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ABSTRACT Petri nets are an important and popular tool to model and analyze deadlocks in flexible
manufacturing systems. The state space of a Petri net model can be divided into two disjoint parts: a live-zone
and a dead-zone. Reachability graph analysis plays an important role in themodeling and control of Petri nets.
Most existing studies have to fully enumerate the reachable markings of a Petri net to obtain the first-met bad
markings (FBMs), which exacerbates the computational overheads. In this paper, a computationally efficient
method to find deadmarkings in Petri nets is presented.We first introduce an algorithm to find deadmarkings
by solving an integer linear programming problem. Then, the set of markings in the dead-zone is calculated,
including the set of dead markings and the set of bad markings. Then we can find all the FBMs. By using a
vector covering approach, the minimal covered set of FBMs is computed. The proposed approach can obtain
the dead markings and FBMs by searching only a part of a reachability graph. Finally, examples are provided
to demonstrate the proposed method.

INDEX TERMS Petri net, dead marking, first-met bad marking, deadlock control.

I. INTRODUCTION
Flexible manufacturing systems (FMSs) can automatically
finish various kinds of jobs by using shared resources such
as robots, machines, and automated guided vehicles. The
survivability and competitiveness of an automated manufac-
turing system largely depends on whether it can produce low-
cost, high-quality products of different varieties in a short
development cycle [38], [42]. This makes the flexibility of
the system more and more desirable to the survival of the
system. In order to shorten product cycle and reduce product
cost while ensuring product quality, FMSs came into being.
An FMS is usually defined as a computer control system
composed of a computer numerical control machine tool and
a material transfer system, and can efficiently produce small
andmedium batch products. Due to the competition of limited
resources, deadlocks may occur in such systems [1], [11],
[14], [15], [37]. Deadlocks in a system usually mean that the
whole system or a part of it is blocked [9], [10], [13], [41],
resulting in a reduction in productivity and major economic
losses, in some cases even catastrophic consequences. The
description, analysis, control, and solution of deadlocks in
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FMSs are undoubtedly essential to the realization and normal
operation of system control. Therefore, it is necessary to
handle deadlocks in these systems.

Several tools are used to deal with deadlocks in FMSs:
graph theory, automata [27], and Petri nets [7], [8], [12],
[16], [17], [21]–[23], [28], [35], [39], [40]. As a mathematical
modeling and analysis tool, Petri nets can accurately and
effectively model, analyze, and control FMSs. For a system,
if we can construct its Petri net model and analyze it, we can
reveal many important information about the structure and
dynamic behavior of the described system. These information
can be used to evaluate the performance of the system or to
make suggestions for improving the design of the system.
As a system model, Petri nets can describe the dynamic
behavior of the system, for example, the state change of the
system. Petri nets have intuitive graphical representations,
andmanymathematicalmethods can be introduced to analyze
their properties. An FMS to be controlled is first modeled
with Petri nets. Then, the deadlocks in the net model are
analyzed and a supervisor is designed to prevent the occur-
rence of the deadlocks. A Petri net supervisor usually con-
sists of control places, arcs, and transitions. The supervisor
can enforce some conditions on the request of resources to
ensure that deadlocks never occur. Petri nets are adopted for
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detecting deadlocks of a system and developing a policy to
prevent their occurrences. Many researchers use Petri nets as
a formalism to deal with deadlock problems.

For Petri nets, there are mainly two analysis tech-
niques to deal with deadlock problems: structural analysis
[18]–[20], [24], [25], [30], [31] and reachability graph analy-
sis [5], [32]–[34]. Reachability graph analysis is an important
technique to deal with the deadlock problem in Petri nets.
The reachability graph of a net model can completely reflect
the behavior and the evolution of a system. Uzam and Zhou
[33], [34] classify a reachability graph into two parts: a
live-zone (LZ) and a deadlock-zone (DZ), where DZ contains
all illegal markings (deadlocks, livelocks, and bad markings
that inevitably lead to deadlocks and livelocks), and the LZ
includes all legal markings. An FBM is a node in the DZ,
representing the very first entry from the LZ to the DZ. Once
all FBMs are forbidden, the controlled system is live since it
cannot enter the DZ anymore.

The concept of FBMs is widely studied in the literature.
In [3], a vector covering approach is proposed to reduce the
number of legal markings and FBMs that need to be consid-
ered. Then, an integer linear programming problem (ILPP)
is formulated to design a control place to forbid a selected
FBM. Meanwhile, constraints are designed to ensure that all
legal markings are not prohibited. Finally, a maximally per-
missive Petri net supervisor can be obtained. In [4], the objec-
tive function of an ILPP is used to minimize the number
of control places and constraints are designed to make all
FBMs unreachable but no legal marking forbidden. Hence,
a compact supervisor can be obtained which is optimized
in both behavioral permissiveness and structural complexity.
The work in [6] focuses on the design of a control place to
forbid as many FBMs as possible. Then, an iterative approach
is developed to obtain a supervisor to forbid all FBMs. This
study can reduce the number of constraints in the ILPPs
and lead to a maximally permissive supervisor with a small
number of control places. In [2], by combining FBMs and
structural analysis, a suboptimal Petri net supervisor can be
obtained.

