
Received December 7, 2020, accepted December 16, 2020, date of publication December 21, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3046185

Metaheuristic Approaches for One-Dimensional
Bin Packing Problem: A Comparative
Performance Study
CHANALEÄ MUNIEN1, SHIV MAHABEER1, ESTHER DZITIRO1, SHARAD SINGH1,
SILULEKO ZUNGU1, AND ABSALOM EL-SHAMIR EZUGWU 2, (Member, IEEE)
1School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4001, South Africa
2School of Computer Science, University of KwaZulu-Natal–Pietermaritzburg, Pietermaritzburg 3201, South Africa

Corresponding author: Absalom El-Shamir Ezugwu (ezugwua@ukzn.ac.za)

ABSTRACT Nature-inspired metaheuristic algorithms have steadily gained popularity over the last two
decades. They have been applied to a plethora of optimization problems both in continuous and combinatorial
domains. In this paper, the one-dimensional bin packing problem is solved through the implementation
of two underlying heuristics, namely, best fit and better fit, and four representative state-of-the-art global
metaheuristic algorithms, namely, firefly algorithm, genetic algorithm, adaptive cuckoo search algorithm,
and artificial bee colony algorithm. The underlying best fit and better fit heuristics are employed by the
four aforementioned global metaheuristic algorithms as reordering heuristics and local search improvement
mechanisms are used for generating good packing schema. Furthermore, these two local heuristics possess
special characteristics which, when incorporated into the global metaheuristics, allow them to escape
local optimums and avoid getting stuck, and more so, enables the algorithms to generate good quality
solutions. The main focus of this paper is the presentation of a systematic performance evaluation study
for the representative algorithms, with some initial computational results that show the effectiveness of the
respective algorithms and their ability to achieve promising solutions. The experiments conducted here were
carried out using three standard bin packing problem datasets categories with over 1,210 instances in total,
eachwith differing capacities, number of items and distributions between itemweights. The numerical results
of the representative algorithms were compared with the solutions achieved with the underlying heuristic
techniques, in this case, the best fit and better fit heuristics, respectively. Similarly, the analysis of the initial
computational results obtained revealed the superior performance of the individual algorithm implementa-
tion. Moreover, performance was established by taking into account both the algorithms computational time
and the solution quality. Overall, several observations regarding the solution and the underlying heuristics
were made. It is worth noting that by utilizing best fit heuristic, the algorithms attained optimal solutions for
instances of the easy dataset requiring smaller capacity bins. However, as the complexity of the instances
increased, the ability to produce high-quality results decreased. Nevertheless, this heuristic can produce near-
optimal solutions and a good packing schema for most instances. On the other hand, utilizing better fit as
the underlying heuristic results in optimal solutions almost all the time, regardless of capacity and number
of items.

INDEX TERMS Bin packing problem, best fit, better fit, firefly, genetic algorithm, adaptive cuckoo search,
artificial bee colony.

I. INTRODUCTION
In the classical one-dimensional bin packing problem, we are
given a positive, fixed bin capacity, C , and a list of n items

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee .

L = (p1, p2, . . . , pn), where pi has a size, s(pi) that must
satisfy the constraint, 0 ≤ s (pi) < C . In other words, the size
of an item must not exceed the fixed bin capacity [30]. The
requirement is to determine the smallest integer, m, such that
there is a partition of L = (B1 ∪ B2 ∪ . . . ∪ Bm) where the
sum of the sizes of the items, pi ∈ Bj, does not exceed the

227438 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3721-3400
https://orcid.org/0000-0002-9363-9289


C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

capacity C . Each set, Bj is usually viewed as the contents of
a bin capacity, C . The sum of the sizes of the items pi ∈ Bj
must not exceed C . The set Bj can be seen as the contents of
a bin. Clearly speaking, items in a list must be packed into
containers, or bins, of a fixed size. The packing must be done
such that the number of containers required is minimized.

Mathematically, the bin packing problem (BPP) can be
modelled as follows [31]. Let u be an upper bound on the
minimum number of bins that are required to pack all the
items in a given list. It can be assumed that these bins are
numbered as 1, 2, . . . , u. Let n be the number of items that
are to be packed. Two binary decision variables must be
introduced as represented in Equations (1) and (2) below:

yi =

{
1 if bin i is used in the solution;
0 otherwise 1 ≤ i ≤ u

(1)

xij =

{
1 if item j is packed into bin i;
0 otherwise 1 ≤ i ≤ u; 1 ≤ j ≤ n

(2)

Then,

Minimize
u∑
i=1

yi (3)

s.t.
u∑
i=1

wjxij ≤ cyi 1 ≤ i ≤ u (4)

u∑
i=1

xij = 1 1 ≤ j ≤ n

yi ∈ 0, 1 1 ≤ j ≤ n

xij ∈ 0, 1 1 ≤ i ≤ u; 1 ≤ j ≤ n (5)

The constraints enforce that the maximum capacity of each
bin must not be exceeded and that each item in the list must
only be packed into one bin. The goal of this optimization
problem can be mathematically expressed as follows:

N ≥ [
(
∑n

i=1 Si)
C

] (6)

where Si represents the size of each item in the list of n items,
and C represents the fixed capacity of the bins.
Although our study focuses on the one-dimensional BPP,

there is a myriad of variants of the BPP, including the clas-
sical one-dimensional bin packing problem (1D-BPP), the
two-dimensional bin packing problem (2D-BPP), and
the three-dimensional bin packing problem (3D-BPP).
In the 1D-BPP, there is a set of items to be packed into a
bin, X = 1, 2, . . . , n where n is the last item in the list [41].
An item carries a specified size, and the bins have a fixed
capacity. The goal is to find the minimum number of bins
without exceeding the capacity of the bins. While (2D-BPP)
works with a group of rectangles correctly identified by
their height and width that must be packed into a minimum
number of containers [42], the (3D-BPP) consists of a lim-
itless number of similar three-dimensional bins possessing
depth, height, and width. Moreover, researchers have studied
specific versions of the BPP to solve specific problems.

An example of this is Coffman, et al., [58] who introduced
the concept of maximizing the total number of items that are
packed into each bin. This was intended to model processor
and storage allocation problems. In this case, given a specific
number of bins, m, and a list of items, X , the aim is to pack
the maximum subset of X into the bins such that the capacity
of the bin is not exceeded. Another example of researchers
investigating variants is Krause et al., [59], who introduced
the BPP that restricts the number of items that are allowed
to be packed into a single bin. Therefore, for some positive
number, k , each bin in the solution must contain at most
k items. This variant attempts to solve a task scheduling
problem.

The BPP has several real-world applications such as indus-
trial applications [24], [25], packaging design in supply chain
management [26] and even in health care communities [27].
Specifically, there are applications of the BPP in the supply
chain industry, such as filling up containers and the loading
of trucks with a given weight limit; this application requires
detailed specifications to be considered when performing the
BPP such as the various sizes of the items or special trans-
portation needs. Real-world application examples from this
instance are the multi-container loading problem [43], and
the multi-pallet loading problem [44]. Other classic exam-
ples include the allocation of memory in computers and the
assigning of commercials to station breaks. In a general sense,
the BPP is a popular and widely researched combinatorial
optimization NP-hard problem. This means that it is very
unlikely that any deterministic polynomial-time algorithms
that solve this problem do exist in practice [23]. Although
there are a handful of approximate algorithms that are able
to solve very small problem instances for the BPP, the fea-
sibility of this approach decreases as the magnitude of the
problem instances increases. Therefore, for real-world appli-
cations, a heuristic approach must be used to find satisfactory
results [28].

In this study six population-based, nature-inspired meta-
heuristic algorithms were employed to solve the classical
one-dimensional bin packing problem, namely, the fire-
fly algorithm (FA) [5], hybrid firefly algorithm (FAH)
[11], [65], adaptive cuckoo search algorithm (ACSA) [13],
hybrid cuckoo search genetic algorithm (CSGA), artifi-
cial bee colony (ABC) [39], and the genetic algorithm
(GA) [50], [64]. It is noteworthy tomention here that themain
focus and contribution of this paper is to evaluate the capa-
bilities of the selected meta-heuristics algorithms to solve
the one-dimensional bin packing problem. More specifically,
it is to investigate the effectiveness and efficiency of those
well-known optimization algorithms namely, the GA, FA,
CS, ABC, and some of their hybrids that have notable track
records in finding good quality solutions for a variety of
difficult and complex practical optimization problems. Fur-
thermore, it is to also carry out comparisons on the various
levels of difficulties for the standard BPP datasets and to
determine how well each of the aforementioned algorithms
performs on different dimensions of the 1D BPP.

VOLUME 8, 2020 227439



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

It is equally important to note that the main benefits of
utilizing metaheuristics to solve complex optimization prob-
lems include the algorithms’ ability to easily handle com-
plex constraints present in real-life applications and produce
high-quality solutions while requiring shorter computational
time [29], [72]–[75]. Each of the algorithms was adapted or
modified and applied to the problem at hand. Furthermore,
the best fit and better fit heuristics were tested with each
algorithm to determinewhich underlying packingmechanism
resulted in better results, measured by the computational
expense (or time taken to find a solution), as well as the
feasibility of the final solution. The technical contribution of
this paper is summarized as follows:
• A review of the state-of-the-art metaheuristic optimiza-
tion algorithms for the one-dimensional BPP

• A systematic performance study of representative meta-
heuristic algorithms for the one-dimensional BPP

• The implementation of two hybrid metaheuristics,
namely, hybrid cuckoo search genetic algorithm and
mutated firefly algorithm to solve the BPP

• The presentation and evaluation of some initial results
for the one-dimensional BPP using metaheuristic algo-
rithms approaches.

The rest of the paper is structured as follows: Section II
presents a detailed literature review of the different heuristics
methods employed to solve the BPP. Section III gives a
detailed formulation and model implementation discussions
on the respective representative algorithms employed in this
paper to solve the BPP. Experimentations and comparative
performance study of the representative algorithms are pre-
sented in Section IV. Finally, the concluding remarks and
future research direction is given in Section V.

II. LITERATURE REVIEW
The drive from deterministic to stochastic algorithms has
been stimulated by the quest to escape local optima and
obtain global optima [1]. Somemethods, such as Tabu Search,
employ a semi-deterministic approach; however, other meth-
ods such as Simulated Annealing (SA) use a completely
stochastic approach [1]. The one-dimensional BPP has seen a
great number of algorithms applied to it, from both classical
based heuristic techniques and global metaheuristic algo-
rithms angles, and also from deterministic and stochastic
angles. In this section, we present a review from the perspec-
tive of classical and global metaheuristic algorithms available
in the literature that have been applied to solve the one-
dimensional bin packing problems.

