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ABSTRACT We build a realistic agent-based model for simulating customer decisions of picking a checkout
line at a supermarket that is calibrated to actual point of sale (POS) data from a major European retail chain.
It is implemented on the open-access NetLogo simulation platform and is freely available to academics
and practitioners interested in testing how different checkout zone layouts, as well as queue management
and feedback strategies impact the overall efficiency of the checkout process. In particular, we show that
when customers pick a line by minimizing the expected waiting time, not only is this choice beneficial
for the customers themselves, as it leads to shorter waiting times in queues, but also for the supermarket
management, since it yields shorter working times of the cashiers. As such, we provide guidance as to the
feedback that could be provided to customers entering the checkout zone.

INDEX TERMS Agent-based simulation, checkout process, customer analytics, decision support, NetLogo,
queue management system, retail operations.

I. INTRODUCTION
Why do customers have to wait in queues in supermarkets?
Themost general answer is that there aremore customers than
available points of sale (POS). A shortage of cashiers at a
certain time and space constraints, which limit the number of
checkouts that can be installed, are the most likely reasons.
As the number of customers fluctuates throughout the day
and their arrival to the checkout zone is not stable, managers
have to balance between a shortage of available cashiers and
the reduction of costly idle times.

The traditional approach to queuing at checkout is
described as trying to answer the question ‘‘how long must a
customer wait’’ [1]. The focus is on minimizing the time that
a customer spends in a queue and this time is the main mea-
sure of customer satisfaction. Other studies emphasize the
importance of customers’ subjective perception of thewaiting
time. The queuing environment, social justice measured by
adherence to or violation of the first in first out (FIFO) rule
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and feedback provided to customers in queues are the typical
objects of interest [2]–[4].

In various areas of commerce and services, innovations
have been introduced to reduce customer discomfort when
queuing. Apart from rules of queue organization (single vs.
multi lines) and different types of devices for registration of
goods and payments (service vs. self-service checkouts), ded-
icated queue management systems can be used. Numerous
solutions are offered, but those applicable in typical grocery
supermarkets mainly address two aspects [5]–[8]:
• Forecasting the demand for cashiers to let managers
optimize their operational decisions. Popular systems
use detectors or video content analysis to count cus-
tomers inside the store and predict the demand for check-
outs using statistical or artificial intelligence methods.

• Providing feedback through checkout/customer infor-
mation systems in the form of voice or visual mes-
sages about the current or future state of the checkout
zone. The objective is to obtain a psychological effect
(customers usually ‘‘feel better’’ about queuing when
provided with an estimate of the waiting time) and/or
a more efficient flow of customers.
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In this paper we focus on the latter aspect. To this end,
we build a realistic agent-based model (ABM)1 for simu-
lating customer decisions of picking a checkout line at a
supermarket, that is flexible enough to allow for testing of
different checkout zone layouts, as well as queue manage-
ment and feedback strategies on the overall efficiency of
the checkout process. The model is inspired by a checkout
zone optimization problem faced by many grocery stores
worldwide [9] and calibrated to actual POS data [10] from
three grocery supermarkets located in a large city in Southern
Poland.

The paper’s contribution is threefold. Firstly, we extend
the relatively sparse literature on checkout operations, which
have been recently identified by Mou et al. [11] as one
of the seven main operational decisions pertinent to store
management. Interestingly, the authors argue that this topic
– particularly the optimal configuration of the checkout zone
and associated staffing decisions – will require more attention
in the near future.

Secondly, by considering four different strategies of pick-
ing lines, we provide guidance as to the feedback that could
be provided to customers entering the checkout zone. Obser-
vations of queuing behavior suggest that customers focus
mostly on the length of the queue, but do not adjust enough
for the speed at which the line moves [12]. If valuable feed-
back was provided to the customers via checkout/customer
information systems, e.g., on the expected time spent in each
queue, it could substantially increase the efficiency of the
checkout process.

