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ABSTRACT In this paper, we present a frame-level constant bit-rate (CBR) control method using recursive
Bayesian estimation (RBE) for Versatile Video Coding (VVC). An R-A model for rate control (RC) has
handled the total texture and non-texture bits at a time and has worked reasonably well in High Efficiency
Video Coding (HEVC). Nevertheless, if the rate estimation is inaccurately performed, that is, the R and A
values for a current frame cannot be linearly modeled with their respective values in the previous frames,
the resulting RC performance is degraded. In our work, we adopt the RBE which alternates prediction and
update steps not only to precisely estimate the rates, but also to allocate target bits based on the changes
in the distortions of the previously coded frames, thus considering the rates and distortions simultaneously.
Therefore, an elaborate RC can be performed especially at fluctuating frame complexities. Experimental
results show that our RC method outperforms the RC of VVC Test Model (VTM-5.0) in terms of normalized
root mean square error (NRMSE) with maximum (average) 34.95% (12.35%) improvement, and maintains
higher visual quality consistency in terms of standard deviation of PSNR by 33.07% (22.34%) improvement
for All Intra (AI), maximum (average) 44.82% (27.29%) and 22.54% (9.50%) for Low Delay (LD),
and maximum (average) 47.35% (39.94%) and 30.35% (18.54%) for Random Access (RA), respectively,
compared to the default RC method of the original VTM-5.0.

INDEX TERMS Rate control (RC), bit allocation (BA), rate and distortion (R-D) models, recursive bayesian

estimation (RBE), versatile video coding (VVC).

I. INTRODUCTION
Recently, Joint Video Exploration Team (JVET) of ITU-T
Video Coding Experts Group (VCEG) and ISO/IEC Mov-
ing Picture Expert Group (MPEG) have been developing
the Versatile Video Coding (VVC) standard [5] beyond its
predecessor, the High Efficiency Video Coding (HEVC) stan-
dard [6]. Various and novel video coding technologies such
as Coding Tree Unit (CTU) structure, intra/inter prediction,
transforms, in-loop filtering, entropy coding, etc. [7] are
devised and tested in a VVC Test Model (VTM) platform [1].
An R-Q (rate-quantization) model such as the Lapla-
cian mixture model (LMM) [8]-[11] has increased the rate
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estimation performance in HEVC [6]. However, our previ-
ous work [12] demonstrated that the LMM is less effec-
tive for R-D estimation when applied for VVC Test Model
(VTM-5.0) [1] compared to the HM [13]. This is because the
residues are obtained in various-sized CUs of deeper depths
(maximum 9-level depth) in VVC become more complicated
problems than those (maximum 4-level depth) in HEVC.
Although an R-A model [2]-[4] adopted in HM worked
reasonably well and less complex than the LMM, the R-D
estimation performance would be degraded unless the R and A
values for a current frame cannot be linearly modeled with
their respective values in the previous frames. Also, since
VVC has more flexible coding structures, some predefined
model parameters of the R-A model used in HEVC might be
no longer effective for VVC [14].
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In our previous work [12], we showed that our recursive
nonlinear estimation on the probability density function (pdf)
of particles (rates) via a Bayesian theorem and a sequen-
tial importance resampling (SIR) algorithm was effective in
enhancing the R-D estimation performance. In this work,
we present an R-A model-based RC that relies on our previous
stochastic framework for rate estimation. As a result, more
precise RCis obtained which yields robust rate estimation and
less-fluctuating visual quality over frames. The contribution
of our work is summarized as follows:

(i) We utilize a reliable and robust rate estimation method
based on a recursive Bayesian estimation (RBE)
scheme [12] to stochastically estimate the rates for
the next frames to be encoded. The RBE-based rate
estimation not only utilizes the real rates of previously
encoded frames but also considers their distortions so
that more elaborate RC can be performed especially
with fluctuating frame complexities.

(i) Our RC method is comprehensively applied for All
Intra (AI), Low Delay (LD), and Random Access (RA)
configurations, and shows the effectiveness of rate con-
trol by reducing the PSNR fluctuations and by utilizing
the estimated rates by the RBE for bit allocation which
can effectively replace the default rate estimation of the
R-X model in the RC of the original VTM-5.0 [1].

The remainder of the paper is organized as follows: In
Section II, we address the related works on R-D models for
RC and bit allocation (BA) used for previous video coding
standards; In Section III, our proposed method is described
in details; In Section IV, experimental results are presented,
and Section V concludes our work.

Il. RELATED WORKS

A. RATE CONTROL (RC)

In video streaming and transmission, rate control (RC)
is a crucial issue for practical applications. Thus, var-
ious RC algorithms have been thoroughly studied and
implemented into various video coding standard reference
models such as Test Model (TM) 5 of MPEG-2 [15], Verifi-
cation Model (VM) 8 of MPEG-4 [16], Joint Model (JM) of
H.264/MPEG-4 Advanced Video Coding (AVC) [17] and
HEVC Test Model (HM) of HEVC [2], [6], [13].

For H.264/MPEG-4 AVC [17], Jing et al. considered an
average gradient per pixel of the frame for enhancing the
prediction accuracy of a quantization parameter (QP) to be
applied for encoding [18]. Yan et al. utilized distortions by
taking an image complexity for better intra-frame rate esti-
mation [19]. Chang et al. proposed joint RC for a hybrid
coder using gradient-based R-Q and D-Q models [20]. For
HEVC [6], Karczewicz et al. have taken into account the
sum of absolute transformed differences (SATD) as a com-
plexity measure for the R-A model [21]. Wang et al. applied
gradient terms for the scene complexity to determine a new
R-X model to increase the rate estimation performance for
RC [22]. Gao et al. improved the R-D performance through
the optimized CTU-level BA using a structural similarity
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(SSIM)-based game theory approach [23]. Although it seems
fancy and reasonable, it entails high computational complex-
ity. In order to reduce both the bit-rate and visual quality
fluctuations, many methods have been studied that aimed at
maintaining the visual quality consistency over frame evolu-
tions [10], [24]-[26]. Recently, for VVC [5], a new quality
dependency factor is derived in accordance with temporal
layer for rate control [53]-[55]. In addition, a quadratic R/D
model is proposed especially for intra frame rate control [56].

B. BIT ALLOCATION (BA) OPTIMIZATION
In order to improve the R-D performance for RC, various bit
allocation optimization schemes have been studied [4], [23],
[27]-[30]. In particular, Li et al. formulated an optimization
problem to minimize the average distortion MINAVE [4].
By solving the optimization problem with a quality depen-
dency constraint, they theoretically explained different A val-
ues of the R-D cost function should be considered for every
frame. Also, with temporal levels of LD and RA configura-
tions, the BA process was conducted by weighted A values
to reduce the computational complexity [31]. The aforemen-
tioned BA process was implemented into the HM [13].
Chen et al. utilized a bi-section algorithm to explore an
optimal A value for a CTU-level RC and BA [28]. Li et al. pro-
posed an algorithm to get a A value for the CTU-level RC and
BA with a closed-form equation via Taylor expansion [27].
Also, Guo et al. extended the algorithm into a frame-level
RC and BA [29]. Fiengo et al. utilized a forward-backward
primal-dual (FBPD) algorithm to solve the optimization prob-
lem for its recursive R-D model [32]. In addition, to boost
up the efficiency of the CTU-level bit allocation, a game
theory approach is taken [23]. Also, a machine learning-based
technique is considered for improving the prediction accuracy
of the R-D model [30].