A. CLASSICAL HEURISTIC APPROACHES FOR 1D-BPP
The traditional set of BPP optimization algorithms are all on-
line and sequential heuristics. Sequential, off-line extensions
of some of these traditional heuristics have also been formu-
lated. On-line algorithms for the BPP feed data to the heuristic
without changing their initial ordering, whereas off-line algo-
rithms for the BPP involve a reordering of items before being
fed to the heuristic. This reordering most commonly makes

use of sorting of the items [2]. These reordering heuristics
are, specifically, the First Fit, Best Fit and Next Fit heuristics.
The First Fit works by adding an item into the first bin that it
fits into. If an item does not fit into the current bin, a new bin
is made available, and the item is inserted into the new bin.
Bins are cycled through sequentially in a fixed order. Next
Fit functions slightly differently; items are placed into the
same bin until the bin cannot take the next item. Once this
occurs, the bin is closed and will no longer be used. Best Fit
works on the premise of looking at all bins and identifying
the bin that the current item can be added to, to result in
the least wastage [3], [4]. The First Fit Decreasing and Best
Fit Decreasing heuristics are created by reordering the list of
items, by weight, into decreasing order before being fed to
the respective sequential heuristic. These have been shown
to perform better than their respective predecessors. Listing
the traditional and extension heuristics, in descending order
of performance, one obtains Best Fit Decreasing, First Fit
Decreasing, Best Fit, First Fit and Next Fit [3]. The better fit
algorithm was proposed by [38] for the bin packing problem.
The better fit algorithm replaces the object that is already
packed in the bin with the next object on the list if the
next object fills the bin better. The time complexity of this
algorithm is O(n2m) where n is the number of objects and m
is the number of distinct sizes in the list. This algorithm was
proved to produce better results than the best fit algorithm.
This is in stark contrast to the best fit; the time complexity of
this algorithm is O (n log n). The best fit produces the worst
packing of 1.7∗ optimum [38].

B. METAHEURISTIC APPROACHES FOR 1D-BPP
In recent years, metaheuristic approaches to solve the one-
dimensional BPP have become popular. This is largely due to
these algorithms’ ability to easily handle complex constraints
that are present in real-life applications of optimization prob-
lems, and the fact that metaheuristics require less computa-
tional time to produce high-quality solutions [29]. TheWhale
Optimization Algorithm was adopted in the work of [34] to
solve the one-dimensional bin packing problem. Whale Opti-
mization Algorithm is a swarm intelligent metaheuristic that
imitates the peculiar hunting strategy of humpback whales,
known as the ‘bubble net strategy’ [35]. This adaptation
incorporated Lévy flights, an additional mutation phase, and a
logistic chaotic map to enhance the exploration capabilities of
the original algorithm. The results of this algorithmwere very
similar to that of the Adaptive Cuckoo Search [14]. However,
more reasonable solutions were found with fewer iterations
and search agents.

Kucukyilmaz and Kiziloz [61] proposed a novel scalable
island-parallel grouping genetic algorithm for the well-
known combinatorial optimization problem, which is the one-
dimensional bin-packing. The authors provided a thorough
experimental evaluation of the parallel model and reported
significant improvements on the Hard28 problem instances
by outperforming the state-of-the-art existing genetic algo-
rithms. Furthermore, they also analyzed and evaluated

227440 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

the parallelization parameters of the proposed algorithm
with an emphasis on problem search-space diversity and
reported several interesting results. In another related work,
Dokeroglu and Cosar [62] proposed a set of robust and scal-
able hybrid parallel algorithms that are capable of exploiting
and leveraging the advantages of parallel computation tech-
niques, evolutionary grouping genetic metaheuristics, and
bin-oriented heuristics to obtain solutions for large scale
one-dimensional BPP instances. In their study, a total num-
ber of 1,318 benchmark problems were examined with the
proposed set of algorithms, and it was shown that optimal
solutions for 88.5% of these instances could be obtained with
practical optimization times while solving the rest of the
problems with no more than one extra bin.

Abd Elminaam et al., [32] proposed an adaptive procedure
using a recently optimized swarm algorithm and fitness-
dependent optimizer (FDO), named the AFDO, to solve the
one-dimensional BPP. Their algorithm was based on the gen-
eration of a feasible initial population through a modified
well-known first fit heuristic approach, in which the authors
adapted the most critical parameters of the algorithm for the
problem to obtain a final optimized solution. Their study was
the first to apply the fitness-dependent optimizer algorithm
in a discrete optimization problem, especially for solving
the BPP. In their implementation test scenario, the adaptive
algorithm was tested on 30 BPP benchmark instances. The
obtained results of the algorithm were compared with those
of other popular algorithms, such as the PSO algorithm, crow
search algorithm, and Jaya algorithm. The analysis of results
by the authors showed that the AFDO algorithm obtained
the smallest fitness values and outperformed the PSO, CS,
and Jaya algorithms by 16%, 17%, and 11%, respectively.
Similarly, in terms of execution time, the AFDO algorithm
showed superiority with improvements over the execution
times of the PSO, CS, and Jaya algorithms by up to 46%,
54%, and 43%, respectively.

Gherboudj [63] presented an adaptive African Buffalo
Optimization (ABO) for solving the NP-hard
one-dimensional BPP. The ABO algorithm was used in com-
binationwith the ranked order valuemethod to obtain discrete
values and BPP heuristics to incorporate the problem knowl-
edge. The performance of the ABO algorithm was tested
on 1,210 of one-dimensional BPP problem instances. The
obtained results were compared with those found by recently
developed algorithms in the literature, and the computational
results revealed the effectiveness of the ABO algorithm and
its ability to achieve best and promising solutions compared
to other existing metaheuristic algorithms.

Ashamawi et al., [36] modified the Squirrel Search Algo-
rithm and used it to solve the classical one-dimensional bin-
packing problem. This algorithm mimics the behaviour of
flying squirrels and their use of gliding [37]. The adaptation
includes the generation of random but feasible initial solu-
tions and various operating strategies to update the solutions.
The overall results of the proposed algorithm performed
very well in comparison to other algorithms, but specifically

Particle Swarm Optimization. Even though optimal solutions
were not always reached, the final solutions were much closer
to the optimal number.

To solve discrete optimization problems,
Abdul-Minaam et al., [32] adapted the Fitness Dependent
Optimizer algorithm and tested this adaptation on the one-
dimensional bin packing problem. This is also a swarm
intelligent algorithm that draws inspiration from the char-
acteristics of the reproductive process of bee swarms and
their collective decision-making behaviour [33]. A random
initial population and an update on the critical parameters
of the algorithm were added to the adaptive algorithm. The
results of the proposed algorithm significantly outperformed
state-of-the-art metaheuristics, including Particle Swarm
Optimization and Crow Search Algorithm, with respect to
average fitness values. Additionally, satisfactory results were
obtainedwithin a reasonable time.Where the algorithm failed
to reach optimal or near-optimal solutions, it achieved better
item packing schemas with a lower number of bins compared
to the results of the other algorithms it was tested against.

Simulated annealing (SA) is another metaheuristic algo-
rithm mainly utilized for global optimization in an ample
search space. Pinto et al., [45] proposed the similarity in
matter physics and annealing in which they explained anneal-
ing as a physical procedure in which a solid is heated to the
maximum temperature in a hot bath; at this high temperature
all material is in the liquid state, and the particles randomly
arrange themselves. Furthermore, as the temperature of the
hot bath is cooled gradually, all the particles of this structure
will be arranged in the state of lower energy. The authors
also elaborated on the four existing aspects of the algorithm
they looked at: 1) the initial solution which is generated
using a heuristic and chosen at random; 2) the neighbourhood
which is also generated at random and mutates the currently
existing solution; 3) the acceptance criteria, where the solu-
tion is accepted when a neighbour has a lower cost value or
a higher cost value given a probability p is accepted; and
4) stopping criteria include when a maximum CPU time is
reached, maximum iterations have been reached and getting
a solution with a lower value than the threshold. The authors
further elaborated on SA being a heat treatment that aims at
expanding the flexibility of a specific metal while lessening
the hardness to make it easier to work with.

Bertsimas et al., [46] focused on how the SA algorithm
works by copying the process in which a solid is steadily
cooled down, so its structures eventually freeze; furthermore,
the authors looked at how fast the SA converges to the optimal
solution. No definite solution was found as many factors
were in place in their experiment. The simulated annealing
algorithm has a crucial characteristic that accepts worse solu-
tions. This characteristic allows it to escape local optimums
and avoid getting stuck. Reference [45] also elaborated on
the limitations of the algorithm. Amongst discussed limita-
tions was the long computational time and when and how to
decrease the temperature of SA. The SA has an acceptance
function that determines when to take a solution to prevent

VOLUME 8, 2020 227441



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

local optimums. The algorithm checks if the neighbour solu-
tion is better than our current solution. If the neighbour solu-
tion is not better, we consider the following factors: 1) How
much worse is the neighbour solution? 2) How high is the
current temperature of the system? Furthermore, there exist
some convergence outcomes, that outlines ‘‘under certain
mild conditions an optimal solution is found with a proba-
bility of 1’’ [47].

There exist very few implementations of SA for the bin
packing problem. Our work focuses on the development of
the SA for the BPP, and to provide further studies on the work
already done in this area. Rao et al., [48] looked closely at
such an implementation of the BPP. The authors compared the
performance of five heuristic algorithms, including the SA.
The studied algorithms were 1) The Largest piece first (LPF)
that aims to pack the largest piece first in a list of items
arranged in decreasing order; 2) The Shortest piece first (SPF)
which is similar to LPF except that items are arranged in
increasing order; 3) First fit decreasing (FFD) in which list
items are sorted in non-increasing order; and 4) the First fit
increasing (FFI) which is similar to the FFD except that items
are sorted in increasing order. In the experiment, the FFD and
SA were the better performing algorithms. However, it was
noted that the SA was the only algorithm that performed
consistently with an increase in the number of bins. This tells
us that the quality of the solution is constantly concise and
of quality. At the same time, Sonuc et al., [49] compared the
FFD alone and the FFD plus SA(FFD+SA) performances.
The FFD+SA again performed better than the FFD according
to the experiment results on which only FFD+SA obtained
optimal results. This gives us the slightest clue that the algo-
rithm can produce a quality result for the BPP.

III. REPRESENTATIVE METAHEURISTIC ALGORITHMS
A. FIREFLY ALGORITHM
This algorithm has become something of a stalwart in the field
of optimization with a plethora of applications, and in order to
bemade fit for these arietinous uses, it must be altered in some
way [5]. In this paper, the Firefly Algorithm is modified to
optimize combinatorial optimization problems, specifically,
the one-dimensional BPP.

The Firefly Algorithm (FA) is relatively new to
Swarm Intelligence Algorithms, having only been created
in 2008 [6]. It is a nature-inspired, population-based, meta-
heuristic algorithm underpinned by stochastic searching
mechanisms and it draws inspiration from the effect of the
bioluminescent light of fireflies on the swarm they are in.
Whilst it does not guarantee finding the optimal solution, its
stochasticity aids the algorithm from being ‘‘stuck’’ in local
optima [5]. As with any metaheuristic algorithm, two key
factors must be accounted for: the payoff between exploration
and exploitation [7].