Thirdly, like in [13], [14], our model is implemented on
the open-source NetLogo simulation platform [15], hence can
be used without restrictions by practitioners and academics
alike. Furthermore, it allows for easy to implement changes
in the checkout zone, e.g., for 5 to 20 service and 4 to
6 self-service checkouts, as well as in the parameters of the
stochastic models defining customer arrival, basket sizes and
cashier work schedules. Given that our model is calibrated to
actual POS data [10], it provides a more realistic test ground
for studying various layout configurations and associated
staffing decisions than typical simulation models.

The remainder of the paper is structured as follows.
In Section II we review the literature on the use of simulations
for analyzing checkout operations. Next, in Section III we
introduce our agent-based model, then present the simulation
scheme and the considered types of feedback. In Section IV
we discuss the obtained results and provide insights as to
the impact of individual customer decisions of picking lines
on the overall efficiency of the checkout process. Finally,
in Section V we wrap up the results and conclude.

II. LITERATURE ON SIMULATING CHECKOUT
OPERATIONS
In one of the earlier studies on checkout operations,
Williams et al. [16] used discrete event simulation (DEVS)

1Note, that we use ABM as the abbreviation for both ‘agent-based
model(s)’ and ‘agent-based modeling’.

in SIMUL8 to check how different values of ‘queue trig-
ger length’, i.e., the threshold of congestion warranting the
opening and closing of cash-register lanes, influenced the
waiting time and staff effort for a particular shop in the US.
Alvarado and Pulido [17] simulated different combinations
of cashier baggers in selected Columbian supermarkets in
Promodel, with the goal of creating a framework that allowed
for a better scheduling of the staff. Miwa and Takakuwa [18]
used POS data to simulate customer flow in a convenience
store in ARENA; they argued that the obtained results can
be used for in-store merchandising. Zhang [19] implemented
an ABM in NetLogo with the objective of using it to reduce
customer waiting time and operation costs of supermarkets.
Yamane et al. [20] used ABM to support decisions regarding
the number and location of scanning and payment stations.
They concluded that the spatial distribution of POS units
was crucial when ‘‘collisions’’ between clients moving to and
between the stations were taken into account.

More recently, Rossetti and Pham [21] built a DEVSmodel
in Java based on a case study of a retail customer check-
out area. Then, they extended it in two directions: the first
examined customers’ criteria when picking a checkout line
at a supermarket, the second – the checkout layout, in which
the payment was separated from the checkout station. The
results showed no significant difference in checkout time
based on the line choice criteria. However, the average wait-
ing time dropped significantly when payment was separated
from the checkout area. Yang and Takakuwa [22] considered
DEVS in Simio to simulate the checkout process in a retail
store under various customer arrival conditions and queuing
modes. In particular, they were interested in the results of
the staff switching policy (i.e., rules) in the store. Kwak [23]
investigated the effect of having express checkout lines in
retail stores by comparing the waiting time and the queue
length of two scenarios: universal checkout lines only and
separated checkout lines with express counters. Utilizing
DEVS in ARENA they found that the average waiting time of
the separated checkout lines was not necessarily shorter than
that of universal lines. Mou and Robb [24] used ARENA to
investigate Real-Time Labour Allocation (RTLA), i.e., allo-
cating an employee working on shelf replenishment to open
a checkout or vice versa. They reported a 6.6% increase
in market share compared a store without RTLA. Finally,
Doniec et al. [25] built an ABM in Java to mimic cus-
tomer activities in a supermarket. In their approach, an agent
planned a trajectory and chose the checkout according to two
criteria – the distance to reach the checkout line and the num-
ber of agents already waiting in this line. The authors argued
that their model could be used to study customer flows,
identify critical areas of congestion and optimize placement
of new products.

The above literature review suggests that two types of
simulation techniques – ABM and DEVS – are used for
studying checkout operations in retail stores. In conventional
DEVS, the state is changed only when an event occurs and the
passage of time does not have a direct impact on the evolution
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of the system [26]. On the other hand, ABM does not have
this limitation. In fact, this technique is the preferred tool
for analyzing human behavior in service systems [27]. ABM
provides an efficient way of dealing with the complexity
encountered in real-world systems [28]. Its main advantage
is that it does not rely on certain imposed global control
mechanisms, but lets the system behavior at the macro scale
emerge by emulating behavior and interactions at the micro,
inter-agent scale [15], [29]. We follow this path and build
a realistic ABM test ground for checkout operations that
can be used to validate business support decisions in retail
operations.