C. R-D MODELS

The rate and distortion (R-D) models are importantly used
to help generating adequate bits for RC where many R-D
models have been studied [2], [3], [8]-[12], [18], [20], [22],
[25], [26], [28], [30], [33]-[39].

1) R-Q MODELS

From the information theory, a closed-form solution for rate
and distortion function can be derived [40]. In VM 8 of
MPEG-4 [16], the rate and distortion function for residues
of Laplacian pdf is expanded by the Taylor series such that a
quadratic rate model is formulated as [33]:

R=aQ '+ b0 )

where a and b refer to model parameters according to video
content characteristics, Q indicates a QP, and R is a target
bit amount for a certain coding level. Previously, in order
to increase the rate estimation accuracy of the former video
coding standards such as H.264/MPEG-4 AVC [17] and
HEVC [6], several studies exploited the gradients of pixel
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intensities [18]-[22]. Also, various pdf models for trans-
form coefficient (TC) values such as Laplacian, Cauchy,
and Gaussian were investigated to increase the R-Q models’
accuracy [37], [41]. As a special case of the R-Q models, p,
a percentage for quantized transform coefficients (QTC) of
zeros from the pdf model of TC values is utilized as a linear
function. It is called an R-p model as [36]:

R=60-(1—p)-N (2

where 1-p indicates a percentage of non-zero QTC in a frame,
0 is a model parameter, and N indicates a total number of
pixels in the frame.

2) R-Q MIXTURE MODELS

Several schemes for an R-Q mixture model were developed
by exploiting the different characteristics of pdfs in vari-
ous CU depth levels [8]-[11]. The R-Q mixture model is
expressed as a multiple mixture model of Laplacian function:

Ncy—1 ¢
y(x) = e P x et )

f ; Pi
where x represents TC values, p; is the portion of pixels in
the i-th CU depth per frame, Ncy is the total number of
CU depth levels (= 4 for HEVC), ¢; is the Laplacian model
parameter as ﬁ o;, where o; is the standard deviation of
TC values in the i-th CU depth per frame, and ) is the set
of real numbers. It is demonstrated that multiple R-Q models
can be better fitted to the pdfs of actual TC values [8]-[11].
Gao et al. proposed a synthesized pdf model by minimizing
the Kullback-Leibler divergence, and then the synthesized
pdf model is collaborated with the R-p model to increase the

R-D estimation accuracy [35].

Since the conventional R-Q models rarely deal with
the non-texture bits, the rate estimation performance is
decreased. In order to overcome these problems, texture and
non-texture bits are separately estimated by their own mod-
els [9], [11]. It worked reasonably in HEVC, however, it is
computationally burdensome since the coding depth levels
are highly increased in VVC. Moreover, the computational
complexity is significantly increased when the LMM with
the radial basis function (RBF) network is used for R-D
performance improvement [11].

3) R-A MODELS

The conventional R-Q models developed for MPEG-2 [15],
MPEG-4 [16], and H.264/MPEG-4 AVC [17] suffer from
imprecise rate estimation performance as the video coding
technologies get advanced. In HEVC [6], since encoded bits
are influenced by the various coding parameters of intra and
inter modes, a QP is not the only critical factor determining
the amount of resulting bits compared to the previous video
coding such as H.264/MPEG-4 AVC [17]. Instead of the
R-Q models, several ideas regarding the relation between the
QP (or rate) and a Lagrangian multiplier A that represents
the slope of the R-D curve were proposed [2], [3], [42].
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From the viewpoint of rate-distortion optimization
(RDO) [43], the distortion (D) should be minimized such that
the rate (R) is less than a given bit budget (Ry) as:

min D s.t.R <Ry 4

Via the Lagrange multiplier method [44], (4) can be expressed
by an unconstrained problem as:

J=D+x-(R—Rp) &)

where J is an R-D cost function and A is the Lagrangian
multiplier. Moreover, Mallet et al. verified that the R-D curve
can be expressed as a rectangular hyperbolic function as [45]:

DR)=¢-R7” (6)

where ¢ and y are model parameters, and y remains of
the order of 1. It is also demonstrated that the rectangular
hyperbolic function is more suitable than the exponential
function [3]. Since the R-D curve is convex, it is differen-
tiable. Thus, (6) can be rewritten as:

A=—3dD/dR=gyRV"". (7
From (7), we have an R-A model as:
A= RP 8)

where « and § indicate parameters of the R-A model. It should
be noted that R in (8) contains bits for both texture and non-
texture, while R in (1) only contains the texture bits. Owing to
the precise R-D modeling performance, the R-A model-based
RC algorithm has been adopted into the HM [2], [3], [6], [13].
However, the model parameters in (8) are estimated by a pre-
viously coded data such that the R-D modeling performance
is likely to be degraded when the characteristics of previously
coded data are nonlinear.

Ill. PROPOSED FRAME-LEVEL CONSTANT BIT-RATE
CONTROL USING RECURSIVE BAYESIAN ESTIMATION

In order to make an elaborate rate control for VVC by over-
coming the various shortcomings of previous R-D models,
we propose a frame-level constant bit-rate control using RBE.
To be self-contained, we briefly review the basic concept of
the RBE used for our frame-level constant bit-rate control in
the following.

A. RECURSIVE BAYESIAN ESTIMATION (RBE)

A recursive Bayesian estimation (RBE) can be used for vari-
ous applications of signal processing, control and dynamical
systems, computer vision, and robotics to estimate a system
information such as states, model parameters, and so on [46].
The Bayesian theorem [47] is utilized for a Bayesian estima-
tion to construct a posterior probability density of the state
from all the measurements given an initial prior probability
density. In the RBE, two steps (prediction and update steps)
are needed basically to perform the estimation. In the pre-
diction step, a state evolution probability is used to predict
a prior probability density while, in update step, both the
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prior probability density and a measurement data are used to
obtain the posterior probability density. Through these two
alternate steps, an optimal estimate can theoretically be found
in accordance with several criterions such as means, modes,
medians, and so on [46]. In addition, the estimation accuracy
can be measured in terms of covariance.

1) BAYESIAN ESTIMATION

Estimation procedures collect the information of parameters
for a random vector X, defined as a state, from a random
vector y which is often obtained from an imprecise (or noisy)
measurement equipment or random modeling. Usually, X is
assumed having a known prior probability density p(X).
According to the Bayesian rule, as y is measured, the knowl-
edge of parameters for x is changed as [47]:

p&[Y) = pGIX)pE) /p() ©)

where the posterior probability density p(x|y) after receiving
y represents everything about the parameters of X, and the
denominator p(y)is a scalar positive constant that can be
found by marginalization as [47]:

Py = / pOIXPpX)dx. (10)

Thus, we only consider the numeratorp(y|x)p(x) in (9) to
solve p(x|y). Several estimates for the Bayesian estimation are
found via a conditional mean estimate (ME) and maximum a
posteriori (MAP) as [46]:

Sy = f p(R[p)dx (11)
Xpap = arg m}axp(fly) (12)

where Xy and X4 p are the scalar estimates of ME and MAP.