Whilst the true reason for the flashing light of fireflies
remains unknown, it is speculated that it serves a two-fold
purpose: to attract potential mates and to lure prey toward the

flies med. The basis of the FA considers only one of these
functions: the flashing lights of fireflies is used to attract
potential mates [8] and makes three simplifying assumptions
about this process. Firstly, the fireflies are unisex, thus are
capable of attracting any firefly [8], [9]. Secondly, how attrac-
tive a firefly is proportional to how bright it is and less bright
fireflies move toward brighter fireflies [8], [9]. It should be
noted that if a firefly is not surrounded by a brighter firefly,
then its movement is random [9]. Furthermore, the brightness,
and consequently, the attractiveness, decreases as the distance
between two fireflies increases [10]. Thirdly, the brightness
of a firefly is governed by the fitness function, which in turn,
is derived from the objective function [5], [8]. These rules
can be summarised as follows:
• Fireflies are unisex
• Brightness determines how attractive a firefly is
• Brightness is governed by the fitness function used in
the specific use-case.

The implementation of the FA requires two fundamental
considerations: how the light intensity of a firefly varies
and designing the meaning of attractiveness [8], [9]. The
manner in which these are dealt with is by assuming that
attractiveness is contingent on the light intensity, which is
contingent on brightness, which is dependent on the fitness
function, derived from the objective function.

Light intensity is affected by the original light intensity
(I0), coefficient of absorption (γ ) and the distance between
the observer and the light source (r). Light intensity is subject
to the inverse square law and consequently varies as follows
I (r) = I/r2 [8]. If r = 0 this will give rise to a mathematical
impossibility, and this is accounted for by formulating the
light intensity in Gaussian form [5]. The aforementioned
considerations give rise to expression in Equation (7):

I (r) = I0e−γ r
2
. (7)

The brightness of any particular firefly must be consid-
ered from the perspective of its fellow fireflies [8]. This
implies that brightness is affected by the original brightness
(β0), the coefficient of light absorption (γ ) and the distance
between the two fireflies (r). Therefore, brightness is formu-
lated as represented in Equation (8):

β = β0e−γ r
2
. (8)

The brightness and light intensity is not the same. Light
intensity is a measure of the objective brightness of a firefly;
however, brightness is a measure of how one firefly perceives
the brightness of another firefly, that is to say, it is a relative
measure [5], [8].

The distance, r , requires formalization. The distance can be
measured in different ways. It is standard practice to define as
Euclidean Distance [8], [9]. Consequently, rij, the Euclidean
Distance between firefly si and firefly sj, is defined as shown
in Equation (9):

rij = ‖si − s_j‖ =

√∑n

k=1
(sik − sjk ), (9)

227442 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

Algorithm 1 Hybridized Muted Firefly Algorithm
begin
Objective Function f(x), x = (x1, . . . , xn)T

Initialize population of fireflies xi = (i = 1, 2, 3, . . . , n)
Initialize the parameters: γ , n, β α and π
Determine light intensity Ij at xi by f(xi)
while (t < MaxGeneration)
for i = l : n all n fireflies
for J = l : i all n fireflies
if (Ij > Ii)
Move the ith firefly to the jth firefly with distance r computed by the Euclidean Distance
Mutate the ith firefly with probability n

end if
Attractiveness varies with distance r via exp [−γ r2]
Evaluate the new solution and compute the new light intensity
Decrease the mutation rate, π , in accordance with the current iteration number, t

end for j
end for i
Rank the fireflies and identify the current best
end while
end

TABLE 1. Parameter setting.

where n is the dimension of the solution vector. sik is k th

element of si and sjk is the jth element of sj.
Finally, the way in which a firefly moves is determined by

three factors: the current position of a firefly (si), the degree
to which the ith firefly is attracted to the jth firefly, and lastly,
a randomwalk weighted by α and randomized by ε, a random
number between 0 and 1 inclusive, drawn from the Gaussian
distribution [8]. This gives the following formalization of
movement as represented in Equation (10):

st+1i = sti + β0e
−γ r2ij

(
sti − s

t
j

)
+ αεti . (10)

Noting the above Equations 7 - 10, the FA has two special
cases in behaviour, both asymptotic in nature [5]. The first
is when γ → 0. This results in a β = β0 which is a
special case of Particle Swarm Optimization. The second is
when γ → ∞. This results in the second term of the last
Equation above becoming 0, thus making this case of FA a
version of Simulated Annealing. The parameter settings for
this study are as shown in Table 1 below.

B. HYBRID FIREFLY ALGORITHM
A hybridized version of the FA was also implemented. This
involved randomly mutating a firefly with a decreasing rate
of mutation. An additional stochastic mechanism of this sort

serves to ensure avoidance of the algorithm being trapped
within local optima. Furthermore, the mutation rate decreases
as the number of iterations increases, ensuring that in the
initial stages of running the algorithm favours exploration and
in the later stages, it favours exploitation. Here, π represents
the rate of mutation. The mutation itself involves reordering
the arrangement of items passed into the underlying better fit
heuristic, subsequently leading to an entirely different solu-
tion and firefly. The pseudocode for this hybridized mutated
FA is shown in Algorithm listing 1.

The parameter settings are as shown in Table 2.

TABLE 2. Parameter settings.

1) IMPLEMENTATION
Implementation of the two versions of the FAs was done
in Java. The FA was initially designed for continuous opti-
mization problems [11]. This research involves using the FA
for the one-dimensional BPP, which is an NP-hard, combi-
natorial optimization problem. A cursory summary of the
representation is that a firefly is nothing but an ordering of
the items for the BPP. The order in which items are passed
to the underlying heuristic effects significant change is seen in
the more performant First Fit Decreasing over its predecessor
First Fit [3]. The same is true of the best fit decreasing and
best fit.

VOLUME 8, 2020 227443



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

2) EXTENSIONS AND ADVANCEMENTS
The FA has seen an abundance of variations in a relatively
short space of time. The two broad categories of these are
Modified FAs and Hybrid FAs. Modification of the FA has
focussed largely on enabling it to handle a greater ambit
of optimization problems Hybridization of the FA places
emphasis on managing the functioning and efficiency of
the algorithm. Some notable modification ventures include
advancing elitist and binary algorithms and the chaos FA, and
notable ventures into the hybridization of the FA have been
incorporating neural networks and genetic algorithms [5].

3) EFFICIENCY
The FA has proven itself as a highly performant algorithm,
outperforming many other metaheuristic algorithms [5], [10].
This efficiency has been attributed to three primary character-
istics of the FA.

Firstly, FA includes a notion of distance between the fire-
flies. As a result, a firefly is attracted to the brightest firefly
in its local perimeter. Thus any particular firefly will not
necessarily be attracted to the globally brightest firefly. This
structure has the effect of separating the swarm into smaller
sub-swarms. Consequently, FA copes well with optimiza-
tion problems with a high non-linearity and a multi-modal
nature [8], [10].

Secondly, it ameliorates two key issues of PSO. There is
no issue of dealing with either a historical or global best, and
there are no issues from the use of velocities. Thus, FA gains
by not being slowed by the disadvantages associated with
these issues [8], [10].

Lastly, the FA is extremely flexible, facilitating a high
degree of control over its modality and being capable of
suiting a variety of optimization problems through its param-
eters [8], [10]. If one were to alter the parameters, the FA
could be augmented to behave like PSO, DE or SA [8]. This,
in some sense, makes the FA a generalization of these three
algorithms.

4) ADVANTAGES
- Simple to implement [5].
- It is efficient [5].
- As with any population-based algorithm, it avoids the
issue of searching from a poor starting solution [5].

5) DISADVANTAGES
- It is known to have a slow rate convergence to the global
optimum [12].

- Whilst it does have mechanisms to avoid being trapped
in local optima [5], a chance still exists that it will
happen [12].

C. ADAPTIVE CUCKOO SEARCH ALGORITHM
Yang andDeb in 2009, developed the Cuckoo Search (CS) via
Lèvy flights metaheuristic algorithm [13]. This algorithmwas
inspired by the breeding strategy of certain cuckoo species,

as they tend to lay their offspring in nests belonging to
different types of birds, or host birds. Often, these cuckoos
choose a nest that contains recently laid eggs. A host bird
could react to the realization of a foreign egg in their nest
in two ways -- they may get rid of the alien egg by discarding
it, or they may abandon the entire nest and rebuild elsewhere.
A number of cuckoo birds have evolved such that the female
parasite cuckoos are able to mimic the appearance of the
eggs of specific host birds, thereby reducing the odds of
their own eggs being discovered and abandoned, which leads
to an increase in reproductivity [15]. These cuckoo eggs
tend to hatch before the other eggs present in the nest. The
first instinct of the chick is to evict the host bird’s eggs by
propelling these eggs out of the nest, blindly. This leads to an
increased portion of food provided to the cuckoo chick. The
Lèvy flights mechanism replaces the simple random walk in
order to enhance the performance of CS and more effectively
explore the search space [13].

1) LÈVY FLIGHTS MECHANISM
Animals tend to search for food in a random or quasirandom
manner. During their foraging path, the next move is based on
the current state or location, and the transition probability to
the next state, or location, and so can be considered a random
walk. Research has highlighted that the flight-behaviour of
various animals and insects (such as the fruit fly) demon-
strate the characteristics of Lévy flights [13]. Named after the
French mathematician Paul Lévy, the Lévy flight is described
as a ‘‘random walk in which the step-lengths are calculated
with a heavy-tailed probability distribution’’ [15]. After a
significant number of steps, the distance from the origin of
the random walk leans toward a stable distribution [17].

2) RULES OF CS
The three main principles of this algorithm are:

- Every cuckoo bird lays only one egg at a time and
randomly chooses a nest to dump this egg in.

- The nests that contain eggs of the highest quality will
proceed to the next generation.

- There is a fixed number of available hosts, and the
cuckoo egg is discovered by the host bird with a proba-
bility, pa, ∈ [0, 1].

The possibility that a host bird discovers a foreign egg and
reacts in the abovementioned ways can be determined by
a fraction, pa,of the fixed number of nests, n, which are
replaced by new nests by using the local walk operator. A few
new solutions may be generated by Lèvy walks around the
best solution attained so far in order to accelerate the local
search. However, to avoid getting trapped in a local optimum,
the authors [13] suggested that a large portion of the new
solutions be generated by far field randomization so that these
new solutions are relatively far from the best-known solution.

3) ADVANTAGES
- Much like Genetic Algorithms and Particle Swarm
Optimization, Cuckoo Search is a population-based

227444 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

algorithm. Also, similar to Harmony Search, it uses a
sort of elitism/selection [22].

- Randomization is more efficient due to the large
steps [22].

- There are fewer parameters to be tuned, compared to that
of Genetic Algorithms and Particle SwarmOptimization
algorithms [22].

- Due to the ability of a nest holding multiple solutions
(a set), CS had the ability to extend to a sort of meta-
population algorithm [22].

4) IMPROVEMENTS ON THE CUCKOO SEARCH ALGORITHM
Over the years, various adjustments have been made to
improve the CS algorithm. In 2018, Mareli et al., [16]
reviewed this algorithm and showed that in comparison to
Simulated Annealing, Differential Evolution, and Particle
SwarmOptimization, the CS algorithmwas more general and
efficient. In addition, these authors found that the improve-
ments in efficiencywere due to employing various probability
distribution functions such as Gamma, Gauss and Cauchy,
to control the step sizes of the random walk. Previously,
Valian et al., [17] set out to enhance the convergence rate
and accuracy of the CS by proposing a strategy for tuning
the search parameters, in place of keeping these parameters
constant. The authors evaluated their presented strategy by
applying the improved algorithm for training feedforward
neural networks for two benchmark classification problems,
an iris dataset and a breast cancer dataset, and demon-
strated the significant enhancement of the efficiency of the
algorithm.