III. THE MODEL
We consider a queuing model inspired by a checkout
zone optimization problem nowadays faced by many retail
stores [9]. Based on supermarket layouts of a major European
retail chain, we assume that the checkout zone contains 5 to
20 service and 4 to 6 self-service checkouts. Once a customer
reaches the checkout zone, he has to pick the waiting line
assigned to a particular checkout. Furthermore, we assume
that each service checkout has a separate waiting line, while
all self-service checkouts have one common line. We define
the following agents:

• customers, who fill baskets with items (i.e., goods, arti-
cles) and pick waiting lines following some rules (e.g.,
by minimizing the number of customers in line, see
Section III-E),

• cashiers, who staff service checkouts according to a
prespecified work schedule,

• service checkouts, which serve customers when staffed
by cashiers,

• self-service checkouts, which ‘‘serve’’ customers.

The checkout process, illustrated in Figure 1, starts with the
collection of articles and arrival to the checkout zone. Next,
the customer picks a waiting line. By doing so the customer
selects the type of checkout – service or self-service. Note,
that in our model each customer is equally likely to select a
given checkout type. This is in line with the recent empirical
study [30], which found no significant demographic differ-
ences between users and non-users of self-service checkouts
among 778 respondents in Singapore.

The next phase includes waiting in line as long as the
checkout is busy. Note, that despite the fact that jockeying
(i.e., switching the line in an effort to reduce the waiting
time), balking (i.e., not entering thewaiting line) and reneging
(i.e., leaving the line before being served) unarguably take
place, our own observations and interviews with line workers
suggest that they are so incidental, that they do not affect
significantly the queuing process. Hence, we do not model
these practices. In the final step the items are scanned by the
cashier (service checkout) or by the customer (self-service
checkout) and the payment is made. This stage also includes
bagging and idle time between serving the current and the
next customer in line.

A. CUSTOMER ARRIVAL TO THE CHECKOUT ZONE
Simulating a realistic arrival process is not a trivial task.
Several approaches have been considered in the literature.
Williams et al. [16] constructed a dataset of customer
inter-arrival times by examining videotapes and by direct
observation. Additionally, service-completion data was used
to check if the recorded inter-arrival times were reasonable
and to provide guidance on the variability throughout the
day and the week. They came to the conclusion that the
inter-arrival rates were readily characterized by exponential
distributions whose means varied with the time-of-the-day
and the day-of-the-week. Also Kwak [23] and Qiu and
Zhang [31] assumed exponentially distributed inter-arrival
times (but with a constant intensity, i.e., a homogeneous
Poisson process, HPP, see Chapter 9 in [32]). Alvarado and
Pulido [17] defined four day-of-the-month scenarios (regu-
lar working days, Saturdays, holidays, payment days) and
counted the number of arrivals per hour for each scenario; this
yielded four ‘percentage arrival distributions’ that were used
in their simulations. Miwa and Takakuwa [18] modeled the
movement of customers in a store. Unlike us, they simulated
customer arrivals to the store, not to the checkout zone. But
like us, they used actual POS data. More precisely, they
extracted arrival times (to the store) from the transaction logs
and a regression estimate of the time spent in the store based
on a time-study.

To build a model of customer dynamics in the check-
out zone we extract information from actual POS logs col-
lected in three grocery supermarkets located in a large city
in Southern Poland, equipped with manned (service) and
self-service checkouts. A sample dataset (from one of the
three locations) is freely available for download, see [10] for
a detailed description. Here we use a 14-day period from 1 to
14 February 2018, i.e., before the introduction of regulations
banning shopping on some Sundays. A limitation of the POS
logs is that they do not contain information about the arrival
of customers to the checkout zone, only timestamps for the
beginning (registration of the first item in the basket) and the
end time of each transaction. Nevertheless, such data can help
to identify the general flow of customers and its variability
throughout the day and the week.