All the aforementioned papers deal with deadlocks in Petri
nets by using the concept of FBMs. It is not efficient to find
FBMs by generating the whole reachability graph since the
number of reachable markings increases exponentially with
the size of a net model. The traditional methods always need
to enumerate all reachability graph, which exacerbates the
computational overheads. Different from traditional methods,
we propose a computationally efficient method to obtain the
dead markings and FBMs in Petri nets by searching only
a part of a reachability graph. We first find all generalized
deadlock markings of a net model. A generalized deadlock
marking is one satisfying the state equation and there exist
some transitions cannot be enabled anymore. Through the
generalized deadlock markings, we explore all the bad mark-
ings that will inevitably lead to some generalized deadlock
markings. Once all bad markings are found, then we can
define the boundary markings of DZ and LZ as the set

of FBMs. By using the vector covering approach, a minimal
covered set of FBMs are computed. Experimental results
show that the obtained minimal covering set of FBMs are
the same as the one obtained by the whole reachability graph
analysis.

The rest of this paper is organized as follows. Section II
briefly outlines the basics of Petri nets, structural analy-
sis, and the reachability graph analysis used throughout this
paper. An approach to enumerate all generalized deadlock
markings is proposed in Section III. Section IV introduces an
algorithm to compute the set of all generalized bad markings
and the generalized FBMs. A number of Petri net examples
are presented in Section V to show the experimental results.
Finally, we conclude this paper in Section VI.

II. PRELIMINARY
This section recalls some basics of Petri nets [26], [36].

A. PETRI NETS (PNs)
A Petri net is a four-tuple N = (P,T ,F,W ), where P and
T are finite and nonempty sets. P is a set of places and T is
a set of transitions with P ∩ T = ∅. F ⊆ (P× T ) ∪ (T × P)
is called a flow relation of the net, represented by arcs with
arrows from places to transitions or from transitions to places.
W : (P × T ) ∪ (T × P) → N is a mapping that assigns a
weight to an arc:W (x, y) > 0 if (x, y) ∈ F , andW (x, y) = 0,
otherwise, where x, y ∈ P ∪ T and N is the set of non-
negative integers. If ∀f ∈ F , W (f ) = 1, a Petri net N is
called an ordinary net; otherwise it is called a general net.
·x = {y ∈ P ∪ T |(y, x) ∈ F} is called the preset of x
and x · = {y ∈ P ∪ T |(x, y) ∈ F} is called the postset of
x. M (p) denotes the number of tokens in place p. The pair
(N ,M0) is called a marked Petri net or a net system. A net
is pure if ∀(x, y) ∈ (P × T ) ∪ (T × P); W (x, y) > 0 implies
W (y, x) = 0. Incidence matrix [N ] of pure netN is a |P|×|T |
integer matrix with [N ](p, t) = W (t, p)−W (p, t). A place p
is said to be k−bounded (k ∈ N) if ∀M ∈ R (N ,M0), ∀p ∈ P,
M (p) ≤ k . A net is k-bounded if every place is k-bounded.
A net is bounded if it is k-bounded for some k .
A transition t ∈ T is enabled at marking M if ∀p ∈ ·t ,

M (p) ≥ W (p, t). This fact is denoted as M [t〉. Once a
transition t fires, it yields a new marking M ′, denoted as
M [t〉M ′, where M ′(p) = M (p) − W (p, t) + W (t, p). M [t〉
is the set of all markings reachable from M by firing any
possible sequence of transitions. M0[t〉 is called the set of
reachable markings of net N with initial marking M0, often
denoted by R(N ,M0). It can be graphically expressed by a
reachability graph. The reachability graph of a net (N ,M0),
denoted as G(N ,M0), is a directed graph whose nodes are
markings in R(N ,M0) and arcs are labeled by the transitions
of N .

Let (N ,M0) be a net system with N = (P,T ,F,W ).
A transition t ∈ T is live at M0 if ∀M ∈ R (N ,M0), ∃M ′ ∈
R (N ,M) such that M ′ [ t〉 . (N ,M0) is live if ∀t ∈ T , and t is
live at M0. It is dead at M0 if @t ∈ T such that M0 [ t〉 .

Let N = (P,T ,F,W ) be a Petri Net and σ be a finite
transition sequence. The Parikh vector Eσ is defined as Eσ :
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T → N that assigns the number of occurrences of transition
t in σ , denoted as Eσ (t). For axample, Et1 = (10 · · · 0)T , Et2 =
(010 · · · 0)T , . . . ,Etk = (000 · · · 01)T , k = |T |.
For a transition t , we have [N ](·, t) = [N ]Et . M ′ = M +

[N ](·, t) if M [t〉M ′. So if M [ t〉 M ′, we have M ′ = M +
[N ]Et . For finite transition sequences σ in Petri net (N ,M0),
if M0 [σ 〉 M ′, we have:

M ′ = M0 + [N ] Eσ (1)

Equation (1) is called the state equation of Petri nets. It is
only a necessary condition to judge the reachability of a
marking. This means that any reachable marking satisfies the
state equation, but the reverse is not true.

B. STRUCTURAL ANALYSIS
Structural analysis mainly studies the special structures in
Petri nets such as places invariants, siphons, and resource
loops. In a Petri net (N ,M0), a P-vector refers to such a
column vector I :P→ Zwith place as a sequencemark. Simi-
larly, a T-vector refers to such a column vector J : T → Zwith
transition as a sequence mark. P-vector I is called P-invariant
(Place invariant, PI for short) if I 6= 0, and IT [N ] = 0T .
T-vector J is called T-invariant (Place invariant)if J 6= 0, and
[N ] J = 0.