Due to the CS being designed with continuous
optimization problems in mind, Zakaria et al., [14] adapted
the algorithm to solve the bin packing problem by utilizing
permutations of positive integers based on Lévy flights and a
mechanism to decode continuous solutions. The ranked order
value (ROV) rule was proposed to discretize solutions. The
foundations from the original algorithm remained the same in
this adaptive version. For this study, the algorithm was used
as follows: As proposed by Yang et al., [13], the parameter
pa is used to govern the balance between the global and local
explorative random walks.

The local random walk can be defined as:

x t+1i = x ti + αs⊗ H (pa − ε)⊗ (x tj − x
t
k ) (11)

where x t+1i represents a new solution, x ti is an existing solu-
tion; s represents the step size;
H (pa − ε) is a Heaviside function where ε represents a

random number, while x tj and x
t
k are two solutions selected

randomly from the current population (of nests). The global
walk (by Lévy flight) can be defined as expressed in
Equation (12):

x t+1i = x ti + αL(ϕ) (12)

where L(ϕ) represents the Lévy walk.

5) MAIN DRAWBACKS
- The convergence rate is likely to be affected by Lévy
flights, and this results in a slow algorithm [18].

- May fall into local optimum solution if the parameters
are not set correctly [19].

6) IMPLEMENTATION
The implementation of the adaptive cuckoo search algo-
rithm was done by Zakaria et al., [14]. According to the
authors, the ranked order value produced results that were
closest to the continuous solutions. This method is simple
and ‘‘guarantees feasibility of new solutions without creating
additional overhead’’ [14]. In the ROV method, the smallest
value of a solution is found and assigned the lowest rank
value, thereafter, the next smallest value is found and assigned
the second smallest value. Continuing in this manner, the item
permutation is produced.

We assume that a cuckoo bird deposits one egg in a nest
and that every nest holds a single egg. The egg contains a
continuous solution, and a corresponding integer permutation
produced using the ROV technique. The best fit and better
fit heuristics were used to place the items into the bins,
corresponding to each solution, and to calculate the total
wastage across all the bins. This value was used as the fitness
value to determine the best nest.

7) THE OBJECTIVE FUNCTION
The aim of this algorithm was to minimize the wastage pro-
duced by a packing schema. The nests were constantly sorted
according to ascending order of fitness value so that it was
easy to keep track of the best nest found in the generations
seen thus far.

Thewastage of a bin is described as shown in Equation (13)
below:

wastage = capacity− pointer (13)

where the pointer represents the index that the bin’s contents
stop at. For instance, if the bin had a capacity of 10 and the
items of value 1, 2, and 3 were added to the bin, the pointer
would be at 6 (1+ 2+ 3). Therefore, the wastage of this bin
would be 4. This value shows how much of the bin’s space
is unused, and a higher amount of unused space indicates a
less fit bin. It was observed that the lower the wastage of a
bin was, the more filled it would be -- that led to the use of
fewer bins.

Hence, the objective function is given as follows:

Minimize f : f = n× capacity−
n∑

k=0

pointerk (14)

where, n is the number of bins required for a solution;
capacity represents the maximum capacity for each bin (this
is fixed), pointerk is the pointer of each bin, k . The parameter
settings used are shown in Table 3.

VOLUME 8, 2020 227445



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

TABLE 3. Parameter settings.

D. HYBRID CUCKOO SEARCH GENETIC ALGORITHM
The hybrid algorithm implemented in this study was inspired
by Lim, et al’s. (2014) study on a hybrid cuckoo search-
genetic algorithm (CSGA) to solve the hole-making sequence
optimization problem [20]. The authors of this study were
inspired by the fact that in some cases, if there is a paucity of
suitable nests for a cuckoo bird to lay their egg in, parasitized
nests can be utilized again by a second cuckoo bird. Since one
egg is laid per nest, the cuckoo bird seeking for a nest will
simply remove the existing egg and replace it with theirs –
this is because the first egg will most likely hatch first [21].
This, along with the explanation of the CS algorithm in the
previous section, helped the authors develop this hybrid.

In the CSGA algorithm, the Genetic Algorithm (GA) oper-
ators, mutation and crossover, replace the CS operators, ran-
domwalks and Lévy flights, respectively. The following rules
were taken into consideration:

- A chromosomal crossover occurs between the cuckoos
that mate with one another.

- Cuckoo birds compete and lay eggs in host birds’ nests.
The best eggs survive.

- Cuckoo eggs evolve by mutation so that the probability
of a host bird discovering a foreign egg is reduced.

- Eggs of lower quality are rejected by the host birds,
and normal reactions apply (either evicting the egg from
their current nest or abandoning their nest entirely and
building a new one).

1) IMPLEMENTATION
The implementation of this algorithm followed that of
Zakaria et al., [14], however, the local and global walk oper-
ators were adapted accordingly. This ensured that all the
assumptions made in the CS still held (all 3 rules mentioned).
This section extends the CS and GA explanations.

The crossover operator is implemented as follows:
- Two solutions are randomly chosen from the current
generation by means of a k-tournament (GA selection
operation).

- Two random numbers between the upper and lower
bounds are chosen (two-point crossover – eliminates
the possibility of parents being completely switched
around).

- The offspring are generated by interchanging the values
of the parents within the selected points.

- A form of elitism is then employed. This means that a
child will only progress if the evaluated fitness is greater
than at least one parent.

The mutation operator, on the other hand, provides diversity
to the population. It is implemented as follows:

- A mutation rate is set at the beginning of the algorithm.
- A number drawn from Gaussian distribution is checked
against the mutation rate. If the number is less than the
mutation rate, the mutation occurs.

- Two random numbers indicating the lower and upper
bounds of the mutation are drawn.

- Then, the solution’s items between the lower and upper
bounds are reversed.

Algorithm listing 2 presents the pseudocode for the imple-
mented hybrid cuckoo search genetic algorithm.

The parameter settings used are shown in Table 4.

TABLE 4. Parameter settings.

E. ARTIFICIAL BEE COLONY
Artificial Bee Colony (ABC) algorithm was employed in
this paper as a hybrid in order to solve the bin packing
problem using the better fit algorithm and best fit algorithm
as the underlying algorithms. This algorithmwas proposed by
Karaboga [40]. ABC is an optimization algorithm thatmimics
the food search behavior of honeybee swarms. The bee colony
consists of 3 groups of bees: onlooker bees, employed bees,
and scout bees. Each of the food sources consists of only one
employee bee. The number of food sources in the hive is the
same as the number as that of employed bees.

Employed bees go to their respective food sources and then
return to the hive. When the employed bees return to the hive,
they dance to invite onlooker bees to join; onlooker bees stare
at the dancing of the employed bees and decide which to join
based on the dances. The employed bee whose food source
has been abandoned now becomes a scout bee and starts to
search for a new food source.

1) ARTIFICIAL BEE COLONY ALGORITHM
In the ABC algorithm, the initial population is randomly
generated. Each solution in the population consists of a cor-
responding objective function, fitness function, and there is a
trial vector which is initially set to zero for all the solutions
in the population.

A solution (food source) in the swarm is denoted by

xi = x i,1,xi,2xi,3, . . . , xi,n. (15)

2) EMPLOYED BEE PHASE
In the employed bee phase a new solution vi in the neigh-
borhood of xi is generated, and the Equation (16) is used to
compute the new solution, which is expressed as follows:

vi,k = xi,k +8i,k × (xi,k − xj,k ) (16)

227446 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

Algorithm 2 Cuckoo Search Genetic Algorithm

Objective function f (x), x = (x1, . . . , xd )T

Generate the initial population of m host nests xi(i = 1, . . . ,m)
while (t < MaxGeneration) do

Choose two solutions by k-toumament
Solutions (Xi, Zi) crossover to reproduce new egg, yi
Convert yi to item permutation, Yi
F(Yi) = Evaluate fitness of Yi
if (F(Yi)> F(Xi) or F(Yi) > F(Zi)) then

replace xi or Zi with the new solution Yi;
end if
Cuckoo eggs mutate and are laid in other hosts’ nests
Low quality eggs are rejected by host birds
Convert the new solutions to item permutations;
Replace the new solutions by the item permutations;
Evaluate their fitness;
Rank the solutions and find the current best

end while

The objective function and the fitness function of the new
solution are computed. Greedy selection is performed; if the
fitness function of the new solution is better than that of
the current solution, the current solution is replaced with
the new solution. Otherwise, the trial of the current solution
is increased. The fitness value may be calculated using the
following Equation (17):

fit i(xi) =


1

1+ fi(x i)
if fi(x i) ≥ 0

1
1+ abs(fi(x i))

if fi(x i) < 0
(17)

where fi(x i) is the objective function. Before the onlooker bee
phase, employed bees share their information with onlooker
bees.

3) ONLOOKER BEE PHASE
In the onlooker bee phase, onlooker bees choose a food source
(solution) to explore based on a probability. The probability
of each food source in the population is calculated as follow:

pi =
fit i(x i)∑SN
i=1 fit i(x i)

(18)

After the food source xi is chosen, a neighborhood food
source is generated vi and if the fitness function of the vi
is better than that of xi, greedy selection is performed. The
procedure is the same as that in the employed bee phase.

4) SCOUT BEE PHASE
In scout bee phase, all the employed bees that have solutions
that cannot be improved enter the scout bee phase. This is
determined by their trial; if the trial of the solution is greater
than the selected threshold, the solution xi is discarded and is
replaced with a new solution vi.

5) IMPROVEMENTS ON THE ARTIFICIAL BEE
COLONY ALGORITHM
Variations of the artificial bee colony have been proposed,
based on the modifications of the traditional algorithm by
minimizing the disadvantages, e.g. early convergence. This
will improve the performance of the algorithm. These new
variations can be used in order to improve the current results.

6) IMPLEMENTATION
Generating the initial population for the artificial bee colony
is achieved by randomizing the items in the list each time
before each solution is generated. Each solution is gener-
ated by packing the randomized items using the better fit
algorithm and the best fit algorithm. To generate the initial
population, we randomized the items in the list, then packed
them using better fit algorithm and the best fit algorithm.
The objective function is determined by the number of bins
and the wastage. The best solution is one which has the least
number of bins and the least amount of wastage.

7) ADVANTAGES
- Its ability to generate a global optimum solution.
- It is simple to implement, strong robustness.
- Flexible.
- Consists of very few parameters [41].

8) DISADVANTAGES
- The algorithm has premature convergence, which can
lead it into local optimum.

- The rate of convergence at a later stage is very slow.

The parameter settings used are shown in Table 5.

F. GENETIC ALGORITHM
Genetic algorithms are a heuristic search and optimiza-
tion technique that is inspired by the evolutionary process

VOLUME 8, 2020 227447



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

TABLE 5. Parameter settings.

found in nature. It was originally proposed by John Holland
in 1960 and has evolved into a powerful algorithm that
can solve difficult optimization problems [51]. It has more
recently been used to create Hybrid Algorithms with other
metaheuristics and optimization algorithms [52]. The genetic
algorithm is a classic metaheuristic that has been covered
many times over the last 50 years; as such, we decided to
implement it as a comparator to the most popular and modern
meta-heuristics.