Firstly, we can assume that within a time window of,
say, 60 minutes, the number of customers that arrive to the
checkout zone is very close to the number of transactions that
started in this window. This assumption is backed by real-life
observations made by one of the authors, that the waiting time
of a single customer in these supermarkets rarely exceeds
15 minutes and that – even in periods of heavy traffic – long
queues are discharged relatively fast.

Secondly, based on the results of [16], we can assume
that within short periods, i.e., measured in minutes, customer
inter-arrival times to the checkout zone are exponentially
distributed with a time-varying intensity or rate λ(t); math-
ematically this corresponds to the non-homogeneous Pois-
son process (NHPP). Our procedure to model λ(t) is as
follows:
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FIGURE 1. A flowchart of the checkout process in our model. After collecting articles (items in the basket),
the customer arrives to the checkout zone and picks either a service or a self-service checkout.

1) extract the number of transactions per minute from the
POS logs→ red dots in Figure 2,

2) for each hour-of-the-day compute the average number
of transactions in a time window ±30 minutes around
this hour→ blue step function in Figure 2,

3) linearly interpolate between the hourly intensities to
yield λ(t)→ green curve in Figure 2.

Given a deterministic, but possibly seasonal, intensity func-
tion λ(t) and an upper bound λ ≥ λ(t) for all t , the NHPP
can be – and is in our study – simulated using the thinning
algorithm [32].

B. BASKET SIZE
Like the customer arrival to the checkout zone, the bas-
ket size also has to be adequately simulated. Both para-
metric distributions, e.g., geometric [17], lognormal [33],
as well as POS data-driven [18] have been considered in the
literature.

We follow the latter approach and randomly sample the
basket size from the available POS data for a given hour of
the week; in our dataset the number of transactions rarely
falls below 100 per hour. The basket sizes are the smallest
on Monday mornings (ca. 5% of baskets exceed 20 items)

and the largest on Saturday midday (depending on the store,
ca. 18-30% of baskets exceed 20 items).

C. SERVICE TIME
The checkout service generally consists of three separate
activities: scanning or registration of articles, payment and
bagging. However, due to data limitations or for the sake of
simplicity some authors do not distinguish particular steps
and treat service as a single step that covers all three actions.
Regarding simulations, supermarket models typically assume
exponential service times [34], but other distributions – like
triangular [35], lognormal [36] or phase-type (PH) [37] –
have been considered as well. If we want to be more precise,
we can decompose the service time into two factors that drive
it: work amount and cashier speed. The latter usually does not
differ that much between the cashiers and is often ignored
in simulations. However, the work amount largely depends
on the basket size and some authors postulate a functional
form for this relationship. For instance, Miwa and Takakuwa
[18] use POS data to fit two linear functions of basket size
to determine registration and bagging times. We follow the
latter data-driven approach, two linear functions of basket
size to determine registration and bagging times. We follow
the latter data-driven approach, but do not limit ourselves to
linear dependence.
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FIGURE 2. An illustration of the procedure for approximating intensity λ(t) of customer arrivals using data for a sample
store and day.

The POS logs we have access to include timestamps for
the beginning (registration of the first item in the basket;
denoted by BeginDateTime) and the ending time of each
transaction (denoted by EndDateTime). However, the latter
may not exactly be the time when the operation is terminated,
as it does not cover the activity of giving back the change to
the customer (for a manned checkout). On the other hand,
the times between transactions or ‘break times’ retrieved
from POS logs include the idle times between consecutive
operations, which actually are not part of the service activity,
see Figure 2 in [10]. Nevertheless, given that idle times are
very rare during peak hours, we can essentially eliminate their
impact by analyzing only periods of high activity. Namely,
we select the 20 most busy hours (basically Thursday and
Friday mornings and Saturday midday) characterized by the
highest number of transactions per minute within the studied
two-week period. Such a selection yields a sample of several
thousand observations (transactions) per store. To further
limit the impact of idle times, we exclude ‘outliers’, i.e., trans-
actions with break times and transaction times that exceed
1.5-times the respective interquartile ranges; the latter two are
computed for the n-th transaction as:

