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ABSTRACT To enhance surgeons’ efficiency and safety of patients, minimally invasive surgery (MIS) is
widely used in a variety of clinical surgeries. Real-time surgical tool detection plays an important role inMIS.
However, most methods of surgical tool detection may not achieve a good trade-off between detection speed
and accuracy. We propose a real-time attention-guided convolutional neural network (CNN) for frame-by-
frame detection of surgical tools in MIS videos, which comprises a coarse (CDM) and a refined (RDM)
detection modules. The CDM is used to coarsely regress the parameters of locations to get the refined
anchors and perform binary classification, which determines whether the anchor is a tool or background. The
RDM subtly incorporates the attention mechanism to generate accurate detection results utilizing the refined
anchors from CDM. Finally, a light-head module for more efficient surgical tool detection is proposed.
The proposed method is compared to eight state-of-the-art detection algorithms using two public (EndoVis
Challenge andATLASDione) datasets and a new dataset we introduced (Cholec80-locations), which extends
the Cholec80 dataset with spatial annotations of surgical tools. Our approach runs in real-time at 55.5 FPS
and achieves 100, 94.05, and 91.65% mAP for the above three datasets, respectively. Our method achieves
accurate, fast, and robust detection results by end-to-end training in MIS videos. The results demonstrate the
effectiveness and superiority of our method over the eight state-of-the-art methods.

INDEX TERMS Attention mechanism, convolutional neural network, light-head module, real-time, surgical
tool detection.

I. INTRODUCTION
Minimally invasive surgery (MIS) has attracted increas-
ing attention in recent years, because it overcomes the
major drawbacks of open surgery and provides surgeons
with sufficient information only through small incisions [1].
Robot-assisted surgery (RAS) and laparoscopic surgery, two
representative minimally invasive surgery, are widely used
in a variety of clinical surgeries and aimed to improve sur-
geons’ ability and ensure the safety of patients [2]. How-
ever, the indirect observation and operation method of MIS
weakens surgeons’ hand-eye coordination ability, which may
affect the cognitive perception of visual data by surgeons
during the operation process. The surgeons need to obtain
additional information to monitor the movement of surgical
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tools in the patient’s body, which hinders the translation of
MIS globally [3].

To address these problems, surgical tool detection (STD)
is widely used in recent years, which can provide accu-
rate position estimation of two- or three-dimensional surgi-
cal tools by considering tool identification and positioning
based on visual data. It also has many potential applications,
such as accurate tracking [4]–[6], pose estimation [7]–[9],
optimization of surgical scheduling, real-time reminders of
surgery, and integrated post-surgical assessment [10]–[12].
They can further be used to warn clinical doctors of possible
complications and to provide accurate real-time navigation
for surgeons. Hence, detecting the surgical tools with high
accuracy and speed in MIS is the focus of this study.

A series of research has been performed on STD [13]–[15].
The conventional STD is based on traditional shallow
machine learning methods, most of them rely on handcrafted
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features, such as color, gradient, shape, or color. Although
such approaches are practical, they utilize markers that
require modifications to surgical tools design and interfere
with the surgical workflow. Therefore, the deep learning
methods based on convolutional neural networks (CNN) for
STD have gradually become a trend, ensuring a smooth
operation and having no modification to surgical tools [16].
Nowadays, the CNN-based methods of STD can be sub-
divided into single- and two-stage ones. Choi et al. [17]
proposed a single-stage method, which improved the archi-
tecture of you only look once (Yolo) [18] and regarded the
detection task as a regression problem, which can directly
predict the coordinate values of the boundary box in real
time but has no outstanding accuracy. The two-stage methods
proposed by Sarikaya et al. [19] and Jin et al. [20] can
achieve high detection accuracy by improving the algorithm
of faster regions with convolutional neural network (Faster
R-CNN) [21], but fail to detect surgical tools on a real-time
scale (operating at less than 10 FPS). Therefore, a common
deficiency of these methods is a huge imbalance between
accuracy and speed, which hinders the subsequent practical
application.