The basic steps for a genetic algorithm are as follows [51]:
1. Initialise a population.
2. Evaluate the population.
3. Evaluate fitness of population.
4. Implement a selection method.
5. Crossover is performed.
6. Mutation is performed.
7. Determine the new population and new fitness.
8. Repeat steps 4 to 7 until termination criteria is met.

Each generation of a new population is created in the hope
of finding a better population than the last. A solution is
chosen based on its fitness, and the fitter candidates are
used as the genes for the next generation, i.e. the ‘fitter’ a
solution is, the higher its chance of being selected and the
higher its chance of reproducing. This process is repeated
until a stop condition is met. The Genetic Algorithm borrows
terminology from the field of genetics and as such the com-
ponents of a population in a GA are termed ‘‘chromosomes’’.
These are n-dimensional arrays, of which each component is
called a gene [53]. The components of a GA can be broken
into the following: Chromosome Encoding, Fitness Function,
Selection, Crossover/mutation, and solution space.

In the 1-D Bin Packing Problem, a chromosome is encoded
with the Weight of the Item that position represents. The
fitness function of a chromosome is evaluated to determine
the quality of the chromosome as compared to other chromo-
somes [52]. The fitness function allocates a score (fitness)
to each chromosome in the population to determine how
well it can solve the problem. Based on this fitness function,
a selection process decides which chromosomes to use as
the basis of the next generation. The selection method will
generally pick the fittest candidates, and these chromosomes
will act as the parents for the next generation. This genetic
algorithm uses k-tournament selection.

1) OPERATORS
Crossover then takes the chromosome pairs that the selec-
tion method has chosen and merges together their ‘genetic
material’ to create a child for the new population. This is

representative of reproduction in nature and ensures the pass-
ing on of good genetic materials into the new generation. This
genetic algorithm uses a single-point crossover.

A mutation, as in biology, allows a child to exhibit charac-
teristics that its parent never had, i.e. it did not inherit it from
the parent population [52], [53]. The following is an example
of a crossover operation.

Parent 1 → 7 11 6 3 4 8

Parent 2 → 11 6 8 7 4 3

Offspring 1 → 7 11 6 8 4 3

Offspring 2 → 11 6 8 7 3 4

The following occurs after mutation:

Offspring 1 → 7 4 6 8 11 3

Offspring 2 → 11 7 8 6 3 4

2) IMPLEMENTATION
The genetic algorithm is quite standard and uses the same
conventions as most other GAs. It does, however, differ in
the sense that it is used in conjunction with an underlying
heuristic [38]. We represent our population as Items with
weights e.g. {74, 32, 15, 23, 25, 36, 45} for which an initial
population is made. The population is then randomized into
X (user defined) amount of permutations of that set which
makes up the initial generation. For example, in a case with a
population of 5 the following could be the first generation:

{74, 15, 32, 23, 25, 36, 45}

{15, 74, 32, 23, 45, 25, 36}

{32, 23, 45, 15, 74, 36, 25}

{23, 32, 74, 15, 25, 36, 45}

{36, 32, 23, 15, 25, 74, 45}

Fitness (the wastage in a bin) is determined for each of
those permutations using the chosen packing method (best
fit or better fit) after which standard crossover and mutations
occur. This process is repeated for every generation until
the stop criteria is met [51], [56], [58]. The stop criteria in
our implementation occurs when the program iterates to the
number of generations defined by the user.

3) ADVANTAGES
- Easy to conceptualize and understand.
- Quick to implement.
- Ideal for when a near optimal solution is acceptable, and
an exact solution is unnecessary.

- Convergence speed is fast, and versatility is
strong [57], [58].

4) DISADVANTAGES
- The increased computational time for complex
problems.

- Slower than some other newer methods.
- Premature convergence can occur.
- Heavily dependent on the initial population [57], [58].

227448 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

5) EXTENSIONS
The genetic algorithm can be combined with various other
meta-heuristics to create hybrid metaheuristics. In this paper,
we combined parts of the Genetic Algorithm to create the
Cuckoo Search Genetic Algorithm Hybrid and the Firefly
Hybrid. The parameter settings used are shown in Table 6.

TABLE 6. Parameter settings.

IV. EXPERIMENTATION, RESULTS AND DISCUSSION
The following experiments were carried out using a 3.75 GHz
AMD Ryzen 7 Processor and 16GB 2666Mhz memory.
Algorithms were implemented in Java using the Eclipse inte-
grated environment.

A. DATASETS
The datasets used for the 1-dimensional bin packing prob-
lem were obtained from [62]. There are 3 dataset cate-
gories with over 1,210 instances in total, each with differing
capacities, number of items and distributions between item
weights.

TABLE 7. Dataset 1.

Each of the following algorithms: Firefly Algorithm (FA),
Firefly Hybrid algorithm (FAH), Adaptive Cuckoo Search
Algorithm (ACSA), Cuckoo Search Genetic Algorithm
Hybrid (CSGA), Artificial Bee Colony Algorithm (ABC),
and the Genetic Algorithm (GA) were tested using best fit
and better fit as underlying heuristics. In total, 30 instances
were chosen, 10 instances from Dataset 1 (see Table 7),
known as the easy dataset with 100 capacity; 10 instances
from Dataset 2 (see Table 8), known as the medium dataset
with 1000 capacity; and 10 instances from Dataset 3 (see
Table 9), known as the hard dataset with 100000 capacity.
Instances were chosen such that there was a variety of the

TABLE 8. Dataset 2 characteristics.

TABLE 9. Dataset 3.

number of items even though the capacity remained the same.
Each dataset was run 10 times per metaheuristic and under-
lying heuristic to ensure accuracy of reported results.

A summary of the results is given in the next section,
and key observations and results are discussed in detail.
Furthermore, we specifically look at three instances from
each dataset in more detail: N1C1W1_D, N2C1W2_N,
N4C1W4_A, N1W1B1R9, N2W1B1R3, N4W2B1R3,
HARD2, HARD5 and HARD8. These datasets were focused
on specifically as they provide variation in terms of the
number of items and capacity.

B. RESULTS AND DISCUSSION
The results of the experiments conducted in this study and
discussions on the outcome are presented in this section. The
result of experiments conducted on Dataset 1 is presented
in Table 10 where the bin capacity was set at 100, and the
number of items varied at 50, 100 and 500, respectively.
The graphical representation of results for N1C1W1_D is
shown in Figure 1. Similarly, the results for N2C1W2_N and
N4C1W4_A are as shown in Figure 2 and Figure 3, respec-
tively. It can be observed from the Table and the Figures above
that every algorithm performed well for each of the instances.
Each algorithm was able to attain the optimal number of bins
using the better fit algorithm, and the FAH and GA were only

VOLUME 8, 2020 227449



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

TABLE 10. Results obtained from datasets 1.

FIGURE 1. A graphical representation of the results of the N1C1W1_D instance.

one bin off when using the best fit algorithm. This is to be
expected for Dataset 1 as the instances in this dataset are
relatively basic.

The computational time comparison for the experiments
on Dataset 1 is given in Figures 4-6. We noticed a trend
occur across all three instances. Although the time taken to
complete the algorithm changed, the general shape of the

graph remained the same. Looking at the best fit first, we saw
that the ABC performed the best across all three instances.
In Figures 4 and 5 the difference between every algorithm
was extremely small (less than a millisecond) and as such was
negligible.

In Figure 6, for instance, with 500 items, the difference was
more significant with the ABC and GA performing far better

227450 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 2. A graphical representation of the results of the N2C1W1_N instance.

FIGURE 3. A graphical representation of the results of the N4C1W4_A instance.

than the other algorithms. The ACSA and CSGA were not
far behind whilst the FA and FAH performed the worst. The
difference, however, was still only a few milliseconds. In the
Better fit heuristic, which is more computationally complex
than the best fit, the ABC performed the best. The trends for
the better fit were consistent throughout for all three instances
with the ACSA, CSGA and GA performing worse than the
other three algorithms. The differences in the third instance
followed the same pattern, however, the actual time difference

was staggering. The ACSA performed extremely badly when
compared to the ABC, FA, and FAH. The genetic algo-
rithms took up to 30 milliseconds longer on average whilst
the ACSA took approximately 100 milliseconds longer. The
results suggest that the GA, ACSA and CSGA have trouble
with increasing item numbers, especially when using the
better fit algorithm. TheABC, on the other hand, showed little
to no difference in performance when the number of items
increased.

VOLUME 8, 2020 227451



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 4. Computational time results for the N1C1W1_D instance.

FIGURE 5. Computational time results for the N2C1W2_N instance.

Table 11 shows all results obtained from experiments on
Dataset 2. These are the results for bins with a capacity
of 1000 but with a varying number of items (50, 100 and
500 in Figure 8, Figure 9, and Figure 10, respectively.).
As the number of items increased with the increased capacity,
we began to see the effect of the better fit and best fit as
underlying heuristics. Figure 7 only had 50 items, and as such,
the best fit and better fit both performed well. The best fit was
able to attain the optimal solution in all but two algorithms
whilst the better fit attained it in all the algorithms.

In Figure 8 we begin to see what the increased complexity
of increased items and capacity resulted in. Better fit attained
the optimal solution for each metaheuristic whilst the best fit
was unable to do the same. TheACSA andCSGAwere able to
perform slightly better than the other algorithms when using
best fit in Figure 8. The metaheuristics performed identically
for both the best fit and better fit methods in Figure 9 which
showed an instance of 500 items and a capacity of 1000. Even
the better fit heuristic was unable to obtain the optimal results
for that specific instance. The results for this dataset were

227452 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 6. Computational time results for the N4C1W4_A instance.

TABLE 11. Results obtained from datasets 2 (Medium dataset).

as expected. We saw an increase in disparity between the best
fit and better fit as the complexity of the instance increased.
Themetaheuristics themselves all performed ideally andwere
able to find the optimal solution with a better fit in all but one
instance (Figure 9). Discussing the time results will give us
more clarity of the results.

The computational time comparison for the experiments
conducted on Dataset 2 is given here. As with the previous
time comparison, we noticed a trend occur across all three
instances. The shape of the graph was the same, although
the numbers changed. Figure 10’s instance contained only
50 items, and as such, we saw that the time taken to pack

VOLUME 8, 2020 227453



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 7. A graphical representation of the results of the N1W1B1R9 instance.

FIGURE 8. A graphical representation of the results of the N2W1B1R3 instance.

the bin was relatively short across all the algorithms. ABC
was the fastest for both best fit and better fit. The difference
between the algorithms was negligible as it was less than
a second.
Best fit: Across all 3 instances, the results for the

best fit were extremely close. The ACSA best fit in
Figures 10, 11 and 13 was the only one to rise above
1 millisecond, and as such we can suggest that all the algo-
rithms performed adequately when using best fit for the
following instances. ABCwas still the fastest, and ACSAwas
still the slowest.