2) RECURSIVE ESTIMATION

State evolutions occur for each time sequence via the Markov
process with an initial state Xo ~ p(X() in a recursive estima-
tion process. A state transition (or prior) probability density
can be expressed as [46]:

PXk+11Xk), k=0,1,--- (13)

where x; is the state vector at time instant k. Since it is
often assumed that the measurement vector y, is condi-
tionally independent of the previous measurement vectors
(1> Y2, -+ » Yk—1) given the current state Xi, a likelihood
probability density is described as [46]:

POk 1Xk),

Both of the transition and likelihood probability density
models in (13) and (14) rely on time instant k. In addition,
the relationship between (13) and (14) can be described as
a hidden Markov model (HMM) [48]. In HMM, the states
are hidden (to be estimated), but the measurements depen-
dent on the states are visible. Fig. 1 shows a flowchart of a
HMM. As shown in Fig. 1, the state transition and likelihood
probability density models are described via the first-order

k=0,1,---. (14)
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p(X, | X,_,): first-order Markov process

3 | states
77 (hidden)
1>

measurements
(observed)
.

p(¥, | X,): measurement dependent on the states

FIGURE 1. A flowchart of a hidden Markov Model (HMM). X and y,
refer to a state random vector in (13) and a measurement random vector
in (14), respectively. p(xy X _;) and p(y |X) indicate a state transition
probability density in (13) and a likelihood probability density in (14),
respectively.

Markov process and measurements dependent on the states,
respectively. By the HMM and Bayesian theorem in (9),
the posterior probability density can be inferred. More specif-
ically, by adopting the Bayesian and recursive estimations
alternately, the conceptual solution for RBE can be obtained.
Based on the assumption that the state evolution X is the
Markov process and X1 is independent of y, when Xj is
given. Thus, we have

PEit1, Xk V) = pret1 Xk, YOPEr¥y)
= p(Xk+11XOpEe|yy)- (15)

By integrating both sides of (15) with respect to X, we have
the following Chapman-Kolmogorov identity [49]:

PEr1lyy) = /P()_Ck-i-lp_ck)[’(?_Ck [y )dxy. (16)

Eq. (16) is the prediction step where the prior probability
density is estimated in the Bayesian recursion. In order to
find the posterior probability density p(Xk|y;), we apply the
Bayesian theorem in (9) to the measurement vector y; based
on a conditional independence assumption on y; in (14),
which results in:

P& V) = POk Xk Ve DPEk k1) /PO Fk—1)
= p [ XOPEk V- 1) /PG Fx—1) 17

where p(y;|xx) and p(xk|y;_;) indicate the likelihood and
prior probability densities in (14) and (16) at time k, respec-
tively, and pGy[¥x—1) = [ pOx|X)pEk|F4—1)d is a nor-
malizing constant value [50]. Eq. (17) is referred to as the
update step in the Bayesian recursion. According to (16)
and (17), the prior and posterior probability densities can
be alternately updated to enhance the prediction accuracy.
Moreover, scalar point estimates, such as ME and MAP,
and estimation error covariance C based on p(X|y,) are
expressed as [46]:

o / Fp (e T (18)

B map = arg max p(e|3), (19)
k
C = / Gk — 2@, — )" pEeydxk.  (20)
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In spite of the theoretical optimal solution of the RBE to
compute p(Xg|y;), (17) is not a practical solution due to the
intractable integrals with the infinite representations of pdfs
for prior and posterior.

3) PARTICLE FILTERING

Particle filtering (PF) obtains an estimate value (e.g.,
an updated mean, model parameters) based on point (particle)
mass representations of probability densities by applying the
Bayesian theorem [46], [50], [51]. It is very advantageous
for the particle filtering that any distribution of randomly
sampled particles can be applied to its robust SIR algorithm to
have the estimate value whereas other conventional methods
require predefined distribution functions [46]. Thus, the par-
ticle filtering can be widely used for various applications such
as terrain-aided navigation, economic forecasting, statistical
signal processing [46], [50], [51]. Our previous work treated
the rates and distortions as random variables whose pdf forms
are unknown, and applied the PF for the R-D estimations in
VVC for the first time [12].

Fig. 2 illustrates a particle filtering concept. As shown
in Fig. 2, the RBE is performed via the SIR algorithm
to have the posterior probability density p(xx|y;) in (17).
The prior probability density p(xXi|y;_;) at time k in (16)
and the likelihood probability density p(y, |xx) in (14) are
plugged into (17), which is called the update step to have
Pk [yr). Then, p(xk|y;) is plugged back into (16), which is
called the prediction step to have the prior probability density
p(Xk+11y;) at time k + 1. Therefore, the alternate operations
between the update step and the prediction step increase the
prediction accuracy of particle filtering. Detailed mathemat-
ical definitions and descriptions of the SIR algorithm for
particle filtering can be found in our previous work [12].

P(E, | Ty o

, prior pdf
I

Wﬁ
O
)
-
z

i
i

ZCAES)]

i likelihood pdf
i

i

. f
v (ARRRRRRRREESI

v
(x| V) O o

i posterior pdf
I

[ é}SIR RBE

I
v
¥ ET R o WY 2NV e Ve Yo YN o YN o Y Ve Y Y Y - k1S
P(Fe ‘yk) O é is12, N
prior pdf
*SIR: sequential importance resampling
*RBE: recursive Bayesian estimation

FIGURE 2. An illustration of a particle filtering concept. Xy and y
indicate a state vector in (13) and a measurement vector in (14),
respectively. p(xy [y, _1) and p(X 1 [y i) refer to the prior pdf in (16) at
time k and time k + 1, respectively. p(yy IX) and p(xy |y ) represent the
likelihood pdf in (14) and the posterior pdf in (17), respectively.

B. PROBLEM FORMULATION

As mentioned in Section I, rate control algorithms using the
LMM-based R-Q model is problematic when R-D estimation
is not precisely performed in VVC [5] that has a deeper
coding structure than HEVC [6]. Moreover, rate estima-
tion (RE) performance of the R-A model is degraded if the
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respective linearities among A and bpp values are not main-
tained. In order to cope with these problems, we formulate
the RE problem as:

Aopt = arg m}\in |[Rr — R ()|
$.t. D (Rmax) < D (R(X)) < D (Rmin) 21

where R7 indicates a proposed target bit amount per-frame,
and R(A) and D(R(})) indicate a rate and a distortion of the
R-A model, respectively. It is noted that D(-) indicates the
distortion function in (6). Ryjn and Rpyax are the minimum
and maximum allowances of rates, respectively, to prevent
a buffer from overflowing and underflowing. A, represents
an optimal value to be found in the R-A model, which can be
solved by certain optimization techniques.

Our previous work [12] showed that the rate and distortion
values are obtained quite in random due to various spatial and
temporal complexities of the input video sequences. Thus,
the rate and distortion values can be regarded as random vari-
ables, so being modeled by a certain pdf. Therefore, we pro-
pose an RBE-based stochastic framework in Section-III-A
that simply predicts R to solve the formulated problem
in (21) without additional computation for an optimization
technique.