If there exist a P-invariant I in a Petri Net (N ,M0) and
M ∈ R (N ,M0), we have:

ITM = ITM0 (2)

A P-invariant indicates a marking-invariant relationship,
which holds at any reachable marking (state).
Definition 1: A set S is a Siphon if S ⊆ P and ·S ⊆ S ·.
(1) S is a minimal siphon if the true subset of S does not

contain any other siphons.
(2) S is a strict siphon if ·S ⊆ S · but ·S 6= S ·.
(3) S is a strict minimal siphon (SMS) if it is strict and

minimal.

C. ANALYSIS OF A REACHABILITY GRAPH
A reachability graph can be partitioned into a deadlock-zone
(DZ) and a live-zone (LZ) [33], [34]. The DZ contains
deadlocks and critical bad markings that inevitably lead to
deadlocks. The LZ contains all the legal markings, where the
set of legal markings ML is the maximal set of reachable
markings, from which it is possible to reach initial marking
M0 without leavingML . Generally, the set of legal markings
of a Petri net system (N ,M0) can be defined as follows:

ML = {M |M ∈ R(N ,M0) ∧M0 ∈ R(N ,M ) (3)

An FBM is the one within the DZ, representing the very
first entry from the LZ to the DZ. Hence, we provide a
mathematical form of the set of FBMs as follows:

MFBM ={M |M ∈DZ , ∃M ′ ∈ LZ , t ∈ T , s.t.M ′[t〉M} (4)

The set of dangerous markings, denoted as MD, can be
defined as followings:

MD = {M |M ∈ LZ , ∃M ′ ∈ DZ , t ∈ T , s.t.M [t〉M ′} (5)

From Eqs. (2–5), we can see that the markings inMD may
cause the appearance of bad or dead markings. Removing
all dangerous markings from ML , the rest are called good
markings. Therefore, the set of good markings MG can be
defined as follows:

MG =ML −MD (6)

III. EFFICIENT COMPUTATION OF DEADLOCK-ZONE
MARKINGS
For optimal deadlock control purpose, reachability graph
analysis is generally used to find a Petri net supervisor. The
main idea is to design a set of control places to forbid all
FBMs. Then, all markings in the DZ cannot be reached.
However, it is not efficient to find FBMs by generating the
whole reachability graph. By combining siphon and state
equation, we propose an approach to enumerate all FBMs by
generating a part of a reachability graph.

A. GENERALIZATIONS OF REACHABILITY ANALYSIS
Let M and M ′ be two markings of R(N ,M0). M ′ = M +
[N ](·, t) if M [t〉M ′. Hence, we have M = M ′ − [N ](·, t).
This equation means that we can get a pre-marking of M ′

by reversing [N ]. The reverse transition enabled rules can be
defined as follows:
Definition 2: (1)A transition t is conversely enabled at a

marking M if ∀p ∈ t · : M (p) ≥ W (t, p). This fact is denoted
by M [−t〉.

(2)IfM [−t〉, conversely firing it yields a new markingM ′,
denoted by M [−t〉M ′. The new marking M ′ is defined as

M ′(p)


M (p)+W (p, t), p ∈ ·t\t ·

M (p)−W (t, p), p ∈ t ·\·t
M (p)+W (p, t)−W (t, p), p ∈ ·t ∩ t ·

M (p), otherwise

(7)

Definition 3: For a marking M , M ′ is called the
pre-marking of M if there exists t ∈ T , M [−t〉M ′. The set
of pre-markings of M is denoted as MM

pre.
Definition 4: For a marking M , M ′′ is called the

post-marking of M if there exists t ∈ T , M [t〉M ′′. The set
of post-markings of M is denoted asMM

post .
Let SetDZ denote a set of dead-zone markings. Then for

anymarkingM , ifMpost
M ⊆ SetDZ is true,M can join SetDZ ;

otherwise, M belongs to the set of undetermined markings.
If the structure and deadlock markings of a net model

are known, we can get the bad markings and dangerous
markings by converse transition enabled rules. We can find
all deadlock-zone markings by searching a part of rather than
the whole reachability graph.

We first provide an example to illustrate the idea of explore
deadlock-zone markings from deadlock markings. Fig. 1
shows the reachability graph of a simple Petri net whereM13
and M14 are dead markings.

The proposed converse searching process is described as
follows. The deadlock-zone contains two markings M13 and
M14, denoted as SetDZ = {M13,M14}. The first step is to
determine the pre-markings of M13 and M14, which are M6,
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FIGURE 1. Reachability graph of a PN (N, M0).

M8, M9, and M11. M12 and M13 are post-markings of M6,
where M12 is not in SetDZ . Therefore, we temporarily add
M6 to the set of undetermined markingMDD, that isMDD =
{M6}. AsM8 has only one post-markingM13 that is included
in SetDZ , we add M8 to SetDZ . Add M3 and M4, which are
the pre-makings of M8, to MDD. As M9 also has only one
post-marking M14 that is included in SetDZ , we add M9 to
SetDZ . Add M4 and M5, which is the pre-making of M9, to
MDD (MDD = {M3,M4,M5,M6}). As M11 has two post-
markings M14 and M15, and M15 does not belong to SetDZ ,
we temporarily add M11 to MDD.