BreakTime(n) = BeginDateTime(n)

−EndDateTime(n− 1), (1)

TranTime(n) = EndDateTime(n)

−BeginDateTime(n). (2)

Visual analyses of transaction time vs. basket size
scatter-plots exhibit a similar pattern for both service and
self-service checkouts – the larger the basket the longer
the transaction time, see Fig. 3. However, the relationship
deviates from a linear fit and is better described by a power
regression model of the form:

TranTime(n) = exp
[
a · ln

{
BasketSize(n)

}
+ b

]
, (3)

where BasketSize(n) is the number of articles in the n-th bas-
ket, with a = 0.6984 and b = 2.1219 for service (R2 = 0.71;
top left panels in Fig. 3) and a = 0.6725 and b = 3.1223 for
self-service checkouts (R2 = 0.64; top right panels). On the
other hand, the break time vs. basket size scatter-plots do
not yield such a clear-cut picture. For self-service checkouts,
the power regression model yields an acceptable fit:

BreakTime(n) = exp
[
a · ln

{
BasketSize(n)

}
+ b

]
, (4)

with a = 0.2251 and b = 3.5167 (R2 = 0.14; bottom right
panels in Fig. 3), but for service POSs no clear pattern is
visible (R2 < 0.01; bottom left panels).
The longer break times for self-service checkouts likely

result from the fact that after scanning each item has to be
put on a scale which controls product weight and all items are
packed into bags only after paying. This significantly length-
ens bagging compared to a service checkout. The longer
transaction times, on the other hand, may be due to less
efficient scanning of items by customers than by the cashiers.

In our simulations the service time is the sum of the trans-
action and break times. The transaction times are generated
according to Eqn. (3) with residuals randomly sampled from
the respective distribution (see the histograms in Fig. 3).
Similarly, the break times for self-service checkouts are gen-
erated according to Eqn. (4) with residuals randomly sampled
from the respective distribution, while for service checkouts –
simply randomly sampled from BreakTime(n) for n spanning
all transactions.

D. AVAILABILITY OF CASHIERS
In the simulations, the number of open POSs plays a crucial
role. The number of active cashiers is not constant over time.
The arrival to the checkout zone is determined by a work
schedule and planned by a manager. However, most of the
employees work not only as cashiers but also perform other
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FIGURE 3. Scatter-plots with contour lines of transaction (top panels) and break (bottom panels) times vs. basket sizes for
service (left panels) and self-service (right panels) checkouts. The red curves represent the power regression fits and the
histograms the respective distributions of the residuals.

FIGURE 4. Activities of a cashier in the checkout process. The two gray boxes in the left flowchart (‘Go to
back office’, ‘Close checkout’) are composed of smaller steps illustrated in the right flowchart, i.e., the
cashier is working until she serves all customers waiting in line at the moment of closing the checkout.

tasks [24]. The number of open POSs at a particular time is
determined by the number of customers in lines and limited
by the number of workers trained to be cashier and present
on site. In the analyzed case, the internal procedures of the
company define that the next cashier is called to open a check-
out when the number of customers in all opened checkouts
exceeds two. However, a new POS is not opened immediately.
Usually it takes about one minute after a call to move from

the back office to the checkout zone. On the other hand,
when there are no customers waiting to be served, a cashier is
obliged to close the POS and go to the back office. Closing the
checkout means that no new customer can enter a particular
line. However, a cashier cannot leave the workplace before
serving all customers waiting in line. In Figure 4 we present
the activities of cashiers that are relevant for the simulated
process.
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FIGURE 5. The number of available cashiers extracted from POS data using the procedure described in Section III-D, for a
sample store and day. Red dots indicate the number of available cashiers in each minute and the blue line the extracted
work schedule.