To solve this problem, many novel methods have been
proposed for surgical tool detection. Zhang et al. [22] for-
mulated a novel framework called ‘‘modulated anchoring
network,’’ leveraging semantic features to effectively detect
non-uniformly distributed surgical tools of arbitrary anchor
shapes. This method achieved good detection accuracy of
surgical tools, but Zhang et al. [22] did not disclose the detec-
tion speed. Zhao et al. [23] proposed using a cascade CNN
to perform STD, which consisted of an hourglass network
and a modified visual geometry group (VGG) network. This
algorithm achieved better detection performance in terms of
detection accuracy and speed, but it failed to achieve end-to-
end training. Later, Liu et al. [24] proposed an anchor-free
CNN architecture by using a lightweight stacked hourglass
network, which modelled the surgical tool as a single point:
the center point of its bounding-box. This method eliminated
the need to design a set of anchor boxes, and achieved end-
to-end training.

However, none of these studies paid attention to the depen-
dency between channels and the importance of different chan-
nel features. As far as we know, there are various adverse
environmental factors in MIS videos (such as motion blur-
ring, high deformation, tools with occlusion, tools’ overlap,
and missing parts), which may affect the detection results
of surgical tools. Recent studies [25]–[27] indicated that the
attention mechanism can be added to the convolution neural
network structure, which could help the network capture the
key regions more effectively by modeling the dependency
between channels, and further improve the detection accuracy
of objects.

Therefore, to overcome the challenges above and inspired
by RefineDet [28], we propose a real-time attention-guided
CNN for frame-by-frame detection of surgical tools in MIS
videos, which subtly combines the attention mechanism and

light-head modules. The former helps the network adaptively
fuse more context information and enhance the model’s abil-
ity to focus on the relevant image areas, with which the
subsequent regression and classification will be facilitated.
The latter reduces the number of parameters and the compu-
tational complexity, which is used to accelerate the network’s
detection speed. We evaluated our method on three surgi-
cal datasets, including the EndoVis Challenge dataset [8],
ATLAS Dione dataset [19], and a new dataset we introduced,
Cholec80-locations. The experimental results prove that the
proposed method has an excellent performance in terms of
accuracy and speed and surpasses eight state-of-the-art detec-
tion algorithms. The main contributions of this work are as
follows:

(1) We proposed a single-stage CNN with attention mech-
anism for real-time STD in MIS videos, incorporating the
squeeze-and-excitation network (SENet) [29] to promote
the network learning of the most useful feature repre-
sentations and improve the detection accuracy of surgical
tools.

(2) We designed a lightweight detection head module,
called light-head, which integrates the lightweight idea
(depth-wise separable convolution [30]) in our architecture.
The novel module enabled the network directly output coor-
dinates and classification scores of surgical tools using only
1 × 1 convolutions. It reduced the number of parameters
and the computational complexity of the network, which can
boost the proposed STD method’s speed. The experimen-
tal results on three surgical datasets demonstrate the effec-
tiveness and superiority of our method over state-of-the-art
methods.

(3) We introduced a new dataset, Cholec80-locations,
which extended the Cholec80 dataset [31] with the coordi-
nates annotations of bounding boxes of tools, for STD inMIS.
It is considered an important reference for researchers in the
STD field.

The rest of this paper is organized as follows. We first
present our proposed method, then introduce two pub-
lic datasets and a new dataset we established, Cholec80-
locations. After that we describe the experiments and results,
next provide a comparative discussion of our results and
future directions for further improvement. Finally, we draw
the main conclusions.

II. METHODOLOGY
Inspired by works [29], [30], we designed a lightweight
attention-guided CNN that inherits the advantages of the
single- and two-stage detection methods and works more
accurately and efficiently than RefineDet [28]. The overall
framework is shown in Figure 1. The proposed approach
performed the STD via a coarse detection module and a
refined detection module. The method achieved end-to-end
training by using the multi-task loss function. The distance
intersection-over-union non-maximum suppression (DIoU-
NMS) was proposed to post-process the tools detection
results.
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FIGURE 1. The overall framework of our proposed method. The network, including a coarse detection module and a refined detection module, is trained
jointly in an end-to-end fashion with the multi-task loss function.