C. FRAME-LEVEL RATE ESTIMATION (RE), BIT
ALLOCATION, AND RATE CONTROL USING RECURSIVE
BAYESIAN ESTIMATION

Fig. 3 describes an overview of our proposed frame-level RE,
BA, and RC using RBE. Initially, a target bit-rate for RC is set
as input to our algorithm. The proposed frame-level RE using
RBE estimates an intermediate rate, T}; *1 which can not only
improve the rate estimation accuracy but also be effectively
used for our BA process. Then, a proposed target bit amount
per-frame Ry is calculated by our RBE for BA process so that
R7 canbe applied for the R-A model [2]-[4] to determine A, .
Then, A, is used for selecting an appropriate QP. Finally, the
selected QP is utilized for our video encoding process. The
details of our proposed method are described in the following
sub-sections.

1) PROPOSED FRAME-LEVEL RATE ESTIMATION USING RBE
Our RE method utilizes the RBE by considering a distor-
tion variation. The distortion variation between two encoded
frames is defined as:

AMSEy =y - (MSE; — MSEi_,) /MSEj—, ~ (22)

where MSE}, and MSE} _,, are the mean square error in frame
k and k-n, respectively, and y is a control parameter for
the rate adjustment, which is empirically set to 0.3 for our
experiments. Also, n is empirically set to 2 which yields an
appropriate variation for distortion to properly respond to
the dynamics of distortions during the RE. Also, we used
empirically found values, y = 0.3 and n = 2 for all test
sequences and QPs (= 22, 27, 32, and 37), which reasonably
work well.
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Updated R-A model parameters for RC

L Bit-sequences

Proposed Method QP Video encoding process
Target bit-rate Frame-level rate estimation (RE)/ = (prediction, transform, quantization,
bit allocation (BA)/rate control (RC) entropy coding, and so on)
RBE-based RE | 71 | BA R, R-/ model » RC
An intermediate rate 75" and Tits in (26) An optimal lambda value QP is selected
is estimated by (25) are combined by (27) is obtained by (28) by (29)

FIGURE 3. An overview of the proposed frame-level rate estimation (RE), bit allocation (BA), and rate control (RC) using RBE. i/;“ is
an intermediate rate by the proposed RE, Ry is the target bit amount per-frame by the proposed BA, Tgj is the target bit amount
per-frame by the frame-level BA in [1], Aopt is an optimal value of the R-. model [2]-[4], and QP is a quantization parameter.

For the practical implementation of RBE, by regarding the
rates as random variables of unknown pdfs, the SIR algorithm
in our previous work [12] is exploited. Initially, we randomly
generate N (= 150) rate particles whose vector form is 7
at frame k from a normal distribution with mean (= 0) and
standard deviation (= 0.1). In addition, initial particle weights
for 7y are set to 1/N. Then, the prediction and update steps
in (16) and (17) are performed alternately. Furthermore, the
weights adjusting and normalizing processes for particles
are performed by the update steps using measurement data
(= actual encoded bits or distortions) [12]. For this, the RBE
is able to stably estimate the rates even though it relies on a
stochastic framework. So, the rate particles are propagated to
the next frame k + 1 as:

Frer=Re-[1 1 117 + AMSE;, - 7¢
%/__/
N

(23)

where Ry is the actual scalar rate of frame k after video
coding and AMSE} is the variation of distortion in (22).
After propagating the rate particles 7; to frame k + 1,
the rate particles 74 are resampled for N times according to
Thtl = g2+1(7k+1) where g;'cH(-) is the sampling function
that randomly samples the i-th particle r; 1 with replace-
ment at frame k + 1. Then, the weights (or probabilities) of
Tr+1 are normalized as:

N .
Sik+1 = P(Tik+1) Zj:] prjk+1), i=12,....N
(24)
where p(7i41) is the pdf of 74 1. By inner product with 741

and 541, the intermediate rate estimate for frame k + 1 via
the RBE considering AMSE}, can be obtained as:

TE =501 - T (25)

where 71 and 5S¢4 are the rate particles in (23) and their
weights in (24) at frame k + 1, respectively.

2) PROPOSED FRAME-LEVEL BIT ALLOCATION AND RATE
CONTROL

In the R-A model-based RC, the target bit amount per-frame

for the frame-level BA is defined as [1]:
Tpirs = (RrsL — Rrpr - (Nres — SW)) /SW (26)
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where Rrpr is a total bit budget, and Rypr = Tpr / FR
indicates an average target bit amount per-frame. Tpg and
FR indicate a target bit-rate (bits/sec) and a frame-rate
(frames/sec). Ny is a number of frames left, and SW is the
size of a sliding window for bit-rate fluctuation smoothing
which is set to 40 [1], [3].

Usually, a bit allocation per-frame is deeply related to the
performance of RC since the RC calculates a QP based on the
allocated target bits. However, in the R-A model [2]-[4], Tpis
is allocated simply in a mechanical manner in accordance
with a certain frame-complexity measure. Thus, it not only
degrades an R-D performance but also fluctuates the visual
quality over frames. It is noted that an elaborate optimization
technique for BA process is not considered in this work since
we rather focus on simplified RC and BA processes. How-
ever, if an RBE-based BA is exclusively applied, it causes
a buffer underflow and results in the lack of bit resources
toward the end of a video sequence. In order to prevent
this problem, we restrict the proposed target bit amount per-
frame Ry by averaging the target bit amount per-frame Tpiys
in (26) and the intermediate rate T/!f *1 for frame k + 1 by our
frame-level RE using RBE in (25). Thus, Ry is defined as:

Ry = (TBits + T£+])/2.

As described in (21), A4, can be solved by certain opti-
mization techniques such as gradient descent method, bisec-
tion method, and so on [28, 44] to calculate QP, which may
cause high computational complexity. In order to relieve this,
R7 in (27) is assumed as a true rate value thanks to the high
RE accuracy in our RBE-based stochastic framework. Thus,
(21) is rewritten as:

R()\opt) - (TBits + T}/;+l)/2 =0

where R(A,p)is an estimated bit amount by (8). Thus, A, is
obtained by solving (28). In addition, via the relation between
R-X\ and QP [2, 3, 42], QP is determined as:

OP = round(c - In(A) + d) (29)

where ¢ (= 4.20005) and d (= 13.71220) are empirical con-
stant values [2], [3], [42] and round() indicates the function
to round a value to its nearest integer. Then, by substituting
Aopr into (29), QP can be calculated. In order to prevent

27)

(28)
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abrupt changes for both 1., and QP, the allowable ranges
are constrained with [Aqyg - 2723, Agyg - 2%/°] and [QP,,,-2,
QPavg + 2], respectively [2, 3]. Moreover, the R-A model
parameters in (8) are updated by the linear update model [3].
It is noted that the same initial model parameters of the R-\
model in HEVC are applied for our experiment.

Fig. 4 summarizes a flowchart of frame-level RE, RC and
BA schemes using RBE. As shown in Fig. 4, in order to reflect
the R-D characteristics into RC, the distortion variations of
previously encoded frames in (22) is considered. Then, the
proposed RE through the SIR algorithm [12] is applied to
have the intermediate rate estimate T}g *+1 for frame k + 1. The
proposed BA process is performed by achieving the proposed
target bit amount per-frame (Rr) as an average of T}Q‘H
and Tpj;s according to (27). By using Rr, Agp is calculated
by (28). Finally, QP is determined by (29), then the QP is
used for our rate distortion optimized video coding.