Better fit: The trends of GA, CSGA and ACSA persisted
throughout all three instances. The results tended to get worse
in the same ratio as the increase in items, i.e. if the number
of items doubled, so did time per item. From 50 to 100 items
the time for the ACSA almost quadrupled even though the
items only doubled. The time per item, i.e. 5.76 in Figure 11,
doubled to 11.27 milliseconds per item. This suggests that
ACSA, CSGA and GA perform substantially worse than the
other 3 algorithms with respect to time. The difference in time
between the FA, FAH and ABC was almost negligible. This
is in contrast to the previous dataset where ABC came out

227454 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 9. A graphical representation of the results of the N4W2B1R3 instance.

FIGURE 10. Computational time results for the N1W1B1R9 instance.

the clear winner. It is possible that the increase in capacity
aided the firefly algorithms as the number of items increased.
This could possibly be expanded on and tested in future
work.

The results of the experiments obtained from Dataset 3 are
presented in Table 12. These are the results for bins with a
capacity of 100,000 but with a set number of items (200). This
dataset contained the instances with the most complexity as
it contained extremely large items with a lot of variance in

item weight. As such, we expected to see the best fit struggle,
as shown in Figures 13, 14 and 15.

The algorithms performed almost identically, although
in Figure 13 the GA was the only heuristic to obtain the
optimal solution. This was the only instance in the dataset
where this occurred, and better fit found the optimal solu-
tion with the remaining heuristics in every other instance.
We saw the best fit struggle in every instance to find the
optimal solution and whilst four or five boxes may not

VOLUME 8, 2020 227455



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 11. Computational time results for the N2W1B1R3 instance.

FIGURE 12. Computational time results for the N4W2B1R3 instance.

seem like a lot the ideal items per bin for these instances
is between 3 and 5 and as such the wastage per box was
high compared to the recommended solution. The ACSA,
CSGA and GA appeared to slightly outperform the other
algorithms, for instance, HARD5. All algorithms performed
ideally under the better fit heuristic even for these complex
problems. The performance in terms of time will be discussed
further.

As with the previous datasets, we present the computa-
tional time comparisons in Figures 16, 17 and 18. We notice
a trend occurring across all three instances. The shape of
the graph was the same, although the numbers changed. The
number of items and the capacity across all the instances in
Dataset 3wa the same, and as such, we expected the results
to be fairly similar across all three instances shown above.
We saw the same trend as the previous tests. The ABC

227456 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 13. A graphical representation of the results of the HARD2 instance.

FIGURE 14. A graphical representation of the results of the HARD5 instance.

performed best in both the best fit and better fit methods. The
ACSA performed the worst.
Best fit: The time differences across all six algorithms was

negligible. The ACSA performed the worst by a long way in
terms of a ratio but in actual the difference was less than half
a millisecond and such we cannot consider it substantial.
Better fit: The ACSA, CSGA and GA were once

again the three slower algorithms when using better fit.
We can suggest that as the number of items increases the
amount of time substantially increases for these algorithms

(as discussed before). The increase in time from 100 to 500
items is in line with the number observed with 200 items
(these current instances). This suggests that these three algo-
rithms are heavily affected by the item number and not capac-
ity. The FA and FAH, however, did appear to be affected by
the capacity and perform extremely well even with 200 items.
The ABC performed the best, but the difference between the
ABC and the Firefly-based algorithms was negligible.
However, there was a significant difference between the three
worst performing algorithms and the three best performing.

VOLUME 8, 2020 227457



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 15. A graphical representation of the results of the HARD8 instance.

TABLE 12. Results obtained from datasets 3 (Hard dataset).

C. HYBRID VS NON-HYBRID CUCKOO SEARCH
Looking at Tables 10, 11 and 12, both the hybrid and non-
hybrid Cuckoo Search (ACSA and CSGA) attained very
similar results when it came to the number of bins required.
We, therefore, cannot conclude anything in that respect.
In terms of time it is, however, a different story.When looking

at both Figures 19 and 20, we can see a substantial improve-
ment in the time for the CSGA compared to the ACSA. The
CSGA was consistently 2.5 to 4 times faster than the ACSA.
This was a massive improvement on the standard cuckoo
search algorithm, that can most likely be attributed to the
less complex operators in the CSGA compared to the Lévy

227458 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 16. Computational time results for the HARD2 instance.

FIGURE 17. Computational time results for the HARD5 instance.

walk operators in the ACSA. Even with the improvement in
time, the CSGA and ACSA were the two worst performing
algorithms for all 3 datasets in almost every instance.

Both the ACSA and CSGA performed relatively well.
For easy dataset, both algorithms achieved optimal results.
However, the time required differed significantly, not just for
both algorithms but also for the underlying heuristics. The
ACSA algorithm with the best fit heuristic required approx-
imately 70 milliseconds for the instances with 50 items.

This steadily increased as items reached 500 whereas the
better fit heuristic started off at approximately 341 millisec-
onds for 50 items and escalated to approximately 96,000 mil-
liseconds for 500 items. Therefore, for the easy dataset with
the Adaptive Cuckoo Search algorithm, the best fit heuristic
produced optimal results with far less computational time and
was the preferable underlying heuristic. Similarly, the CSGA
hybrid required between 30 to 920 milliseconds with the best
fit heuristic and 130 to 32,000 milliseconds for the better

VOLUME 8, 2020 227459



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 18. Computational time results for the HARD8 instance.

FIGURE 19. Computational time results for CS Hybrid and Non-Hybrid (best fit).

fit heuristic. Hence, the same can be said for the hybrid
algorithm; the best fit was the superior underlying heuristic.

Both algorithms performed equivalently for the medium
dataset. A better fit was able to produce optimal results for
three instances that best fit failed to, and an improved packing
schema for one instance that best fit was not able to. However,
better fit still required between 5 to 10 times more millisec-
onds to achieve these results. In this case, a trade-off between
the quality of solution and time required must be considered
to determine which underlying algorithm is preferable.

Finally, for the hard dataset, all instances were tested.
The ACSA algorithm with the best fit did not achieve any
optimal results. An average of n + 3 bins was produced,
where n is the optimal number. With the better fit heuristic,
however, optimal results were achieved for 9 out of 10 of the
instances. With respect to time, better fit required approxi-
mately 16 times more milliseconds. The CSGA produced a
similar number of bins for all instances of the hard dataset
with both the underlying heuristics, and this resulted in a sim-
ilar difference in computational time. Therefore, once again,

227460 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 20. Computational time results for CS Hybrid and Non-Hybrid (Better fit).

FIGURE 21. Computational time results for FA and FAH (best fit).

the trade-off between quality of solution and time required
must be considered.

D. HYBRID VS NON-HYBRID FA
In terms of bin packing results, both algorithms performed
equally well with both achieving optimal results with a better
fit and achieving close to optimal with the best fit (when opti-
mal was not achieved). No statement can be made about the
effectiveness of the hybrid in terms of bin packing. In terms of
computational time consumed by each algorithm to find the
desired solutions, both the FAH and FA obtained extremely
similar results with no pattern emerging from any of the
results other than HARD instances when using better fit.

For these instances, the FAH outperformed the FA. The
time difference was less than a millisecond and was, there-
fore, negligible. We can suggest that the FAH provides no
meaningful improvement to the FA both in terms of bin
packing results and time. The Firefly algorithms both per-
formed extremely well overall for all instances second only
to the ABC.

As mentioned above, FA and FAH were implemented
with two underlying heuristics: best fit and better fit. First,
we considered the performance for the easy data set wherein
the number of items ranged from 50 to 500. On the whole,
the best fit FA and FAH (Figure 21) produced optimal or
near optimal results. The better fit FA and FAH (Figure 22)

VOLUME 8, 2020 227461



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

FIGURE 22. Computational time results for FA and FAH (Better fit).

produced only optimal results with the minimum number of
bins required being packed. It should be noted that best fit
FAH did not see any improvement over best fit FA. It is likely
that increasing the number of iterations in the FAHwould lead
to an improvement.

With regards to time, the best fit FA was more efficient
than better fit FA. This is due to the fact that the better fit
heuristic is computationally more expensive than the best fit
heuristic. The time complexity of better fit is worse than that
of the best fit since better fit involves more search operations.
Best fit FAH and better fit FAH follow similarly with best fit
FAH usually performing faster for the same reasons.

There are a small number of cases where better fit FAH
performs faster than best fit FAH, and this is likely to be
due to the existence of highly effective mutations occurring,
leading to all fireflies having similar or the same bright-
ness, so solution updates were minimal. The behaviour of
this nature is, however, anomalous. It should be noted that,
on the whole, the best fit FAH is slower than the best fit FA
and better fit FAH is slower than the better fit FA. This is
because the hybridized algorithm involves more operations
when mutations occur, thereby increasing the computational
expense of the algorithm. The best fit FA and best fit FAH
almost never produce optimal results, mostly settling with
near optimal results. Better fit FA and better fit FAH almost
always produce optimal results only occasionally outputting
near optimal results.

V. CONCLUSION
This study investigated six nature-inspired, population-
based metaheuristic algorithms to solve the classical
one-dimensional bin-packing problem. The representative
algorithms considered for the problem at hand included FA,
FAH, CSA, CSGA, ABC and GA, respectively. Solving the
NP-hard optimization problem considered in this paper

required a yardstick to assess the quality of the generated
solutions. The best fit and better fit heuristics were selected to
serve this purpose through their role as underlying heuristics.
Solutions themselves were a unique ordering of items to be
passed to these underlying heuristics.

These metaheuristics were implemented and tested on a set
of standard benchmark datasets, of which specific instances
were chosen non-trivially. In the comparison of these algo-
rithms, several observations regarding the solution and the
underlying heuristics were made. It is worth noting that the
best fit heuristic attained optimal solutions for instances of
the easy dataset requiring smaller capacity bins. However,
as the complexity of the instances increased, the ability to
produce high quality results decreased. Nevertheless, this
heuristic is able to produce near-optimal solutions and a
good packing schema for most instances. On the other hand,
utilizing better fit as the underlying heuristic results in opti-
mal solutions almost all the time, regardless of capacity and
number of items. The downfall of this heuristic is the compu-
tational time required to produce these solutions, especially
with the ACSA, CSGA, and GA metaheuristics. Therefore,
a trade-off between the quality of solution and computa-
tional time required must be made when choosing which
underlying heuristic performs better. For the FA, FAH, and
ABCmetaheuristics, the better fit heuristic proved to be more
beneficial because the increase in computational time was not
substantial and the quality of the results was still sufficiently
maintained.

Throughout the testing of this study, the ABC metaheuris-
tic was the fastest performed algorithm, followed by the FA
and FAH. Each metaheuristic contains features worth explor-
ing, and therefore, for future work, it would be interesting
to investigate how to lower the computational cost of the
ACSA, CSGA, and GA when applying it to the bin-packing
problem. In addition, beside the methods used in this paper,

227462 VOLUME 8, 2020



C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

other existing state-of-the-art representative computational
intelligence algorithms can also be employed to solve the one-
dimensional BPP, like the monarch butterfly optimization
(MBO) [69], earthworm optimization algorithm (EWA) [70],
elephant herding optimization (EHO) [71], moth search (MS)
algorithm [72], symbiotic organisms search (SOS) algorithm
[73], [74], and many more. Moreover, investigating alterna-
tive methods to generate the initial population of the meta-
heuristics may prove beneficial, as this study involved simply
randomizing initial positions.