FIGURE 2. The structure of the lightweight attention-guided transfer connection block, incorporating the SENet and light-head module.

FIGURE 3. The overview of the SENet module.

A. COARSE DETECTION MODULE
Like RefineDet [28], our architecture’s backbone network is
VGG-16, which is pre-trained on the ImageNet [32]. The two
fully connected layers (fc6, fc7) of VGG-16 are converted to
two convolution layers (Conv-fc6, Conv-fc7), and two extra
convolution layers (Conv6-1, Conv6-2) are added after VGG-
16. We also use the features from Conv4-3, Conv5-3, Conv-
fc7, and Conv6-2 for multi-scale prediction (see Figure 1).
The coarse detection module (CDM) is aimed to coarsely
regress the parameters of locations to get the refined anchors,
which can provide better initialization for refined detection
module (RDM); at the same time, it focuses on a binary
classification task that decides whether the anchor is a tool
or background, and filters out a large number of negative
anchors to address the imbalance problem of positive and
negative samples.

B. REFINED DETECTION MODULE
The refined detection module (RDM) consists of four
lightweight attention-guided transfer connection blocks
(LA-TCBs), designed to adaptively transfer the features of
low- and high-lever layers from the CDM, and further utilize
the refined anchors from CDM to generate accurate locations
and classification scores of surgical tools. The architecture of
the LA-TCB is illustrated in Figure 2.

We subtly incorporated the SENet [29] module in the
LA-TCB without introducing too many extra computational
parameters. Thus, the network could fuse more context infor-
mation and enhance the network’s ability to focus on the
relevant image areas, facilitating the subsequent regression
and classification. The SENet module, as shown in Figure 3,
comprises a global average pooling layer, two full connection
layers, and a sigmoid activation function. It analyzes the
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FIGURE 4. The overview of the light-head module.

relationship between channels and enables the network to
pay more attention to the most informative channel features
and suppress the unimportant channel features automatically.
Therefore, with the guidance of the attention mechanism,
our method’s detection accuracy is expected to be further
improved.

Besides, we designed a lightweight detection head based
on the depth-wise separable convolution [30], namely the
light-head, which replaced the original 3 × 3 standard con-
volutions. The light-head module further fused the features
through a mixture of two ways. The first one was a 1× 1 con-
volution, while the second one combined a 1× 1 convolution
and a 3 × 3 depth-wise separable convolution. More details
can be found in Figure 4. More importantly, the light-head
module enabled our network to directly output the coordi-
nates and classification scores of surgical tools using only
1 × 1 convolutions, which reduced the number of parame-
ters and the network’s computational complexity so that the
detection speed could be improved greatly.

C. LOSS FUNCTION AND DIoU-NMS
As a kind of single-stage detector, our method also inherited
the advantages of the two-stage detection methods by using
a two-step cascaded regression and classification strategy,
which could detect surgical tools more accurately and effi-
ciently in MIS videos.

As was earlier mentioned, the loss of our method contained
two parts: the coarse losses in the CDM and the refined
losses in the RDM. For the CDM, we coarsely regressed
the parameters of locations to get refined anchors; simulta-
neously, each anchor was assigned a binary class label (tool
or background). Then, in the RDM, we utilized the refined
anchors from the CDM to generate accurate coordinates and
classification scores of surgical tools. Therefore, we defined
the loss function as:

L({pi},{Xi},{ci},{Bi}) = lcdmcls ({pi})+ lcdmloc ({Xi})

+ lrdmcls ({ci})+ lrdmloc ({Bi}), (1)

lcdmcls ({pi}) =
1

Ncdm
(
∑
i

[l∗i ≥1]∗C(pi, l
∗
i )), (2)

lcdmloc ({Xi}) =
∑
i

[l∗i ≥ 1] ∗ Lr1(Xi,B∗i ), (3)

lrdmcls ({ci}) =
1

Nrdm
(
∑
i

[l∗i ≥1]∗C(ci, l
∗
i )), (4)

lrdmloc ({Bi}) =
∑
i

[l∗i ≥ 1] ∗ Lr2(Bi,B∗i ). (5)