S

r,i Propagating rate i

Calculating of distortion I particles by (23) : %, |i
variation of two encoded ! i i
frames as AMSEx by (22) |/ | Normalizing particle |
‘LAMSEk oo weights by (24) : S, |

| ¥ 3

RBE-based RE : T;*' by — - -
the SIR algorithm in [19] Predicting an 1ntermeid1ate
rate by (25) : T3

lf}f” B e — ,

BA:Rrby (27) Tgmi Target bits Tsis calculation
collaborated with Tsis & 75" || by the frame-level BA in [1]

lRT ST -

Calculating of optimal Rate distortion optimized

lambda value 4,, by (28) video coding
VA op
RC : QP is determined

by (29) End

FIGURE 4. A flowchart of frame-level rate estimation (RE), bit allocation
(BA), and rate control (RC) schemes using recursive Bayesian
estimation (RBE).

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTINGS

To prove the fidelity of our proposed method for the frame-
level RE, BA, and RC using RBE, the proposed RC method
is implemented into VVC Test Model reference software
(VIM-5.0) [1]. All the experiments are performed under
All Intra (AI), Low Delay (LD), and Random Access (RA)
configurations using GOP (= 1), GOP (= 4), and GOP (= 8),
respectively, with four QP values (22, 27, 32, and 37) in
the JVET common test conditions [52]. For an intra frame
period, only first frame is an intra picture for Al and LD
configurations. The intra frame period is 8 for RA con-
figuration. Rate-distortion optimized quantization (RDOQ)
and rate-distortion optimized quantization for transform
skip (RDOQTS), context-adaptive binary arithmetic cod-
ing (CABAC), and sample adaptive offset (SAO) are acti-
vated for use during encoding. The intra coding tools of
VTM-5.0 such as multiple transform selection (MTS), low
frequency non-separable secondary transform (LFNST), intra
sub-partitions (ISP), and matrix-weighted intra prediction
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TABLE 1. Detailed Information of Sequences for Experiments.

Sequences Classes Sizes fps d];l:th 2;’1122‘
BlowingBubbles D 416x240 | 50 8 100
RaceHorses D 416x240 | 30 8 100
BOMall C 832x480 | 60 8 100
BasketballDrill C 832x480 | 50 8 100
Kristin and Sara E 1280x720 | 60 8 100
FourPeople E 1280x720 | 60 8 100
Cactus B 1920x1080 | 50 8 100
ParkScene B 1920x1080 | 24 8 100
BasketballDrive B 1920x1080 | 50 8 100
BQTerrace B 1920x1080 | 60 8 100
Kimono B 1920x1080 | 24 8 100
Traffic A 2560x1600 | 30 8 100
People on Street A 2560x1600 | 30 8 100
Tango?2 Al 3840x2160 | 60 10 100
FoodMarket4 Al 3840x2160 | 60 10 100
Camplfire Al 3840x2160 | 30 10 100
CatRobotl A2 3840x2160 | 60 10 100
ParkRunning3 A2 3840x2160 | 50 10 100
DaylightRoad?2 A2 38402160 | 60 10 100

(MIP) are activated. Also, fast implementation tools such as
FastLFNST, FastMIP, and ISPFast are activated. The max-
imum width, height, and partition depth of CU are 64, 64,
and 4, respectively. The CTU size is 128.

For the experiments, we use nineteen test sequences of
seven classes which have different texture characteristics and
resolutions (Class Al (3840 x 2160), Class A2 (3840 x 2160),
Class A (2560 x 1600), Class B (1920 x 1080), Class C
(832x480), Class D (416 x 240), and Class E (1280 x 720)),
which have been used as the test sequences in VVC devel-
opment. Note that Class A, Class B, Class C, Class D, and
Class E are 8-bit depth sequences, and Class Al and Class
A2 are 10-bit depth sequences. More information on the
test sequences is listed in Table 1. To evaluate the proposed
method for frame-level RE, BA, and RC using RBE, its
RE and target bit-rate allocation performances are compared
to those of VTM-5.0 with the R-A model [2]-[4]. The RE
and target bit-rate allocation accuracies are measured by a
normalized root mean square error (NRMSE) and bit-rate
accuracy (BRA) measure, respectively, which are defined in
Section-IV-B. The target bit-rates for each test sequence are
determined as the actual bit-rates obtained at four QP values
(22, 27, 32, and 37) without the RC activation using VTM-
5.0 [1], and are then compared with the encoded bit amounts
obtained by the proposed RC method and the VTM-5.0’s RC
method [1]. For the evaluation of visual quality consistency
over frames, a standard deviation for the PSNR values of all
encoded frames opsnR is used for each test sequence.

B. EVALUATION ON RATE CONTROL AND BIT ALLOCATION
The accuracy for RE is measured in terms of NRMSE. The
NRMSE metric [12] is defined as:

1 N (Est (k) — Act (k))?
NRMSE — | 2= (Est (k) — Act (k) < 100
avg (Act) N
(30)
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TABLE 2. Average BRA, NRMSE and opg\gr bf performances for the proposed RC method and the default RC method of the original VTM-5.0 [1] under Al.

Default RC method [1] Proposed method Proposed vs. Default RC method [1]

Sequences Avg. BRA Avg. A Avg. BRA Avg. A NRMSE OpsNR

(%) NRMSE V& OpsiR (%) NRMSE VE- OPSNR | improvement (%) | improvement (%)
BlowingBubbles 99.74 2.69 0.44 99.53 2.37 0.36 12.27 27.69
RaceHorses 99.74 3.30 0.34 99.74 2.66 0.22 19.10 33.07
BOMall 99.90 2.06 0.24 99.92 1.75 0.18 15.86 22.24
BasketballDrill 99.83 2.71 0.16 99.80 1.94 0.12 25.98 24.44
Kristin and Sara 99.91 1.74 0.07 99.87 1.64 0.05 6.10 23.51
FourPeople 99.92 1.52 0.07 99.93 1.41 0.05 7.23 26.50
Cactus 99.98 1.29 0.07 99.98 1.17 0.05 10.09 21.71
ParkScene 99.99 1.81 0.06 99.98 1.65 0.04 8.46 30.71
BasketballDrive 99.97 4.99 0.82 99.88 4.45 0.56 27.62 9.61
BQTerrace 100.00 1.01 0.17 99.91 0.92 0.14 10.97 17.24
Kimono 99.96 1.82 0.14 99.96 1.72 0.13 4.95 1291
Traffic 99.98 1.39 0.07 99.98 1.27 0.07 8.18 12.73
People on Street 99.99 1.93 0.13 99.98 1.84 0.10 4.54 22.45
Tango?2 99.95 2.39 0.07 99.92 2.11 0.06 11.45 9.45
FoodMarket4 99.77 6.63 0.42 99.96 2.40 0.37 34.95 15.06
Campfire 99.99 3.61 0.38 99.97 2.92 0.33 13.36 12.70
CatRobotl] 99.98 1.65 0.09 99.99 1.52 0.07 8.21 27.62
ParkRunning3 99.98 4.65 0.41 100.00 4.04 0.29 13.11 29.13
DaylightRoad2 99.63 3.92 0.07 99.68 3.57 0.05 10.18 27.76
Total Average 99.91 2.69 0.22 99.89 2.18 0.17 12.35 22.34

*Boldfaced fonts present better performances

TABLE 3. Average BRA, NRMSE and opgng performances for the proposed RC method and the default RC method of the original VTM-5.0 [1] under LD.