To simulate the availability of cashiers at a given moment,
it is necessary to know the work schedule. Unfortunately,
due to the multitasking of employees in the analyzed stores,
the historical attendance list cannot not be used. The latter
contains information for all employees, also those who did
other tasks and were not available for checkout operations.
However, the analyzed POS data contains information about
the exact log-in and log-off times of all cashiers. Based on
these logs, the actual cashier availability can be extracted
using the following steps:

1) determine cashier availability ad,h,m for each day (d),
hour (h) and minute (m) using log-in and log-off times,

2) calculate the available number of cashiers for each day
and hour: dj = maxm(ad,h,m), where j = 1, 2, . . . , n
and n is the number of hours in the analyzed period,

3) find the optimal work schedule that meets requirement
dj, using linear programming for a work scheduling
problem [38, chap. 2.4].

To simplify the computations we assume that shifts of all
employees are equal and last four hours. If we denote by xj the
number of employees that start working in hour j, the problem
of finding the optimal work schedule can be formulated as
follows:

min

∑
j

xj

 , (5)

subject to

xj−3 + xj−2 + xj−1 + xj ≥ dj ∀j = 4, 5, . . . , n,

xj−2 + xj−1 + xj ≥ dj for j = 3,

xj−1 + xj ≥ dj for j = 2,

xj ≥ dj for j = 1,

xj ≥ 0 ∀j = 1, 2, . . . , n.

To find the optimal solution of such a linear programing
problem, we use the function lm() from the lpsolve
package in R. In Figure 5 we plot the results for a sample
store and day.

E. LINE PICKING SCENARIOS
When it comes to picking the checkout line, there is no
consensus in the literature on how individuals actually do
it. For instance, Kwak [23] assumed that customers always
joined the shortest line. When considering express checkouts,
Alvarado and Pulido [17] introduced an artificial index based
on queue length (weight 60%) and the total amount of items in
line (40%). If the number items in the basket was lower than
a certain threshold, the customer would choose an express
checkout if it was free. If not, the choice was made based
on the value of this index. Rossetti and Pham [21] made
a distinction between ‘regular’ and ‘rush’ customers, and
studied two scenarios of picking lines – one based on the
number of customers in line and one based on the number
of items in baskets.

Since POS data cannot help in this case, we have to
make some assumptions. Although we are aware that not
all customer decisions have to be rational, in what follows,
we consider line-picking scenarios where customers make
rational choices, dependent on the available information sets.
In the worst case, customers have no information about cur-
rent lengths of queues and pick the lines randomly (sce-
nario #0). In the best case they have at their disposal very
accurate estimates of the waiting times in each of the lines
(scenario #4). Scenarios #1-#3 represent various intermediate
states of incomplete information; the higher the scenario
number, the more complete the information set is:

#0 The line is picked randomly (uniform distribution).
#1 The line with the lowest number of customers is

picked.
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FIGURE 6. A screenshot of the graphical user interface for a sample simulation run. The NetLogo codes are freely available from the
GitHub repository at https://github.com/tant2002/NetLogo-Supermarket-Queue-Model.

#2 The line with the lowest number of items in all baskets
in this line is picked.

#3 The line with the lowest mean service time-implied
expected waiting time is picked, i.e., the expected wait-
ing time for each queue is calculated as the product of
the number of customers and the mean service time for
service or self-service checkouts.

#4 The line with the lowest power regression-implied
expected waiting time is picked, i.e., the expected wait-
ing time for each queue is calculated as the product of the
number of customers and the sum of expected transac-
tion and break times, see Eqns. (3) and (4), respectively.

If there is more than one line satisfying any of the above
conditions, e.g., two lines have the lowest number of cus-
tomers, then the choice among them is made randomly, using
a uniform distribution. Note, that while each service checkout
has a dedicated line, all self-service checkouts have one
common waiting line.

IV. RESULTS
A. SIMULATION SETUP
The simulations are conducted for three stores of the same
supermarket chain. In Table 1 we present the basic char-
acteristics for each store in terms of size, turnover and the

TABLE 1. Basic characteristics of each of the three stores in terms of size
(sales area in m2), turnover (average weekly sales in thousands of
delivery units) and the average weekly number of customers (in
thousands).

number of customers. Actual POS data for a period of 14 days
is used to obtain realistic estimates of the parameters. The
agent-based model is implemented in NetLogo [15]. The
graphical user interface for a sample simulation run is visu-
alized in Fig. 6. The central window with black background
illustrates the state of the system in real-time – open check-
outs are in yellow, closed in red. The windows to the right are
used to plot the evolution of selected characteristics.