CONFLICT OF INTERESTS
The authors declare that there is no conflict of interests
regarding the publication of the paper.

REFERENCES
[1] A. M. Connor and K. Shea, ‘‘A comparison of semi-deterministic and

stochastic search techniques,’’ in Evolutionary Design and Manufacture, I.
C. Parmee, Ed. London, U.K.: Springer, 2000, doi: 10.1007/978-1-4471-
0519-0_23.

[2] S. I. Gass and C. M. Harris, ‘‘Best-fit decreasing algorithm,’’ in Encyclo-
pedia of Operations Research and Management Science, S. I. Gass and
C. M. Harris, Eds. New York, NY, USA: Springer, 2001, doi: 10.1007/
1-4020-0611-X_70.

[3] D. S. Johnson, Near-Optimal Bin Packing Algorithms. Cambridge, MA,
USA: Massachusetts Institute of Technology, 1973.

[4] M. Gourgand, N. Grangeon, and N. Klement, ‘‘An analogy between bin
packing problem and permutation problem: A new encoding scheme,’’
IFIP Adv. Inf. Commun. Technol., vol. 438, pp. 572–579, 2014, doi: 10.
1007/978-3-662-44739-0_70.

[5] I. Fister, I. Fister, Jr., X. S. Yang, and J. Brest, ‘‘A comprehensive review
of firefly algorithms,’’ Swarm Evol. Comput., vol. 13, pp. 34–46, 2013.

[6] X. S. Yang, Nature-Inspired Metaheuristic Algorithms. York, U.K.:
Luniver Press, 2010.

[7] M. Crepinšek, M. Mernik, and S. H. Liu, ‘‘Analysis of exploration
and exploitation in evolutionary algorithms by ancestry trees,’’ Int. J.
Innov. Comput. Appl., vol. 3, no. 1, pp. 11–19, 2011, doi: 10.1504/IJICA.
2011.037947.

[8] X. S. Yang, ‘‘Firefly algorithm, Levy flights and global optimization,’’ in
Research and Development in Intelligent Systems XXVI. London, U.K.:
Springer, 2010, pp. 209–218.

[9] R. Yesodha and T. Amudha, ‘‘Effectiveness of firefly algorithm in solving
bin packing problem,’’ Int. J. Adv. Res. Effectiveness FireFly Algorithm
Solving Bin Packing Problem, vol. 3, no. 5, pp. 1003–1010, 2013.

[10] X.-S. Yang and X. He, ‘‘Firefly algorithm: Recent advances and applica-
tions,’’ Int. J. Swarm Intell., vol. 1, no. 1, pp. 36–50, 2013, doi: 10.1504/
IJSI.2013.055801.

[11] A. Layeb and Z. Benayad, ‘‘A novel firefly algorithm based ant colony
optimization for solving combinatorial optimization problems,’’ Int. J.
Comput. Sci. Appl., vol. 11, no. 2, pp. 19–37, 2014.

[12] W. Long, S. H. Cai, J. Jiao, Y. Chen, and Y. Huang, ‘‘Firefly algorithm for
solving constrained optimization problems and engineering applications,’’
J. Central South Univ. Sci. Technol., vol. 46, no. 4, pp. 1260–1267, 2015,
doi: 10.11817/j.issn.1672-7207.2015.04.013.

[13] X.-S. Yang, S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc.
World Congr. Nature Biologically Inspired Comput. (NaBIC), Dec. 2009,
pp. 210–214.

[14] Z. Zendaoui and A. Layeb, ‘‘Adaptive cuckoo search algorithm for the bin
packing problem,’’ inModelling and Implementation of Complex Systems.
Cham, Switzerland: Springer, 2016, pp. 107–120.

[15] A. S. Joshi, O. Kulkarni, G. M. Kakandikar, and V. M. Nandedkar,
‘‘Cuckoo search optimization—A review,’’ Mater. Today, Proc., vol. 4,
no. 8, pp. 7262–7269, 2017, doi: 10.1016/j.matpr.2017.07.055.

[16] M. Mareli and B. Twala, ‘‘An adaptive Cuckoo search algorithm for
optimization,’’ Appl. Comput. Inform., vol. 14, no. 2, pp. 107–115, 2018,
doi: 10.1016/j.aci.2017.09.001.

[17] E. Valian, S. Mohanna, and S. Tavakoli, ‘‘Improved cuckoo search algo-
rithm for feed forward neural network training,’’ Int. J. Artif. Intell. Appl.,
vol. 2, no. 3, pp. 36–43, 2011, doi: 10.5121/ijaia.2011.2304.

[18] AComparative Study of Cuckoo Algorithm and Ant Colony
Algorithm in Optimal Path Problems Guanyu Wang. Accessed:
Jul. 28, 2020. [Online]. Available: https://www.matec-conferences.
org/articles/matecconf/pdf/2018/91/matecconf_eitce2018_03003.pdf

[19] X. Li and M. Yin, ‘‘Modified cuckoo search algorithm with self-adaptive
parameter method,’’ Inf. Sci., vol. 298, pp. 80–97, Mar. 2015, doi:
10.1016/j.ins.2014.11.042.

[20] W. C. E. Lim, G. Kanagaraj, and S. G. Ponnambalam, ‘‘A hybrid cuckoo
search-genetic algorithm for hole-making sequence optimization,’’ J.
Intell. Manuf., vol. 27, no. 2, pp. 417–419, 2014, doi: 10.1007/s10845-014-
0873-z.

[21] N. B. Davies and M. D. L. Brooke, ‘‘Cuckoos versus reed warblers:
Adaptations and counteradaptations,’’ Animal Behaviour, vol. 36, no. 1,
pp. 262–284, 1988.

[22] M. Shehab, A. T. Khader, and M. A. Al-Betar, ‘‘A survey on applications
and variants of the cuckoo search algorithm,’’ Appl. Soft Comput., vol. 61,
pp. 1041–1059, Dec. 2017.

[23] Wikipedia Contributors. (Aug. 7, 2020). NP-Hardness. In Wikipedia,
the Free Encyclopedia. Accessed: Aug. 7, 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=NP-hardness&oldid=
971690665

[24] E. López-Camacho, H. Terashima-Marín, G. Ochoa, and
S. E. Conant-Pablos, ‘‘Understanding the structure of bin packing
problems through principal component analysis,’’ Int. J. Prod. Econ.,
vol. 145, no. 2, pp. 488–499, Oct. 2013, doi: 10.1016/j.ijpe.2013.04.041.

[25] K. Fleszar and C. Charalambous, ‘‘Average-weight-controlled bin-oriented
heuristics for the one-dimensional bin-packing problem,’’ Eur. J. Oper.
Res., vol. 210, no. 2, pp. 176–184, Apr. 2011, doi: 10.1016/j.ejor.2010.
11.004.

[26] U. Eliiyi and D. T. Deniz, ‘‘Applications of bin packing models through
the supply chain,’’ Int. J. Bus. Manag. Stud., vol. 1, no. 1, pp. 11–19,
Jan. 2009.

[27] A. Laurent and N. Klement, ‘‘Bin packing problem with priorities and
incompatibilities using PSO: Application in a health care community,’’
in Proc. 9th IFAC Conf. Manuf. Modelling, Manage. Control, Berlin,
Germany, Aug. 2019, pp. 2744–2749.

[28] J. Levine and F. Ducatelle, ‘‘Ant colony optimization and local search for
bin packing and cutting stock problems,’’ J. Oper. Res. Soc., vol. 55, no. 7,
pp. 705–716, Jul. 2004, doi: 10.1057/palgrave.jors.2601771.

[29] M. Gendreau and J.-Y. Potvin, ‘‘Metaheuristics in combinatorial optimiza-
tion,’’ Ann. Oper. Res., vol. 140, no. 1, pp. 189–213, 2005.

[30] K. Sörensen and F. Glover, ‘‘Metaheuristics,’’ Encyclopedia Oper. Res.
Manage. Sci., vol. 62, pp. 960–970, 2013.

[31] S. Martello, Knapsack Problems: Algorithms and Computer Implementa-
tions. (Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion). New York, NY, USA: Wiley, 1990.

[32] D. S. Abdul-Minaam, W. M. E. S. Al-Mutairi, M. A. Awad, and
W. H. El-Ashmawi, ‘‘An adaptive fitness-dependent optimizer for the one-
dimensional bin packing problem,’’ IEEEAccess, vol. 8, pp. 97959–97974,
2020.

[33] J. M. Abdullah and T. Ahmed, ‘‘Fitness dependent optimizer: Inspired
by the bee swarming reproductive process,’’ IEEE Access, vol. 7,
pp. 43473–43486, 2019.

[34] M. Abdel-Basset, G. Manogaran, L. Abdel-Fatah, and S. Mirjalili,
‘‘An improved nature inspired meta-heuristic algorithm for 1-D bin
packing problems,’’ Pers. Ubiquitous Comput., vol. 22, nos. 5–6,
pp. 1117–1132, Oct. 2018.

[35] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[36] W. H. El-Ashmawi and D. S. A. Elminaam, ‘‘A modified squirrel search
algorithm based on improved best fit heuristic and operator strategy
for bin packing problem,’’ Appl. Soft Comput., vol. 82, Sep. 2019,
Art. no. 105565.

[37] M. Jain, V. Singh, and A. Rani, ‘‘A novel nature-inspired algorithm for
optimization: Squirrel search algorithm,’’ Swarm Evol. Comput., vol. 44,
pp. 148–175, Feb. 2019.

[38] A. K. Bhatia, M. Hazra, and S. K. Basu, ‘‘Better-fit heuristic for one-
dimensional bin-packing problem,’’ in Proc. IEEE Int. Advance Comput.
Conf., Mar. 2009, pp. 193–196, doi: 10.1109/IADCC.2009.4809005.

[39] D. Karaboga, ‘‘Artificial bee colony algorithm,’’ Scholarpedia, vol. 5,
no. 3, p. 6915, 2010, doi: 10.4249/scholarpedia.6915.

[40] J.-H. Liang and C.-H. Lee, ‘‘A modification artificial bee colony algorithm
for optimization problems,’’ Math. Problems Eng., vol. 2015, pp. 1–14,
Mar. 2015. Accessed: Aug. 27, 2020. [Online]. Available: https://www.
hindawi.com/journals/mpe/2015/581391/

VOLUME 8, 2020 227463

http://dx.doi.org/10.1007/978-1-4471-0519-0_23
http://dx.doi.org/10.1007/978-1-4471-0519-0_23
http://dx.doi.org/10.1007/1-4020-0611-X_70
http://dx.doi.org/10.1007/1-4020-0611-X_70
http://dx.doi.org/10.1007/978-3-662-44739-0_70
http://dx.doi.org/10.1007/978-3-662-44739-0_70
http://dx.doi.org/10.1504/IJICA.2011.037947
http://dx.doi.org/10.1504/IJICA.2011.037947
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.11817/j.issn.1672-7207.2015.04.013
http://dx.doi.org/10.1016/j.matpr.2017.07.055
http://dx.doi.org/10.1016/j.aci.2017.09.001
http://dx.doi.org/10.5121/ijaia.2011.2304
http://dx.doi.org/10.1016/j.ins.2014.11.042
http://dx.doi.org/10.1007/s10845-014-0873-z
http://dx.doi.org/10.1007/s10845-014-0873-z
http://dx.doi.org/10.1016/j.ijpe.2013.04.041
http://dx.doi.org/10.1016/j.ejor.2010.11.004
http://dx.doi.org/10.1016/j.ejor.2010.11.004
http://dx.doi.org/10.1057/palgrave.jors.2601771
http://dx.doi.org/10.1109/IADCC.2009.4809005
http://dx.doi.org/10.4249/scholarpedia.6915


C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

[41] M. Gourgand, N. Grangeon, and N. Klement, ‘‘An analogy between bin
packing problem and permutation problem: A new encoding scheme,’’ in
Proc. IFIP Int. Conf. Adv. Prod. Manage. Syst. Berlin, Germany: Springer,
Sep. 2014, pp. 572–579.