Default RC method [1] Proposed method Proposed vs. Default RC method [1]

Sequences Avg. BRA Avg. A Avg. BRA Avg. N NRMSE OpsNR

(%) NRMSE VE- TrNR (%) NRMSE VE-9P\R | improvement (%) | improvement (%)
BlowingBubbles 95.19 93.66 1.21 94.57 56.97 0.93 38.74 22.54
RaceHorses 99.43 23.41 1.14 99.28 19.68 1.05 13.49 8.28
BOMall 98.90 27.82 0.94 99.52 16.47 0.86 39.73 8.46
BasketballDrill 98.85 29.70 0.63 98.07 21.51 0.56 23.07 10.67
Kristin and Sara 96.13 117.53 0.53 96.92 43.39 0.45 44.82 15.31
FourPeople 99.70 120.67 0.46 97.52 96.70 0.40 5.06 12.80
Cactus 98.64 23.57 0.54 98.12 17.25 0.50 28.16 6.24
ParkScene 98.23 29.09 0.60 98.23 16.31 0.55 42.95 6.15
BasketballDrive 99.33 27.74 0.95 98.89 22.15 0.82 20.10 13.79
BQTerrace 95.13 98.13 0.51 94.36 59.31 0.47 38.17 8.27
Kimono 98.96 18.76 0.52 98.69 13.98 0.46 23.55 13.59
Traffic 97.19 48.46 0.50 95.89 38.32 0.47 18.65 4.68
People on Street 99.45 10.74 1.03 99.36 8.03 0.98 25.31 4.41
Tango?2 95.91 72.39 0.42 94.59 47.86 0.39 23.12 7.25
FoodMarket4 97.84 47.62 0.73 96.76 39.28 0.68 20.60 6.12
Campfire 98.28 28.71 1.02 97.92 18.43 0.89 28.81 11.92
CatRobotl 98.14 50.50 0.42 97.16 26.29 0.38 38.39 8.44
ParkRunning3 99.19 21.79 1.38 99.34 16.68 1.30 21.20 6.03
DaylightRoad?2 98.11 32.69 0.49 97.32 24.39 0.45 27.82 5.50
Total Average 98.03 44.00 0.74 97.50 28.38 0.66 27.29 9.50

*Boldfaced fonts present better performances

where N (= 100) is the number of coded frames, Est(k) and
Act(k) refer to the estimated and actual (true) encoded bits
in frame k, respectively, and avg(Act) is the average of actual
coded bits over all the frames. Lower NRMSE values indicate
higher accuracy in RE. For the accuracy measure of RC,
the BRA (%) is used as:

_ |T_BRgr — T_BRuct|
T_BRgr

BRA = <1 ) x 100 (31)

where T_BRgr indicates the target bit-rate obtained by the
VTM-5.0 without RC, and T_BR, is the actual encoded
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bit-rate by the VIM-5.0 with our proposed RC method
(R-) model with our RBE for BA) and the one with the default
RC method (conventional R-A model [2]-[4]). Greater BRA
values indicate higher accuracy in RC.

Table II, Table III, and Table IV show the average
BRA (%), NRMSE, and opsnr performances for the pro-
posed RC method implemented in VIM-5.0 and the default
RC method of the original VTM-5.0 for Al, LD, and
RA configurations, respectively. It is noticed that lower
NRMSE and opsnr values indicate more precise estimates
for the actual (true) rates and more consistent visual quality.
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TABLE 4. Average BRA, NRMSE and opg\g performances for the proposed RC method and the default RC method of the original VTM-5.0 [1] under RA.

Default RC method [1] Proposed method Proposed vs. Default RC method [1]
Sequences Avg. BRA Avg. Ave o Avg. BRA Avg. Ave o NRMSE PSR
(%) NRMSE & OPsNR (%) NRMSE & OpsNR improvement (%) improvement (%)
BlowingBubbles 84.74 156.31 1.56 85.40 85.80 1.04 37.87 30.24
RaceHorses 97.19 74.72 1.86 98.35 54.71 1.52 26.98 16.48
BOMall 89.69 148.31 1.14 86.52 86.41 0.91 42.31 21.26
BasketballDrill 96.11 89.34 0.89 96.94 59.73 0.73 32.67 17.96
Kristin and Sara 71.79 203.68 0.64 74.69 107.32 0.56 47.35 12.22
FourPeople 71.37 208.17 0.86 73.09 111.34 0.71 46.52 15.25
Cactus 79.86 181.61 1.40 78.29 99.20 1.12 45.73 18.58
ParkScene 68.22 203.52 1.02 72.96 107.39 0.75 47.06 30.35
BasketballDrive 97.63 65.08 1.44 98.33 38.27 1.30 37.80 8.41
BQTerrace 73.23 207.86 1.49 75.14 121.24 1.28 40.14 25.82
Kimono 94.06 133.68 0.94 96.53 70.14 0.83 30.19 10.59
Traffic 67.46 206.41 0.83 74.06 109.14 0.65 46.90 22.52
People on Street 94.01 113.29 1.56 94.73 70.36 0.48 36.19 14.83
Tango2 87.99 112.51 0.63 94.24 58.67 0.47 45.12 25.40
FoodMarket4 90.21 127.24 0.23 90.73 79.52 0.19 34.57 17.31
Camplfire 91.31 101.93 0.48 92.26 58.91 0.44 38.52 13.61
CatRobotl 72.97 197.75 0.55 74.00 108.85 0.51 45.08 12.74
ParkRunning3 87.64 101.74 1.68 90.83 59.87 1.47 32.11 20.72
DaylightRoad2 72.60 197.50 1.06 77.84 106.29 0.95 45.80 17.95
Total Average 83.58 148.98 1.07 85.52 84.38 0.84 39.94 18.54
*Boldfaced fonts present better performances
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FIGURE 5. NRMSE plots for estimated rates by the proposed and default RC methods for five test sequences under Al. (a) BlowingBubbles (416 x 240),
(b) BasketballDrill (832 x 480), (c) ParkScene (1920 x 1080), (d) Tango2 (3840 x 2160), and (e) ParkRunning3 (3840 x 2160).
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FIGURE 6. NRMSE plots for estimated rates by the proposed and default RC methods for five test sequences under LD. (a) BlowingBubbles (416 x 240),
(b) BasketballDrill (832 x 480), (c) ParkScene (1920 x 1080), (d) Tango2 (3840 x 2160), and (e) ParkRunning3 (3840 x 2160).

As shown in Table II, Table II, and Table IV, our proposed RC
method outperforms the default RC method of the original
VTM-5.0 for Al, LD, and RA by 34.95% (12.35%), 44.82%
(27.29%), and 47.35% (39.94%) improvements in terms of
maximum (average) NRMSE, respectively, and shows better
visual quality consistency for Al, LD, and RA by 33.07%
(22.34%), 22.54% (9.50%), and 30.35% (18.54%) improve-
ments, respectively, in terms of maximum (average) opsnR,
compared to the default RC method. The average BRAs of
the proposed and default RC methods are 99.89% and 99.91%
for Al, 97.50% and 98.03% for LD, and 85.52% and 83.58%
for RA, respectively. Finally, it is worthy to note that BRA is
measured after encoding the total frames for each sequence
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and its values may not reflect the rate estimation accuracy
frame-by-frame. Therefore, the BRA is more worthwhile to
be analyzed in conjunction with opsNR.