In Eqs.(1-5), i denotes the anchor index in a mini-batch;
pi and Xi are the predicted class confidence (of the anchor i
being a tool) and localization coordinates of the anchor i in the
CRM, respectively; ci and Bi are the predicted surgical tool
category and coordinates of the bounding box in the RDM,
respectively; Ncdm and Nrdm are the numbers of positive
anchors in the CRM and RDM, respectively; l∗i is the class
label of ground truth, and B∗i is the coordinate of ground truth
localization. In the CRM, C(∗) is the cross-entropy loss over
two classes (tool or background), the regression loss Lr1 is the
smooth L1 loss. In the RDM, C(∗) is the cross-entropy loss
over multiple classes. The regression loss Lr2 is the distance
intersection-over-union (DIoU) loss [33], which considers the
overlap area and the central distance of the bounding boxes,
and achieves better regression. It can be formulated as:

Lr2(Bi,B∗i ) = 1− IoU (Bi,B∗i )+
ρ2(b, b∗)

c2
, (6)

where b and b∗ are the central points of Bi and B∗i , respec-
tively, ρ(∗) is the Euclidean distance, while c denotes the
diagonal length of the smallest enclosing box of Bi and B∗i .
Meanwhile, the DIoU-NMS [33] was employed as the

post-processing approach to produce the final detection
results. It can be formally defined as:

si =

{
si DIoU (M ,Bi) ≤ ε
0 DIoU (M ,Bi) ≥ ε,

(7)

where si is the confidence of classification, and M is the
predicted box with the highest confidence. This means that
redundant detection boxes will be removed as long as its
overlap area with M greater than the threshold ε.

III. DATASET
There are two public datasets for STD, including the EndoVis
Challenge dataset [8] and ATLAS Dione dataset [19]. The
former included 1083 frames from ex-vivo video sequences
of interventions. Each frame was labeled with coordinates
of tools’ spatial bounds, and the resolution was 720 × 576.
This dataset was manually re-labeled and split into 810 and
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FIGURE 5. STD challenges presented by the ATLAS Dione dataset [19].

FIGURE 6. Seven tools in the Cholec80-locations dataset (left to right): grasper, bipolar, hook, scissors, clipper, irrigator, and specimen bag.

283 frames for the model training and testing, respectively.
The ATLAS Dione dataset [19] contained 99 video clips
of 10 surgeons from the Roswell Park Cancer Institute (Buf-
falo, USA) performing six different surgical tasks on the da
Vinci Surgical System (dVSS). Each frame was labeled with
coordinates of spatial bounds of tools, and the resolution was
854 × 480. Similarly, all video clips were split into 90 video
clips (20491 frames) and nine video clips (1976 frames)
for training and testing, respectively. Noteworthy is that the
ATLAS Dione dataset featured camera movement and zoom,
free movement of surgeons, a wider range of expertise levels,
background objects with high deformation, and annotations
including tools with occlusion, changed position. Therefore,
the tool detection tasks had some challenges, such as motion
blurring, tools with occlusion, overlap, andmissing tool parts,
as shown in Figure 5.

Noteworthy is that the public datasets for STD in MIS
are limited. The ATLAS Dione dataset was a phantom set-
ting, while the EndoVis Challenge dataset was from ex-vivo
video sequences. Particularly, Jin et al. [20] established the
m2cai16-tool-locations, which extended the m2cai16-tool
dataset with the coordinates of spatial bounding boxes around
surgical tools. This dataset consisted of 2532 labled frames,
which were selected from among the 23,000 total frames.
In m2cai16-tool-locations, most frames contained just one
tool, while a few with two or three tools. However, there were
various adverse environmental factors in MIS videos (such
as motion blurring, high deformation, tools with occlusion,
tools’ overlap, and missing parts), this dataset only included
part of the challenges. In order to get sufficiently represen-
tative and comprehensive detection results, we need a more
challenging dataset for the detection of surgical tools.