In order to determine the number of simulation runs,
we assessed variance stability [39]. 50 pilot runs were per-
formed for all five scenarios, one store and four selected
hours of the week: 20:00–20:59 on Saturday, 11:00–11:59 on
Wednesday, 14:00–14:59 on Sunday and 11:00–11:59 on
Saturday; the latter were chosen to represent the three
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FIGURE 7. Kernel density estimates of the waiting time for customers who had to wait in a queue in store 1, for the five
considered scenarios. Dashed lines indicate the mean values reported in Table 2 in the two rightmost columns; note, that
the lines for scenarios #1 and #2 overlap.

quartiles and the maximum of the distribution of the number
of customers per hour. The minimum number of simulation
runs was chosen according to:

nmin = argmax
n

∣∣∣cmV − cm−1V

∣∣∣ < E ∀m ≥ n, (6)

where cmV =
σ
µ
is the coefficient of variation for runm, i.e., the

ratio of the standard deviation to the mean of the sample, and
E is the limit of that metric. Setting E = 0.1 yielded nmin =
4, E = 0.075 yielded nmin = 5, while E = 0.05 yielded
nmin = 20. In general, the stability of cmV was good already for
4-5 runs. Based on this analysis, we have decided to perform
10 simulation runs for all stores and scenarios considered.

B. TIME SPENT QUEUING
In Table 2 we report the means and standard deviations of the
time spent queuing in each of the three stores, for the five
considered scenarios. The values were calculated separately
for all customers (i.e., including those served without delay,
as there were no other customers at the chosen checkout) and
only those that had to wait in a queue. The values cannot be
compared directly between the stores because they depend
on customer arrival, checkout/cashier availability and basket
size specific for that particular store. Instead they should be
considered as providing an overview of the results that can be
obtained for different stores of this supermarket chain. On the
other hand, the scenarios can be compared for each store.

Clearly, the random scenario #0 yields the longest mean
queuing time, independent of the store. This scenario is also
characterized by the highest standard deviation of the results.
The remaining strategies seem very similar when the mean
queuing time is computed across all customers. However,
when it is calculated only for the customers in queues, there
is a clear decreasing tendency (also in variability). The latter

TABLE 2. The means and standard deviations of the time spent queuing
(in seconds) for the considered stores and scenarios. The values are
reported separately for all customers (i.e., including those served without
delay, as there were no other customers at the chosen checkout) and only
those that had to wait in a queue.

indicates that the larger the information set, i.e., the more
accurate is the waiting time estimate for each line, the better
the outcome of their decision to pick a line.

Kernel density estimates (KDEs) of the waiting time for
customers who had to wait in a queue in store 1 are plot-
ted in Figure 7; KDEs for stores 2 and 3 are qualitatively
identical. The dashed lines indicate the mean values reported
in Table 2. The KDEs were computed and plotted using
the geom_density() function from the ggplot2 package in R,
with default parameters (e.g., Gaussian smoothing kernel,
bandwidth calculated using the rule-of-thumb estimator).
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FIGURE 8. The probability of waiting in a queue more than 5 minutes in store 1, for the five considered scenarios.

TABLE 3. The mean effective and total working times (in hours) and the
number of changeovers (1 minute each) within the 14-day simulated
period, for all three stores and all considered scenarios.

Apparently, the random scenario #0 yields the most heavy
tailed distribution with a mode at ca. 25 seconds. On the other
hand, scenario #4 providing the most feedback to the cus-
tomers yields the most symmetric distribution of the waiting
times with a mode at ca. 70 seconds. It also exhibits the least
heavy right tail – the number of customers waiting in a queue
more than 180 seconds (i.e., 3 minutes) is lower than for the
other four strategies. Hence, the ratio of customers with a
positive shopping experience is likely to be higher in stores
providing feedback that allows them to act as suggested by
scenario #4.