The second step is to check the markings in MDD
(MDD = {M3,M4,M5,M6,M11}), in order to determine
whether there is any marking in MDD that can be added
to SetDZ . Repeat this process until the markings in the
MDD do not change. Finally, we can find all bad mark-
ings and dangerous markings. For this example, the final
results are SetDZ = {M4,M8,M9,M13} and MDD =

{M1,M2,M3,M5,M6,M11}. This strategy only calculates a
part of the reachable graph, which can reduce the computa-
tional cost.
Definition 5: Let (N ,M0) be a Petri net with n places

and m transitions, and 5 the set of strict minimal siphons.
A markingM = M0+ [N ]Y is called a generalized deadlock
marking if ∃S ∈ 5,M (S) = 0, where Y is any m× 1 vector
with Y ≥ 0.M is called a critical marking of S and S is called
a critical siphon of M . The set of generalized dead markings
of (N ,M0) is defined as MGD.
Definition 6: Let S be a siphon of a Petri net (N ,M0). The

set of critical markings of S is defined as C(S) = {M |M =
M0 + [N ]Y ,Y ≥ 0,M (S) = 0}.
It is obvious that MGD =

⋃
S∈
∏ C(S).

Corollary 1: Let S be a siphon and M a critical marking
of S. Then ∀t ∈ S ·,∀M ′ ∈ R(N ,M0),M ′/[t〉.

Proof: Since M is a critical marking of S, we have
M (S) = 0. Hence, for any p ∈ S, we have M (p) = 0. Then,
for any t ∈ S ·,M 6 [t〉. Since S is a siphon, ·S ⊆ S ·. Hence, for
any t ∈• S, t ∈ S · and M 6 [t〉. That is to say, no transition in
S · can fire atM . Therefore, for anyM ′′ ∈Mpost

M ,M ′′(S) = 0.
Hence, we have for any t ∈ S ·, M ′′ 6 [t〉. Finally, we have for
any t ∈ S ·, for any M ′ ∈ R(N ,M ), M ′ 6 [t〉.

It can be seen that for any generalized deadlock mark-
ing, there exist some transitions that cannot be enabled any-
more. For deadlock control purpose, the generalized deadlock
markings should not be reachable.
Definition 7: Let (N ,M0) be a Petri net and MGD the set

of generalized deadlock markings of (N ,M0). The set MGB
of generalized bad markings is recursively defined as

1) MGD ⊆MGB,
2) ∀M ∈ MGB,∀M ′ ∈ M0 + [N ]Y ,M ′ ∈ MGB if

MM
post
⊆MGB.

By Definition 7, any marking in MGB is either a general-
ized deadlock marking or a marking that inevitably leads to
some generalized deadlock markings.
Definition 8: The set of generalized FBMs (GFBMs) is

defined as

MGF = {M |M ∈MGB, ∃M ′ /∈MGB, ∃t ∈ T ,M ′[t〉M}.

By Definition 8, if all markings in MGF are forbidden,
then no marking in MGB is reachable. Similarly, we can
define the set of generalized dangerous markings as follows.
Definition 9: The set of generalized dangerous markings

is defined as

MGDG = {M |M 6∈MGB, ∃M ′ ∈MGB, ∃t ∈ T ,M [t〉M ′}.

B. COMPUTATION OF GENERALIZED DEADLOCK
MARKINGS
This section presents an approach to find all generalized
deadlockmarkings by P-invariants and strict minimal siphons
of a net model. We formulate an integer linear programming
problem (ILPP), namely, Find Dead-zone Marking (FDM),
to calculate all the generalized dead markings of a Petri net.
Let Sj be a strict minimal siphon. An ILPP, namely, FDM(Sj)
is formulated to find the critical markings of Sj.
The objective function of the FDM(Sj) is defined as

follows:

min f =
∑
pi∈P

M (pi) (8)

In Eq. (8), M can be any marking that satisfies the state
equation. Hence,M (pi) is considered as a nonnegative integer
variable of the ILPP. Since any finite integer can be rep-
resented by a set of binary variables, for a place pi ∈ P,
if M (pi) ≤ 2ni − 1, we can use 20yi,1 + 21yi,2 + 22yi,3 +
. . .+2ni−1yi,ni to replaceM (pi), where yi,1, yi,2, . . . , yi,ni are
binary variables.

For example, whenM (p1) is not greater than one in a Petri
net (N ,M0), M (p1) is replaced by 20y1,1. When M (p1) is
not greater than three, M (p1) is replaced by 20y1,1 + 21y1,2.
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In this way, the objective function is converted into the fol-
lowing form:

min f =
∑
pi∈P

20yi,1 + 21yi,2 + . . .+ 2ni−1yi,ni (9)

Let (N ,M0) be a Petri net model with np P-invariants
I1, I2, . . . , Inp , and ns strict minimal siphons S1, S2, . . . , Sns .
In order to find all the generalized deadlock markings,
by Definition 6, we have the following constraints:

ITJ ·M = ITJ ·M0,∀J ∈ {1, 2, . . . ,m} (10)

M
(
Sj
)
= 0 (11)

By combining Eqs. (9)–(11), we have the following ILPP,
namely FDM(Sj):

min f =
∑
pi∈P

20yi,1 + 21yi,2 + . . .+ 2ni−1yi,ni

subject to:

ITJ ·M = ITJ ·M0,∀J ∈ {1, 2, . . . ,m} (12)

M (Sj) = 0 (13)

FDM(Sj) can be used to generate a critical marking of
a siphon. In order to find all critical markings, we need to
develop an iterative approach. At each iteration, a critical
marking is computed by solving an ILPP and some con-
straints are added to eliminate the obtained siphons in the
previous iterations.