The Cholec80 dataset [31], as well as m2cai16-tool,
focused on the presence detection of surgical tools. The
Cholec80 dataset [31] contained 80 cholecystectomy surgical
videos performed by 13 surgeons at the University Hospital

of Strasbourg in France. The videos were captured at 25 FPS
and downsampled to 1 FPS for processing. Each frame was
labeled with the tool presence annotations, without their spa-
tial annotations. Therefore, based on the Cholec80 dataset,
we collected and introduced a new, more challenging dataset,
Cholec80-locations, that labeled 4011 frames with spatial
annotations of surgical tools. Followed the data annotation
standard in the ATLAS Dione dataset [19], we manually
annotated the bounding boxes with the supervision of an
expert MIS surgeon. It is worth noting that it’s not the entire
tool’s body that was annotated but simply the tips. This
is because only the tip of the tool is visible in most MIS
videos, and most of their handles are similar. In particular,
for surgical tools without handles, such as specimen bag,
we labeled its entire body. Additionally, the 4011 frames were
selected from the total frames, and the resolution of each
frame is 854 × 480. Since each frame could contain one or
more tools, this dataset was split into 3289 and 722 frames
for training and testing, respectively. In total, the Cholec80-
locations dataset contained seven kinds of surgical tools:
grasper, bipolar, hook, scissors, clipper, irrigator, and spec-
imen bag. The actual samples are shown in Figure 6. The
specific annotated statistical data in Cholec80-locations and
the complete Cholec80 dataset are listed in Table 1.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP AND IMPLEMENTATION
We resized the input image frames to 320× 320 pixels before
training and performed data augmentation, including optical
transformation and geometric transformation. The former
included a random adjustment of brightness and contrast;
the latter included random expanding, cropping the original
training frames, and random flipping of frames horizontally.
Most of the operations were random processes to ensure as
much data richness as possible. We fine-tuned the network
using stochastic gradient descent (SGD) and trained with
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FIGURE 7. Detection results for two public datasets. The first rows (a-c) are from the Endovis Challenge
dataset [8], and the second rows (d-f) from the ATLAS Dione dataset [19].

TABLE 1. Dataset statistics. (Row1) Number of frames for each tool in the
complete Cholec80 dataset. (Row2) Number of annotated frames for each
tool in the Cholec80-locations dataset.

a mini-batch size of 16. All layers were initialized with a
learning rate of 5× 10−5, a momentum of 0.9, and a weight
decay of 5 × 10−5. The learning rate was decreased by a
factor of 10 at 100 and 150 epochs. We trained the whole
network in an end-to-end fashion for 200 epochs. To compare
with other state-of-the-art methods fairly, all experiments
were conducted on PyTorch 1.0, Ubuntu 18.04 LTS operating
system using an NVIDIA GeForce GTX TITAN X GPU
accelerator. Our method was found to have a considerable
inference speed, achieving real-time STD in MIS videos.

B. DETECTION RESULTS
We extensively validated our method on the three surgi-
cal datasets mentioned above. Figures 7 and 8 show our
model’s detection examples on the two public datasets and the
Cholec80-locations dataset, respectively. The boxes with thin
and thick lines represent the ground-truth and our detection

results, respectively. These detection examples proved that
our method could accurately detect the locations and sizes of
surgical tools in MIS. And it can be noted that our proposed
network could distinguish different surgical tools with a sim-
ilar form in a frame. To the best of our knowledge, this was
the first attempt to use a lightweight attention-guided CNN
model for detecting surgical tools in MIS videos, with which
the subsequent tasks (such as the surgical reports generation,
the operation process optimization) could be facilitated in the
long run.

