell transform for recogni-
tion of the PQ disturbances. Classification of the PQDs is
achieved using rules supported by decisions using various
features. Feature F1 computed using the HT and featured
F2 to F4 computed using ST are used to obtain the PI and
TLI plots. PQDs are identified by analysis of the patterns
of these plots. Investigated single-stage PQDs include sag,
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swell, MI, IT, OT, flicker, harmonics, MS and MN. These
PQDs are used to obtain the investigated multiple PQDs.
The TLI plot is found to be effective in localization of
the PQDs such as sag, swell, MI and OT. Features F5 to
F8 are computed from the PI and TLI plots are considered as
input to the RBDT for classification purpose. It is concluded
that the proposed algorithm is effective for recognition of
both the single-stage and multiple PQDs with an efficiency
of 99.625%. Further, this algorithm is also effective to rec-
ognize both the single-stage and multiple PQDs with an
efficiency of 98.81% in the presence of higher noise level
of 10dB SNR. Performance of the algorithm is found to be
superior compared to the algorithms based on the Stockwell
transform and Hilbert transform reported in the kinds of lit-
erature. Proposed approach is faster and scalable to all range
of voltages. The algorithm successfully recognized the PQDs
associated with the practical utility network. This algorithm
can be used to design online PQ monitoring devices which
can be used to monitor PQ disturbances in the utility grids.
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