Let y∗i,k be an optimal solution of FDM(Sj). In the next
iteration, we need to exclude the current solution to find
a different critical marking. Let ni denote the number of
variables yi,k ’s for place pi. Then an additive constraint is
shown as follows:∑

y∗i,k=1

yi,k +
∑
y∗i,l=0

(
1− yi,l

)
≤

∑
pi∈P

ni − 1 (14)

.
Corollary 2: No other feasible solution of FDM(Sj) is

excluded by Eq. (14).
Proof: Let y′i,k be a feasible solution to FDM(Sj) and

there exists k ∈ {1, 2, . . . , ni}, y′i,k 6= y∗i,k . Then, we show
that Eq. (14) does not exclude y′i,k . Since there exists k ∈
{1, 2, . . . , ni}, y′i,k 6= y∗i,k , we have

∑
y∗i,k=1

y′i,k+
∑

y∗i,l=0
(1−

y′i,l) ≤
∑

pi∈P ni − 1. That is to say, the solution y′i,k satisfies
Eq. (14). By

∑
y∗i,k=1

y∗i,k +
∑

y∗i,l=0
(1 − y∗i,l) =

∑
pi∈P ni,

the solution y∗i,k does not satisfy Eq. (14). The conclusion
holds.
Now, we can develop an algorithm to generate all general-

ized deadlock markings, as shown in Algorithm 1.
Corollary 3: Algorithm 1 can find all generalized dead-

lock markings.
Proof: Initially, FDM(Sj) can find a marking M with

M (Si) = 0. Hence, M is a generalized deadlock marking.
In the following iteration, Eq. (14) is added to FDM(Sj) to
exclude the current solution representing M and no other
feasible solution is excluded. Hence, we can find a new
critical marking different from M . The process is carried

Algorithm 1 Computation of the Set of Generalized Dead-
lock Markings MGD

Input: np P-invariant of (N ,M0) I1, I2, . . . , Inp and ns strict
minimal siphons S1, S2, . . . , Sns
Output:the set of initial dead marking SetDL
1. j = 1,MGD = ∅

2. while j < k + 1 do
3. Formulate FDM(Sj) and solve it.
4. while FDM(Sj) has a solution do
5. LetM be the critical marking obtained from the
solution of FDM(Sj).
6. MGD =MGD ∪ {M}, i = i+ 1.
7. endwhile
8. endwhile
9. end

FIGURE 2. The converse searching process.

out until FDM(Sj) has no solution. Hence, all critical mark-
ings of Sj can be computed. Once all strict minimal siphons
are dealt with, all generalized deadlock markings can be
obtained.

IV. EXPLORATION OF DEADLOCK-ZONE MARKINGS
This section presents an algorithm to compute the set of
generalized bad markings and the set of GFBMs.

A. COMPUTATION OF GENERALIZED BAD MARKINGS
The converse searching process consists of two steps.
First, initially, let SetDZ = MGD and we compute the
pre-markings of SetDZ . Then, by checking whether the
post-markings of the new generated markings are generalized
bad ones or not, we can decide the set of markings to be added
to SetDZ . The other new generated markings are added to the
set of undetermined markings, denoted asMDD. Second, for
the undetermined markings, find the pre-markings of MDD
and add the markings that satisfy the conditions for gener-
alized bad markings SetDZ . Then, the rest new generated
markings are added toMDD. This process is carried out until
the markings in the MDD do not change. Fig. 2 shows the
process to find all generalized bad markings from the set of
generalized deadlock markings.

Algorithm 2 is developed to compute the set of generalized
bad markings.

In Algorithm 2, SetDZ stores all deadlock-zone mark-
ings, SetPre stores the pre-set of SetDZ , and MDD stores
the undetermined markings. By applying Algorithm 2, it is
possible to obtain the set of all generalized dead markings
SetDZ . Finally, all the undetermined markings in MDD are
generalized dangerous markings.
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Algorithm 2 Computation of the Set of All Dead Markings
SetDZ

Input: the setMGD and the incidence matrix [N ]
Output: the set of all generalized deadlockmarkings SetDZ
and the set of generalized dangerous marking SetMD
1. SetDZ = ∅,MDD = ∅, SetMD = ∅.
2. SetNew =MGD.
3. while Mnew! = ∅ do

SetPre = {M ′|M ∈Mpre
M ,∀M ∈ SetNew}.

SetNew = ∅.
foreach M ∈ SetPre do

if Mpost
M ⊆ SetDZ
SetDZ = SetDZ ∪ {M} and SetNew =

SetNew ∪ {M}.
else MDD = MDD ∪ {M}
endif

endforeach
foreach M ∈ MDD do

if Mpost
M ⊆ SetDZ
SetDZ = SetDZ ∪ {M} and SetNew =

SetNew ∪ {M}.
endif
endforeach

endwhile
4. SetMD = MDD
5. end

B. COMPUTATION OF GENERALIZED FIRST-MET BAD
MARKINGS
According to the set of generalized bad markings, we can
compute the set of GFBMs as follows:

MGF =
{
M
∣∣M ∈ SetDZ , ∃M ′ ∈ MDD, t ∈ T , M ′ [ t〉M }

From the viewpoint of deadlock control, once all GFBMs
are forbidden, then no marking in MGB is reachable. When
designing a Petri net supervisor to forbid GFBMs, a vector
covering approach [3] can be used to reduce the number of
markings to be considered, which can improve the efficiency
of the deadlock control policies.
Definition 10: Let M and M ′ be two markings in MGF .