For the quantitative evaluation of STD performance in
MIS, we adopted the widely used two metrics: mean average
precision (mAP) and frames per second (FPS). The former
represents the mean of all classes’ average precision, which
is the most commonly used index to evaluate the quality of
the detection model. As known, the average precision (AP)
is the average of the ratio of the correctly detected surgi-
cal tools to the total number. We followed the definition in
the Pascal VOC dataset [34], the detection was considered
correct if the bounding box intersection over union (IoU)
between the detected tool and the ground truth exceeded
0.5. The latter refers to the mean number of detected frames
per second during the whole detection process, which can
evaluate the speed of STD methods. Under the two evalua-
tion metrics, we separately compared our proposed method’s
results to those of eight state-of-the-art detection methods on
the three MIS datasets introduced above. The eight state-of-
the-art detection methods included three two-stage methods
(Faster RCNN [21], RelationNet [35] andCascade CNN [23])
and five single-stage methods (RetinaNet [36], Yolov3 [37],
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FIGURE 8. Detection results for the Cholec80-locations dataset.

TABLE 2. STD results of all methods on two public datasets. The
mAP1 and mAP2 refer to the detection mAP on the EndoVis Challenge [8]
and ATLAS Dione [19] datasets, respectively.

HRNet [38], CenterNet [24] and RefineDet [28]). The detec-
tion results for all methods on the two public datasets and the
Cholec80-locations dataset are summarized in Tables 2 and 3,
respectively.

In Table 2, the detection mAP of all methods on the
EndoVis Challenge and ATLAS Dione datasets are rep-
resented by mAP1 and mAP2, respectively. Our method
achieved a different detection mAP on the two public datasets
because the ATLAS Dione dataset is more challenging due
to various disturbing factors, such as different surgical tasks,
motion blurring, high deformation, tools with occlusion,
tools’ overlap, andmissing tool parts.With the detectionmAP
of 100 and 94.05% on the EndoVis Challenge and ATLAS
Dione datasets, respectively, our method surpassed all meth-
ods except CenterNet [24]. Our method had the highest speed
(55.5 FPS) on the two public datasets, which could satisfy the
real-time requirement of STD in MIS.

As shown in Table 3, we also provided the average preci-
sion (AP) per tool of all methods on the Cholec80-locations
dataset to further prove our method’s feasibility. As Table 3
shows, our method achieved the mAP of 91.65% on the new

dataset, which was slightly lower than CenterNet [24], but
outperformed all other detection methods. The AP values
of all surgical tools, except grasper and irrigator, exceeded
90%. Moreover, the hook generally had a higher detection
AP in all of the methods, whereas our method achieved the
AP of 99.33%. Usually, the hook had good visibility and
high discrimination, making it easy to distinguish from other
tools. However, it can be seen that both the grasper and
irrigator usually get lower AP. The possible reason is that
their appearance is similar to some other surgical tools, and
the shape of the two kinds of tools is irregular, which are not
being considered in our detection method. This issue needs
to be explored and mitigated in future work.

C. ABLATION STUDY
In order to show the advantages of each component in our
method, we designed several variants and evaluated them on
the three datasets previously mentioned. As shown in Table 4,
the mAP1, mAP2 and mAP3 refer to the detection mAP
on the EndoVis Challenge [8], ATLAS Dione [19] and
Cholec80-locations datasets, respectively. The Basic Net-
work here refers to the baseline architecture after removing
the attention mechanism module and replacing the light-head
module with original 3 × 3 standard convolutions in our
network. Here AG and LH denote the attention mechanism
and light-head module, respectively.

Basic + AG indicates that we incorporated the atten-
tion mechanism module (SENet) in the baseline architecture
to promote the network learning of the most useful fea-
ture representations. It can be seen from Table 4 that the
attention mechanism module in our network can effectively
improve the detection accuracy. This module improved the
mAP of 2.66 and 2.92%, respectively, on the ATLAS Dione
and Cholec80-locations datasets. Basic + LH indicates that
we replaced the original 3 × 3 standard convolution with
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TABLE 3. STD results of all methods on the Cholec80-locations dataset.