These noticeable improvements on rate estimation accu-
racy and visual quality consistency stem mainly from the
capability that the proposed RC method can precisely pre-
dict the intermediate rates by exploiting our stochastic RBE
framework. In addition, our RC method is capable of properly
allocating the per-frame target bit amount Rr by consid-
ering the R-D characteristics in collaboration with the R-A
model [1].

Fig. 5, Fig. 6, and Fig. 7 show the plots of NRMSE for
estimated rates by the proposed and default RC methods
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FIGURE 7. NRMSE plots for estimated rates by the proposed and default RC methods for five test sequences under RA. (a) BlowingBubbles (416 x 240),
(b) BasketballDrill (832 x 480), (c) ParkScene (1920 x 1080), (d) Tango2 (3840 x 2160), and (e) ParkRunning3 (3840 x 2160).
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FIGURE 8. The R-D curves obtained by the VTM-5.0 [1] without RC at QP = 22, 27, 32 and 37, and with the proposed RC method and the VTM-5.0's
default RC method. For the rate control methods, the target bit-rate at each QP value was set to be the average bit-rate of the encoded bits by the
VTM-5.0 [1] without RC. (a) FoodMarket4 (3840 x 2160) under Al, (b) BlowingBubbles (416 x 240) under LD, and (c) ParkScene (1920 x 1080) under RA.
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FIGURE 9. PSNR fluctuations over frames for the two RC methods under Al for QP = 37. (a) BasketballDrill (832 x 480) with a target bit-rate (Tgg)
of 2,813 kbps, (b) ParkScene (1920 x 1080) with Tgg = 6, 565 kbps, and (c) ParkRunning3 (3840 x 2160) with Tgp = 69, 558 kbps.

for five test sequences with Al, LD, and RA configurations. Al, LD, and RA configurations respectively for QP = 37.
As shown in Fig. 5, Fig. 6, and Fig. 7, the trends of NRMSE As shown in Fig. 9-(a) and Fig. 9-(c), the proposed
curves are almost identical for the both RC methods, but RC method tends to yield smoother PSNR curves with
the proposed RC method shows smaller NRMSE values for smaller peak-to-valley variations, compared to the default
almost all QP value ranges in our experiment. RC method. Especially, the proposed RC method exhibits

Fig. 8 shows the R-D curves obtained by the VITM-5.0 [1] much less visual quality fluctuation between the 60-th and
without RC activation, and with the proposed and default RC 100-th frames in Fig. 9-(b). As shown from Fig. 10-(a) to
methods turned on. As shown in from Fig. 8-(a) to Fig. 8-(c), Fig. 10-(c), it is also noticed that the proposed RC method
some R-D gains by our RC method are found in particular yields smoother change of PSNR curves. In addition, the pro-
ranges from QP = 22 to QP = 37, compared to the default posed RC method tends to yield smoother PSNR curves with
RC method. Similar R-D curves are also achieved for other smaller peak-to-valley variations between the 70-th and 100-
test sequences. th frames in Fig. 11-(a), compared to the default RC method.

Fig. 9, Fig. 10, and Fig. 11 show the measured per-frame Especially, the proposed RC method maintains the visual
PSNR performances between the two RC methods using quality consistency up to the end of the sequence whereas the
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FIGURE 10. PSNR fluctuations over frames for the two RC methods under LD for QP = 37. (a) BlowingBubbles (416 x 240) with a target bit-rate (Tgp)
of 158 kbps, (b) BasketballDrill (832 x 480) with Tgp = 357 kbps, and (c) FourPeople (1280 x 720) with Tgp = 214 kbps.

BlowingBubbles

Traffic

41

Cactus

44
40
42 39
Z40 % 38
[ =
37
é 38 Z
: =%}
9 ! 36
36 -
35
34 —4—VTM-5.0 w/o RC —#—VTM-5.0 w/o RC
—=—VTM-5.0 w/ RC 34 {|—==VTM-5.0 w/ RC
—e—Proposed RC —e—Proposed RC
32 33

Y-PSNR (dB)

—#—VTM-5.0 w/o RC
—=—VTM-5.0 w/RC
—e—Proposed RC

0 20 40 60 80 100 0 20 40
Encoding order

Encoding order

(2) (®)

60 80 100 0 20 40 60 80 100
Encoding order

(©

FIGURE 11. PSNR fluctuations over frames for the two RC methods under RA for QP = 37. (a) BlowingBubbles (416 x 240) with a target bit-rate (Tgg)
of 367 kbps, (b) Cactus (1920 x 1080) with Tgp = 2, 861 kbps, and (c) Traffic (2560 x 1600) with Tgr = 3, 088 kbps.
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FIGURE 12. Subjective visual comparisons with some decoded frames at QP = 37 under Al. (a) Original 72-th frame of Tango2 (3840 x 2160) (cropped),
(b) Original frame (enlarged), (c) Ours (enlarged decoded frame; 38.36 dB), and (d) the default RC method (enlarged decoded frame; 38.28 dB).

default RC method fails to do so especially from the 80-th to
the 100-th frames both in Fig. 11-(b) and Fig. 11-(c).

Fig. 12, Fig. 13, and Fig. 14 show some decoded frames
for subjective visual quality comparisons using Al, LD, and
RA configurations, respectively. Fig. 12 shows the 72-th
reconstructed frame (cropped) of Tango2 (3840 x 2160) with
QP = 37. As shown in Fig. 12-(b) to Fig. 12-(d), the vivid
blemish on the wrist in the original frame shown in Fig. 12-(b)
appears blurred in Fig. 12-(d) by the default RC method.
Fig. 13 shows the 49-th reconstructed frame (cropped) of
BlowingBubbles (416 x 240) with QP = 32. As shown
in Fig. 13-(b) to Fig. 13-(d), the braided hair and face
on the left girl in the original frame shown in Fig. 13-(b)
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appears blurred in Fig. 13-(d) by the default RC method.
Fig. 14 shows the 82-th reconstructed frame (cropped)
of ParkScene (1920 x 1080) with QP = 37. As shown
in Fig. 14-(b) to Fig. 14-(d), a pattern carved on a pillar in
the original frame shown in Fig. 14-(b) appears blurred in
Fig. 14-(d) by the default RC method. However, our RC
method presents better visual quality as shown in Fig. 12-(c),
Fig. 13-(c), and Fig. 14-(c).

From the observations of the extensive experimental results
throughout Table II, Table III, Table IV, Fig. 5, Fig. 6, Fig. 7,
Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig.12, Fig. 13, and Fig. 14,
the proposed RC method shows the superiority of RC per-
formance in terms of NRMSE, opsnr, and PSNR compared
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(@ )
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FIGURE 13. Subjective visual comparisons with some decoded frames at QP = 32 under LD. (a) Original 49-th frame of BlowingBubbles (416 x 240),
(b) Original frame (enlarged), (c) Ours (enlarged decoded frame; 30.76 dB), and (d) the default RC method (enlarged decoded frame; 29.35 dB).