M A-coveres M ′ (or M ′ is A-covered by M ) if ∀p ∈
PA, M (p) ≥ M ′ (p), which is denoted as M≥AM ′

( or M ′≤AM ).
Definition 11: Let M∗

GF be a subset of MGF . M∗
GF is

called a minimal covered set of GFBMs if the following two
conditions are satisfied:

(1) ∀M ∈MGF , ∃M ′ ∈M∗
GF , s.t.M≥AM

′;
(2) ∀M ∈M∗

GF , there is no M
′
∈M∗

GF s.t.M≥AM
′ and

M 6= M ′.
Algorithm 3 is developed to find the set of GFBMs

SetFBM and the minimal covered set of GFBMs M∗
GF of a

Petri net (N ,M0).
The proposed algorithms calculate the generalized

deadlock markings through P-invariants and strict minimal
siphons. We first find all the generalized deadlock mark-

Algorithm 3 Computation of the Set of GFBMs and the
Minimal Covered Set of GFBMs
Input: the set of dangerous markings SetMD and the set of
dead markings SetDZ
Output:the first-met bad markings SetFBM and the mini-
mal covered set SetFBM∗

1. SetPost = ∅ and SetFBM∗ = ∅.
2. foreach M ∈ SetMD do

SetPost = SetPost ∪Mpost
M .

SetFBM = SetPost ∩ SetDZ .
endforeach

3. while SetFBM 6= ∅ do
Select a marking M ∈ SetFBM .
SetFBM = SetFBM \ {M}.
foreach M ′ ∈ SetFBM do

if M ′ ≥A M
SetFBM = SetFBM \ {M ′}.

elseif M ′ ≤A M
Goto Step 2.

endif
endforeach
SetFBM∗ = SetFBM∗ ∪ {M}.

endwhile
4. end

ings. Then, by using a converse firing approach, we can
find all generalized bad markings. Then, two kinds of bor-
der markings, generalized dangerous markings and GFBMs
are obtained. Finally, by using a vector covering approach,
we find the minimal covered set of GFBMs.

We consider the dead-zone markings as a multi-layered
sets of markings. The upper layer consists of the union of
the set of the pre-markings of the marking contained in its
lower layer. The bottom layer is the set of deadlock markings,
and there are no post-markings for them. The top layer set is
the set of dangerous markings. The flowchart of the proposed
algorithms is shown in Fig. 3.

V. EXPERIMENTAL RESULTS
This section provides some experimental results for the appli-
cation of the proposed approach. We also do comparison
on the efficiency between the proposed approach and the
reachability graph analysis.

A. AN ILLUSTRATIVE EXAMPLE
Fig. 4 shows a Petri net with 11 places and 8 transitions.
The set of idle places is P0 = {p1, p5}, the set opera-
tion places is PA = {p2, p3, p4, p6, p7, p8}, and the set of
resource places is PR = {p9, p10, p11}. The initial marking
is M0=[3, 0, 0, 0, 3, 0, 0, 0, 1, 1, 1]T .
For this example, the upper bound of tokens in p1 and

p5 is three. Hence, we use two binary variables y1,1 and
y1,2 to represent the number of tokens in p1, i.e., M (p1) =
y1,1 + 2y1,2. Similarly, we use two binary variables y5,1 and
y5,2 to represent the number of tokens in p5, i.e., M (p5) =
y5,1 + 2y5,2. The maximum number of tokens held by the
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FIGURE 3. The flowchart of the proposed algorithms.

FIGURE 4. A Petri Net (N, M0) with two processing processes FMS.

other places is one. Therefore, the number of tokens in pi
(i ∈ {2− 4, 6− 11}) is represented by a binary variable yi.
The net model contains three strict minimal siphons:
S1 = {p4, p8, p9, p10, p11},
S2 = {p3, p8, p9, p11},
S3 = {p4, p7, p10, p11}.
And it contains five P-invariants, as shown below:
M (p2)+M (p8)+M (p9) = 1,
M (p3)+M (p7)+M (p10) = 1,
M (p4)+M (p6)+M (p11) = 1,
M (p1)+M (p2)+M (p3)+M (p4) = 3,
M (p5)+M (p6)+M (p7)+M (p8) = 3.

For the five P-invariants, we have the following constraints
to ensure that any obtained markings satisfy the P-invariant
equations.
y2 + y8 + y9 = 1,
y3 + y7 + y10 = 1,
y4 + y6 + y11 = 1,
y1,1 + 2y1,2 + y2 + y3 + y4 = 3,
y5,1 + 2y5,2 + y6 + y7 + y8 = 3.
For S1 = {p4, p8, p9, p10, p11}, the condition M (S1) = 0

can be represented as:
y4 + y8 + y9 + y10 + y11 = 0.
Finally, FDM(S1) is formulated as follows:
min f = y1,1 + y1,2 + 2y2 + y3 + y4 + y5,1 + y5,2 + y6 +

2y7 + y8 + y9 + y10 + y11
subject to
y4 + y8 + y9 + y10 + y11 = 0.
y2 + y8 + y9 = 1,
y3 + y7 + y10 = 1,
y4 + y6 + y11 = 1,
y1,1 + y1,2 + y2 + y3 + y4 = 3,
y5,1 + y5,2 + y6 + y7 + y8 = 3.
all variables are binary
By solving FDM(S1), we have a solution as shown below:[
1 0 1 1 0 0 1 1 0 0 0 0 0

]
.