[42] N. Bansal, A. Lodi, and M. Sviridenko, ‘‘A tale of two dimensional bin
packing,’’ in Proc. 46th Annu. IEEE Symp. Found. Comput. Sci. (FOCS),
Oct. 2005, pp. 657–666.

[43] G. Scheithauer, ‘‘LP-based bounds for the container and multi-container
loading problem,’’ Int. Trans. Oper. Res., vol. 6, no. 2, pp. 199–213, 1999.

[44] J. Terno, G. Scheithauer, U. Sommerweiß, and J. Riehme, ‘‘An efficient
approach for themulti-pallet loading problem,’’Eur. J. Oper. Res., vol. 123,
no. 2, pp. 372–381, Jun. 2000.

[45] (2020). Fe.up.pt. Accessed: Aug. 27, 2020. [Online]. Available:
PopulationalMetaheuristics/SimulatedAnnealingAndrypintoInes
Domingues_LuisRocha_HugoAlves_SusanaCruz.pptx

[46] D. Bertsimas and J. Tsitsiklis, ‘‘Simulated annealing,’’ Statist. Sci., vol. 8,
no. 1, pp. 10–15, 1993.

[47] E. Aarts, J. Korst, and W. Michiels, ‘‘Simulated annealing,’’ in Search
Methodologies. Boston, MA, USA: Springer, 2005, pp. 187–210.

[48] R. L. Rao and S. S. Iyengar, ‘‘Bin-packing by simulated annealing,’’
Comput. Math. Appl., vol. 27, no. 5, pp. 71–82, 1994.

[49] E. Sonuc, B. Sen, and S. Bayir, ‘‘Solving bin packing problem using sim-
ulated annealing,’’ in Proc. 65th ISERD Int. Conf., Mecca, Saudi Arabia,
2017.

[50] E. Falkenauer and A. N. D. Delchambre, ‘‘A genetic algorithm for bin
packing and line balancing,’’ in Proc. IEEE Int. Conf. Robot. Automat.,
May 1992, pp. 1186–1192, doi: 10.1109/robot.1992.220088.

[51] C. F. A. Alvim, C. C. Ribeiro, F. Glover, and J. D. Aloise, ‘‘A hybrid
improvement 715 heuristic for the one-dimensional bin packing problem,’’
J. Heuristics, vol. 10, no. 2, pp. 205–229, 2004.

[52] N. Mohamadi, ‘‘Application of genetic algorithm for the bin packing
problem with a new representation scheme,’’ Math. Sci., vol. 4, no. 3, pp.
253–266, Oct. 2010.

[53] (Aug. 21, 2020). A Comprehensive Review of Swarm Optimization Algo-
rithms. [Online]. Available: https://openi.nlm.nih.gov/detailedresult?img=
PMC4436220_pone.0122827.g001

[54] J. G. M. Coffman and D. Johnson, ‘‘Approximation algorithms for bin-
Packing, an updated survey,’’ in Algorithm Design for Computer Systems
Design, G. Ausiello, M. Lucertini, P. Serafini, Eds. New York, NY, USA:
Springer, 1984, pp. 49–106.

[55] K. Fleszar and K. S. Hindi, ‘‘New heuristics for one-dimensional
bin-packing,’’ Comput. Oper. Res., vol. 29, no. 7, pp. 821–839,
Jun. 2002.

[56] Electricalvoice. (Aug. 10, 2017). Genetic Algorithm: Advantages &
Disadvantages. Accessed: Aug. 21, 2020. [Online]. Available: https://
electricalvoice.com/genetic-algorithm-advantages-disadvantages/

[57] X. Yang, ‘‘Genetic algorithms,’’ in Nature-Inspired Optimization Algo-
rithms. London, U.K.: Elsevier, 2014, pp. 77–87, doi: 10.1016/b978-0-12-
416743-8.00005-1.

[58] E. G. Coffman, J. Y.-T. Leung, and D. W. Ting, ‘‘Bin packing: Maximizing
the number of pieces packed,’’ Acta Inf., vol. 9, no. 3, pp. 263–271,
Sep. 1978.

[59] K. L. Krause, V. Y. Shen, and H. D. Schwetman, ‘‘Analysis of several
task-scheduling algorithms for a model of multiprogramming computer
systems,’’ J. ACM, vol. 22, no. 4, pp. 522–550, Oct. 1975.

[60] BPP Datasets. Accessed: Aug. 30, 2020. [Online]. Available: https://
www2.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

[61] T. Kucukyilmaz and H. E. Kiziloz, ‘‘Cooperative parallel grouping genetic
algorithm for the one-dimensional bin packing problem,’’ Comput. Ind.
Eng., vol. 125, pp. 157–170, Nov. 2018.

[62] T. Dokeroglu and A. Cosar, ‘‘Optimization of one-dimensional bin packing
problem with island parallel grouping genetic algorithms,’’ Comput. Ind.
Eng., vol. 75, pp. 176–186, Sep. 2014.

[63] A. Gherboudj, ‘‘African buffalo optimization for one dimensional bin
packing problem,’’ Int. J. Swarm Intell. Res., vol. 10, no. 4, pp. 38–52,
Oct. 2019.

[64] S. A. G. Shirazi and M. B. Menhaj, ‘‘A new genetic based algorithm for
channel assignment problems,’’ inComputational Intelligence, Theory and
Applications. Berlin, Germany: Springer, 2006, pp. 85–91.

[65] C. Zhao, L. Jiang, and K. L. Teo, ‘‘A hybrid chaos firefly algorithm for
three-dimensional irregular packing problem,’’ J. Ind. Manage. Optim.,
vol. 16, no. 1, p. 409, 2020.

[66] G. G.Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’Neural
Comput. Appl., vol. 31, no. 7, pp. 1995–2014, 2019.

[67] G.-G. Wang, S. Deb, and L. dos S. Coelho, ‘‘Earthworm optimisation
algorithm: A bio-inspired metaheuristic algorithm for global optimisation
problems,’’ Int. J. Bio-Inspired Comput., vol. 12, no. 1, pp. 1–22, Jan. 2018.

[68] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Dec. 2015,
pp. 1–5.

[69] G.-G. Wang, ‘‘Moth search algorithm: A bio-inspired Metaheuristic algo-
rithm for global optimization problems,’’Memetic Comput., vol. 10, no. 2,
pp. 151–164, Jun. 2018.

[70] M.-Y. Cheng and D. Prayogo, ‘‘Symbiotic organisms search: A new meta-
heuristic optimization algorithm,’’ Comput. Struct., vol. 139, pp. 98–112,
Jul. 2014.

[71] A. E. Ezugwu and D. Prayogo, ‘‘Symbiotic organisms search algorithm:
Theory, recent advances and applications,’’ Expert Syst. Appl., vol. 119,
pp. 184–209, Apr. 2019.

[72] A. E. Ezugwu, V. Pillay, D. Hirasen, K. Sivanarain, and M. Govender,
‘‘A comparative study of meta-heuristic optimization algorithms for
0–1 knapsack problem: Some initial results,’’ IEEE Access, vol. 7,
pp. 43979–44001, 2019.

[73] A. E.-S. Ezugwu, M. B. Agbaje, N. Aljojo, R. Els, H. Chiroma,
and M. A. Elaziz, ‘‘A comparative performance study of hybrid fire-
fly algorithms for automatic data clustering,’’ IEEE Access, vol. 8,
pp. 121089–121118, 2020.

[74] M. B. Agbaje, A. E. Ezugwu, and R. Els, ‘‘Automatic data clustering using
hybrid firefly particle swarm optimization algorithm,’’ IEEE Access, vol. 7,
pp. 184963–184984, 2019.

[75] A. E. Ezugwu and F. Akutsah, ‘‘An improved firefly algorithm for the
unrelated parallel machines scheduling problemWith sequence-dependent
setup times,’’ IEEE Access, vol. 6, pp. 54459–54478, 2018.

CHANALEÄ MUNIEN received the B.Sc. degree
in computer science and information technol-
ogy (summa cum laude) from the University of
KwaZulu-Natal, in 2019. She is currently pursu-
ing the Honours degree in computer science. Her
honours research work is focused on deep learning
and computer vision for medical image analysis,
specifically the classification of breast cancer his-
tology images. She intends to explore this research
domain further in the near future.

SHIV MAHABEER received the B.Sc. degree
in computer science and information technology
from the University of KwaZulu-Natal, in 2019.
He is currently pursuing the Honours degree in
computer science. His honours research is focused
on multi-agent deep reinforcement learning and
its application to the field of social sciences.
He intends furthering this research into his mas-
ter’s degree.

ESTHER DZITIRO received the B.Sc. degree
in computer science and information technology
from the University of KwaZulu-Natal, in 2019.
She is currently pursuing the B.Sc. honours degree
in computer science, with research focus on com-
puter vision and machine learning. She intends
pursuing her master’s degree in this area.

227464 VOLUME 8, 2020

http://dx.doi.org/10.1109/robot.1992.220088
http://dx.doi.org/10.1016/b978-0-12-416743-8.00005-1
http://dx.doi.org/10.1016/b978-0-12-416743-8.00005-1


C. Munien et al.: Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study

SHARAD SINGH received the B.Sc. degree in
computer science and information technology
from the University of KwaZulu-Natal, in 2019.
He is currently pursuing the B.Sc. honours degree
in computer science, with his research in data
analytics and machine learning. He is pursuing a
career in this field.

SILULEKO ZUNGU received the B.Sc. degree
in computer science and information technology
from the University of KwaZulu-Natal, in 2019.
He is currently pursuing the Honours degree in
computer science, with his research area focus-
ing on epidemiology using machine learning.
He intends pursuing his master’s degree in this
area.

ABSALOM EL-SHAMIR EZUGWU (Member,
IEEE) received the B.Sc. degree in mathemat-
ics with computer science and the M.Sc. and
Ph.D. degrees in computer science from Ahmadu
Bello University, Zaria, Nigeria. He is currently a
Senior Lecturer with the School of Mathematics,
Statistics, and Computer Science, University of
KwaZulu-Natal, South Africa. He has published
articles relevant to his research interest in interna-
tionally refereed journals and edited books, con-

ference proceedings, and local journals. His research interests include par-
allel algorithms design in cloud and grid computing environments, artificial
intelligence with specific interest in computational intelligence, and meta-
heuristic solutions to real-world global optimization problems. He is also a
member of IAENG and ORSSA.

VOLUME 8, 2020 227465