TABLE 4. Results of ablation study on the above three datasets. The
mAP1, mAP2 and mAP3 refer to the detection mAP on the EndoVis
Challenge [8], ATLAS Dione [19] and Cholec80-locations datasets,
respectively.

light-head module in the baseline architecture to reduce the
number of parameters and the computational complexity of
the network. Although the detection accuracy was reduced
slightly, the speed was increased by nearly 10 FPS, indicat-
ing the effectiveness of light-head module. Basic+AG+LH
denotes the attention-guided CNNwe proposed, which incor-
porated the attention mechanismmodule and light-head mod-
ule. Compared to Basic Network, the speed was increased
by 7.9 FPS, and accuracy was improved by 2.43 and 2.24%,
respectively, on the ATLAS Dione and Cholec80-locations
datasets. It achieved the best trade-off between detection
speed and accuracy, proving the effectiveness of our method.

V. DISCUSSION
As shown in Tables 2 and 3, in the eight state-of-the-art detec-
tion approaches, RefineDet [28] achieved a better trade-off
between the detection speed and accuracy because of its
two-step cascaded regression and classification strategy. Our
method inherited the above advantages and further improved
the detection performance by using the attention mechanism
and light-head modules specially designed to detect the sur-
gical tool in MIS. In terms of accuracy, our method sur-
passed all methods except CenterNet [24], but had the highest
speed (55.5 FPS) that could satisfy the real-time requirement
of STD in MIS. Compared to Basic Network in Table 4,
our method’s accuracy was improved by 2.43 and 2.24%,
respectively, on the ATLAS Dione and Cholec80-locations
datasets, which was largely attributed to the introduction of
the attention mechanism. With the guidance of the attention
mechanism, our network considered the dependencies on
each channel, paid more attention to the most informative

channel features, and suppressed the unimportant channel
features. Meanwhile, the detection speed was increased by
7.9 FPS, indicating that our proposed light-head module con-
siderably improved the network’s computational efficiency.

In summary, all of these results demonstrate that our
framework had a remarkable ability in terms of accuracy
and speed, and outperformed all the state-of-the-art detection
algorithms mentioned above by a large margin. The accurate
and real-time detection results also demonstrate our method
has the potential to be further applied to other video analysis
tasks of MIS, and has good generalization ability of STD
in various datasets with different challenges, such as motion
blurring, high deformation, tools with occlusion, tools’ over-
lap, and missing parts, and so on.

However, there is still a lot of room for improvement. For
example, one can use the recurrent neural network (RNN) or
its variants to extract the MIS videos’ long-term temporal
information and model the temporal dependency between
the frames to get better results. Moreover, there are limited
datasets with location annotations of tools, the weakly super-
vised [39], [40] or self-supervised methods [41]–[43] can be
used to reduce the dependency on spatially annotated data.
To the best of our knowledge, the Cholec80 dataset [31] con-
tains various real-world environments, so we will continue to
label the Cholec80 dataset with the coordinates of bounding
boxes of surgical tools to address the lack of public datasets
and further promote the development of STD in MIS.

VI. CONCLUSION
This paper proposed a single-stage CNN architecture with an
attention mechanism for the effective frame-by-frame detec-
tion of surgical tools in MIS videos: the CDM and the RDM.
The CDM was trained to coarsely regress the locations’
parameters to get the refined anchors, and perform binary
classification that would decide whether the anchor is a tool
or background. The RDM subtly incorporated the attention
mechanism to generate accurate detection results utilizing the
refined anchors from CDM. Then, a light-head module was
designed to reduce the number of parameters and the com-
putational complexity. Besides, we collected and introduced
a new dataset, Cholec80-locations, to address the lack of
public STD datasets. The experimental results show that our
method ran in real-time at 55.5FPS and achieved a superior
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detection accuracy even with various disturbing factors (such
as different surgical tasks, motion blurring, high deformation,
tools with occlusion, tools’ overlap, andmissing parts), which
outperformed most of the state-of-the-art algorithms on STD
in MIS videos. In the future, we will focus on exploring and
designing more effective CNN with the attention mechanism
to improve the detection accuracy and speed.
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