The solution represents a generalized deadlock marking
M1 = [1 1 1 0 2 1 0 0 0 0 0]T . In order to exclude M1
from the feasible solutions of FDM(S1), we add the following
constraint to FDM(S1): y1,1 − y1,2 + y2 + y3 − y4 − y5,1
+ y5,2 + y6 − y7 − y8 − y9 − y10 − y11 ≤ 4.
We solve the ILPP again and obtain a new solution:[
0 1 1 0 0 1 0 1 1 0 0 0 0

]
.

The solution represents a generalized deadlock marking
M2 = [2 1 0 0 1 1 1 0 0 0 0]T . In order to exclude M
from the feasible solutions of FDM(S1), we add the following
constraint to FDM(S1): −y1,1 + y1,2 + y2 − y3 − y4 + y5,1
− y5,2 + y6 + y7 − y8 − y9 − y10 − y11 ≤ 4.
By solving FDM(S1), there is no feasible solution. Hence,

all critical markings of S1 are generated. Next, we formu-
late FDM(S2) to find the critical markings of S2. To obtain
FDM(S2), we just need to replace y4+y8+y9+y10+y11 = 0
in FDM(S1) by y3+ y8+ y9+ y11 = 0. By solving FDM(S2),
we get a new solution:

[
0 1 1 0 1 0 1 0 1 0 0 0 0

]
.

The solution represents a generalized deadlock marking
M3 = [2 1 0 1 2 0 1 0 0 0 0]T . In order to exclude M3
from the feasible solutions of FDM(S2), we add the following
constraint to FDM(S2): −y1,1 + y1,2 + y2 − y3 + y4 − y5,1
+ y5,2 − y6 + y7 − y8 − y9 − y10 − y11 ≤ 4.
Solve FDM(S2) again and we have a new solution:[
0 1 1 0 0 0 1 0 1 0 0 0 1

]
.

The solution represents a generalized deadlock marking
M3 = [2 1 0 0 2 0 1 0 0 0 1]T . In order to exclude M4
from the feasible solutions of FDM(S2), we add the following
constraint to FDM(S2):−y1,1 + y1,2 + y2 − y3 − y4 − y5,1 +
y5,2 − y6 + y7 − y8 − y9 − y10 + y11 ≤ 4.
By solving FDM(S2), there is no feasible solu-

tion. Hence, all critical markings of S2 are generated.
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Next, we formulate FDM(S3) to find the critical markings
of S3. To obtain FDM(S3), we just need to replace y3 +
y8 + y9 + y11 = 0 in FDM(S2) by y4 + y7 + y10
+ y11 = 0. By solving FDM(S3), we obtain a new solution:[
0 1 0 1 0 1 0 1 0 1 0 0 0

]
.

The solution represents a generalized deadlock marking
M5 = [1 0 1 0 1 1 0 1 0 0 0]T . In order to exclude
M5 from the feasible solutions of FDM(S3), we add the
following constraint to FDM(S3): −y1,1 + y1,2 − y2 +
y3 − y4 + y5,1 − y5,2 + y6 − y7 + y8 − y9 − y10 − y11
≤ 4. By solving FDM(S3) again, we obtain a new solution:[
0 1 0 1 0 0 1 1 0 0 1 0 0

]
.

The solution represents a generalized deadlock marking
M6 = [2 0 1 0 2 1 0 0 1 0 0]T . In order to exclude M6
from the feasible solutions of FDM(S3), we add the following
constraint to FDM(S3):−y1,1 + y1,2 − y2 + y3 − y4 − y5,1 +
y5,2 + y6 − y7 − y8 + y9 − y10 − y11 ≤ 6.

By solving FDM(S3), there is no feasible solution. Hence,
all critical markings of S3 are generated. Finally, we find all
the generalized deadlock markings.

Finally, we obtain the set of generalized deadlockmarkings
SetDZ :

SetDZ =


1 1 1 0 2 1 0 0 0 0 0
2 1 0 0 1 1 1 0 0 0 0
1 1 0 1 2 0 1 0 0 0 0
2 1 0 0 2 0 1 0 0 0 1
2 0 1 0 1 1 0 1 0 0 0
2 0 1 0 2 1 0 0 1 0 0


It can be verified that SetDZ contains all the dead markings

of the model. The set MDead of dead markings is

MDead =

[
1 1 1 0 2 1 0 0 0 0 0
2 1 0 0 1 1 1 0 0 0 0

]
All markings in the SetDZ are the initial dead-zone mark-

ings obtained by Algorithm 1. By applying Algorithms 2 and
3, the final results are as follows:

SetDZ =



1 1 1 0 2 1 0 0 0 0 0
2 1 0 0 1 1 1 0 0 0 0
2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 2 0 1 0 0 0 1
1 1 0 1 2 0 1 1 0 0 0
2 0 1 0 1 1 0 0 0 0 0
2 1 0 0 2 1 0 0 0 1 0