(b) (© (d)

FIGURE 14. Subjective visual comparisons with some decoded frames at QP = 37 under RA. (a) Original 82-th frame of ParkScene (1920 x 1080)
(cropped), (b) Original frame (enlarged), (c) Ours (enlarged decoded frame; 33.70 dB), and (d) the default RC method (enlarged decoded frame; 32.57 dB).
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FIGURE 15. Buffer fullness (# of bits) of Tango2 (3840 x 2160) by the two RC methods for QP = 37. (a) Under Al with a buffer size (Tgs) of 13,138
kbits, (b) Under LD mode with Tgg = 2, 856 kbits, and (c) Under RA with Tgg = 3, 534 kbits.

to the default RC method, for almost all the test sequences
by enhancing both the rate estimation accuracy and visual
quality consistency.

C. COMPLEXITY

Table V shows the complexity of the proposed RC method in
terms of run times, which was performed on a PC platform
with Intel Core™ i-7-8700K CPU@3.70 GHz, a 32.0 GB
RAM and a 64-bit Windows™ 10 operating system. The
average run times were measured with three runs of encod-
ing 100 frames using QP = 22 for each test sequence by
using the VTM-5.0 reference SW encoder [1]. As shown
in Table V, the time increments required for the proposed
RC method are ranged between -11.03% and 5.29% for Al
configuration, —17.48% and 18.62% for LD configuration,
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and —23.16% and 12.93% for RA configuration compared to
the original VTM-5.0 reference SW encoder with the default
RC method. Our RC method, which is implemented into the
VTM-5.0 by replacing the default RC method, has reduced
the encoding time about 0.22% for Al configuration, 0.68%
for LD configuration, and 0.93% for RA configuration in
average, thus not increasing the overall complexity of the
VTM-5.0 reference SW encoder. It is also worthwhile to
mention that the encoding time is affected by the selected QP
values for rate control.

D. BUFFER FULLNESS

In order to seamlessly stream the encoded bit-sequences
within a certain bandwidth under a CBR constraint, a proper
buffer size needs to be defined such that an RC algorithm
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TABLE 5. Processing Complexity Comparison for the proposed RC method and the default RC method of the original VTM-5.0 [1].

All Intra Low Delay Random Access
Sequences Encoding time (sec) | Time increm. (%) | Encoding time (sec) | Time increm. (%) | Encoding time (sec) | Time increm. (%)
Previous | Proposed| Prev. vs. Prop. Previous | Proposed | Prev. vs. Prop. Previous| Proposed | Prev. vs. Prop.

BlowingBubbles 4,691 4,730 0.83 1,892 1,883 -0.48 5,450 5,307 -2.69
RaceHorses 3,792 3,722 -1.87 2,711 2,703 -0.30 8,370 8,320 -0.60
BOMall 14,281 14,378 0.67 6,171 6,089 -1.35 23,693 22,025 -1.57
BasketballDrill 12,492 13,080 4.49 4,880 4,829 -1.06 25,362 22,699 -11.73
Kristin and Sara 16,056 16,019 -0.23 3,873 3,844 -0.75 26,012 25,904 -0.42
FourPeople 20,163 20,324 0.79 3,980 3,919 -1.56 26,290 26,435 0.55
Cactus 91,789 92,094 0.33 2,686 2,709 0.85 126,429 | 126,185 -0.19
ParkScene 82,314 79,003 -4.19 20,896 20,865 -0.15 81,950 81,729 -0.27
BasketballDrive 102,429 95,245 -7.54 48,783 59,947 18.62 70,718 77,951 9.28
BQTerrace 71,797 76,317 5.92 44,084 44,475 0.88 73,183 72,981 -0.28
Kimono 68,729 70,347 2.30 47,241 48,829 3.25 64,366 73,923 12.93
Traffic 128,321 | 127,962 -0.28 32,285 32,417 0.41 204,570 | 206,968 1.16
People on Street 125,845 | 129,619 291 86,311 86,610 0.35 303,170 | 305,855 0.88
Tango?2 233,518 | 230,029 -1.52 100,092 | 100,176 0.08 437,043 | 447,147 2.26
FoodMarket4 69,094 70,742 2.33 57,719 57,999 0.48 145,002 | 143,841 -0.81
Campfire 374,948 | 376,213 0.34 379,706 | 329,058 -15.39 478,725 | 494,462 3.18
CatRobotl 258,811 | 263,101 1.63 71,758 72,080 0.45 216,302 | 214,564 -0.81
ParkRunning3 293,768 | 264,582 -11.03 162,536 | 162,908 0.23 360,903 | 363,005 0.58
DaylightRoad2 553,982 | 553,155 -0.15 314,362 | 267,589 -17.48 328,507 | 266,727 -23.16
Total Average -0.22 -0.68 -0.93

controls the bit generation to prevent buffer overflow and
underflow. The buffer is named as a coded picture buffer
(CPB) whose size is same as a target bit-rate [1]. In our
experiments, both the proposed RC method and the default
method work reasonably well for the CPB state control-
ling without buffer overflow and underflow. Fig. 15 shows
the buffer fullness (= CPB) of Tango2 by the two RC
methods under AI, LD, and RA configurations. As shown
in Fig. 15, the CPBs are stably controlled for seamless stream-
ing. However, as shown in Fig. 15-(a), the default RC method
generates a great amount of bits to adjust the target bit-rates at
the very end of the sequence where the CPB state goes down
abruptly, thus it may cause a buffer underflow.

E. DISCUSSION ON HARDWARE ISSUES

A video encoder for real-time high-fidelity and high-
resolution applications may require a hardware implementa-
tion where bit rate estimation is an essential element [57].
Based on our complexity analysis on the random sampling
function of RBE-based rate estimation using nineteen test
sequences in Table I, the run time of our RC method approx-
imately is less than 2msec per frame while other method
in [8] requires more than 20msec per frame. It is noted
that since our RBE-based rate estimation scheme only uti-
lizes previous encoded distortions and rates for bit estima-
tion, the complexity for rate estimation is not dependent
on the image sizes of test sequences. Nevertheless, in order
to reduce the processing time for bit rate estimation in the
perspective of hardware optimization, a parallel hardware
architecture for random sampling function of RBE-based
rate estimation can be considered. In particular, a probabil-
ity summation and indexing for our RBE-based rate esti-
mation can possibly be implemented in parallel processing
architecture.
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V. CONCLUSION

In this paper, we propose a frame-level constant bit-rate
(CBR) control using recursive Bayesian estimation (RBE) for
Versatile Video Coding (VVC). The proposed RC method
is based on a stochastic framework and considers the R-D
characteristics of the previously encoded frames in estimating
the rate for the current frame with a less visual quality fluctu-
ation. Extensive experimental results have shown that our RC
method can effectively reduce the NRMSE for rate estimation
and opsNr (the standard deviation of all resulting PSNRs) for
visual quality consistency compared to the default RC method
of the original VTM-5.0. This performance gain comes from
the fact that our proposed RC method uses an effective RBE
for rate estimation and regulates the bit allocation (BA) pro-
cess with the estimated bits for VVC. As a future work, a deep
learning-based long short-term memory model (LSTM) for
rate estimation will be studied to improve RC performance
in VVC.
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