To better illustrate this, in Figure 8 we plot the probability
of waiting in a queue more than 5 minutes in store 1, for

the five considered scenarios. Clearly, the random scenario
#0 is suboptimal, while scenario #4 yields the shortest waiting
times. The same is observed for store 2. However, scenario
#4 fails to outperform scenarios #1-#3 during a few extreme
hours for store 3, see Figure 9. On Friday (Feb. 9) afternoon
and Sunday (Feb. 11) afternoon the probabilities of waiting
are equally high in all except the random scenario, which
suggests a shortage of cashiers and long queues. Apparently
under such extreme conditions the line picking scenario does
not play as an important role as other factors.

C. WORKING TIME AND CHANGEOVERS
The workload of cashiers is not only dependent on the
adopted work schedule, which is the same for each scenario,
but also on the current state of the queues. As discussed
in Section III-D, the cashier leaves the checkout when the
number of customers is small, and returns when queues
appear. The time spent in the back office is usually used
for performing other activities necessary for the operation of
the store. Hence, an important measure of the effectiveness
of a scenario is the sum of the time spent working at the
cash register and the time of changeovers (walking from the
checkout zone to the back office or back).

In Table 3 we report the time cashiers spent at the check-
out, i.e., the effective working time, and the total number of
changeovers in the whole simulated period (14 days); these
values are averages across all simulation runs. Assuming
that the time needed for the transition is about one minute,
the total working time of the cashiers can be calculated.
In terms of the effective working time, scenario #4 out-
performs scenarios #1-#3 by ca. 2-7%, and the benchmark
scenario #0 by ca. 53-73%. The differences are smaller for
stores 1 and 3, and larger for the smaller store 2. While
scenario #4 yields the highest number of changeovers, taking
into account that the time needed for the transition to/from the
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FIGURE 9. The probability of waiting in a queue more than 5 minutes in store 3, for the five considered scenarios. Note,
the anomalies on Friday (Feb. 9) afternoon and Sunday (Feb. 11) afternoon, suggesting a shortage of cashiers.

back office is rather short, it outperforms all other scenarios
also in terms of the total working time. These results indicate
that scenario #4 not only is better from customers’ perspective
(shorter waiting times in queues), but also from themanager’s
point of view (lower effective and total working times of the
cashiers).

V. CONCLUSION
With the objective of obtaining a more efficient flow of
customers in the checkout zone [9], we have built a realistic
agent-based model (ABM) for simulating customer decisions
of picking a checkout line at a supermarket. It is calibrated
to actual point of sale (POS) data [10] from three grocery
supermarkets located in a large city in Southern Poland and is
flexible enough to allow for testing of different checkout zone
layouts, as well as queuemanagement and feedback strategies
on the overall efficiency of the checkout process.

Our contribution is threefold. Firstly, we extend the rela-
tively sparse literature on checkout operations, which have
been recently identified as one of the seven main operational
decisions pertinent to store management [11]. Secondly,
by considering different strategies of picking lines, we offer
guidance as to the feedback that could be provided to cus-
tomers entering the checkout zone. In particular, we show that
when customers receive an accurate estimate of the expected
time spent in each queue and pick the line with the lowest
time (i.e., scenario #4), the resulting dynamics are not only
beneficial for the customers themselves (→ shorter waiting
times in queues), but also for the supermarket management
(→ lower effective and total working times of the cashiers).
Thirdly, since our model is implemented in the open-source
NetLogo simulation platform [15], it can be used without
restrictions by practitioners and academics alike. Changes in
the checkout zone layout, e.g., the number of service and
self-service checkouts, as well as in the parameters of the
stochastic models defining customer arrival, basket sizes and

cashier work schedules are easy to implement. As such, our
model provides a platform for testing various layout config-
urations and associated staffing decisions.

However, our model can be further developed. For
instance, switching the line in an effort to reduce the waiting
time is not taken into account. Although our own observa-
tions and interviews with line workers suggest that jockeying
is incidental and does not affect significantly the queuing
process, in the COVID-19 times it could be seen as a factor
increasing the infection rate. Studying such practices might
lead to queuing policies that minimize virus spread in super-
markets.
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