MDD =



1 1 1 0 3 0 0 0 0 0 1
2 0 1 0 3 0 0 0 1 0 1
3 0 0 0 1 1 1 0 1 0 0
3 0 0 0 2 0 1 0 1 0 1
3 0 0 0 2 1 0 0 1 1 0
2 1 0 0 3 0 0 0 0 1 1
2 0 1 1 2 0 0 1 0 0 1
2 0 0 0 2 0 1 0 1 0 0
3 0 0 0 2 1 0 0 1 1 0
2 1 0 0 3 0 0 0 0 1 1



MGF =



1 1 0 1 2 0 1 0 0 0 0
1 1 1 0 2 1 0 0 0 0 0
2 0 1 0 1 1 0 1 0 0 0
2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 1 1 1 0 0 0 0
2 1 0 0 2 0 1 0 0 0 1
2 1 0 0 2 1 0 0 0 1 0


M?

GF =

 2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 2 0 1 0 0 0 1
2 1 0 0 2 1 0 0 0 1 0


SetDZ contains seven generalized deadlock markings,

and SetMD contains ten generalized dangerous markings.
MGF contains seven GFBMs. By using the vector covering
approach,M∗

FBM contains three markings.
In order to demonstrate the advantage of the proposed

method, we generate the reachability graph of the net model.
The sets of illegal markings and FBMs, and the minimal
covered set of FBMs are presented as follows:

ML =


1 1 1 0 2 0 0 0 0 0 0
2 1 0 0 1 1 1 0 0 0 0
2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 2 0 1 0 0 0 1
2 1 0 0 2 1 0 0 0 1 0



MFBM =


1 1 1 0 2 1 0 0 0 0 0
2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 1 1 1 0 0 0 0
2 1 0 0 2 0 1 0 0 0 1
2 1 0 0 2 1 0 0 0 1 0


M?

FBM =

 2 0 1 0 2 1 0 0 1 0 0
2 1 0 0 2 0 1 0 0 0 1
2 1 0 0 2 1 0 0 0 1 0


It can be seen that the net model has five illegal markings

and five FBMs. However, we generate seven generalized
bad markings that are two more than the number of illegal
markings. The reason is that there are two unreachable mark-
ings generated by the proposed method. However, it can be
verified that M?

GF is equal to M?
FBM . Hence, from the point

view of deadlock control, the proposed results are equivalent
to the enumeration of all reachable markings.

B. EXPERIMENTAL RESULTS
In this section, we provide some experimental results to
demonstrate the proposed approach. We develop software
to implement the proposed algorithms in a 64-bit Windows
operating system with a 2.60GHz CPU and 4GB RAM.

First, we apply the proposed approach to a well-studied
example from the literature as shown in Fig. 5. The
net model has 19 places and 14 transitions, where the
places have the following partitions:P0 = {p1, p8},
PA = {p2, p3, p4, p5, p6, p7, p9, p10, p11, p12, p13}, and PR =
{p14, p15, p16, p17, p18, p19}. In order to show the results by
generating the whole reachability graph, we use INA [29] as
a tool to generate all the reachable markings.

The net model shown in Fig. 5 has only 251 reachable
markings. Hence, we show more results by varying the initial
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TABLE 1. Experimental results for the net in Figure 5.

TABLE 2. Experimental results for randomly generated Petri nets.

FIGURE 5. A Petri Net (N, M0) with 19 places and 14 transitions.

tokens in p1, p8, p15, p18, and p19. The experimental results
are shown in Table 1, where the first column indicates the
number of tokens in the places p1, p8, p15, p18, and p19 at
the initial marking, |MGB| represents the number of general-
ized bad markings, τFDM indicates the time for the proposed
approach, τINA represent the time to generate the reachability
graph by INA, |R(N ,M0)| indicates the number of reachable
markings, and |MGB|/|R(N ,M0)|% represents the propor-
tion of the number of generalized bad markings to that of
reachable markings.

Fig. 6 shows the results by the data in Table 1. It can be seen
that, the proposed method only needs to generate a part of the
reachable markings to find all generalized bad markings and
GFBMs. Hence, the proposed approach is more efficient than
the enumeration of all reachable markings.

FIGURE 6. The experimental data from Table 1.

FIGURE 7. The experimental data from Table 2.

Next, the proposed approach is tested by using randomly
generated Petri nets of different sizes. The results are shown
in Table 2, where the first column shows the size of the
generated Petri nets represented by the numbers of places and
transitions, |P| and |T |, respectively.

Fig. 7 shows the experimental results of Table 2, which can
compare the efficiency between the proposed approach and
the whole reachability graph based method. The following
conclusions are obtained from the experimental results:

1. The proposed approach is more efficient than enumer-
ation of the whole reachable graph since it only generates a
part of the reachability graph.

2. Experimental results show that the proposed method
can obtain the same minimal covered set of FBMs as the
reachability graph analysis.
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VI. CONCLUSION
In this paper, we first propose an algorithm to find all gen-
eralized deadlock markings of a Petri net by solving ILPPs.
Then, we work out an algorithm to generate all generalized
bad markings. Finally, we can compute all GFBMs and the
minimal covered set of GFBMs. Experimental results show
that the minimal covered covered set of GFBMs is the same
as the minimal covered set of FBMs obtained by reachability
graph analysis. Since the proposed approach only generates
a part of the reachability graph, it is more efficient than the
enumeration of the whole reachability graph. A number of
examples are provided to show the efficiency of the proposed
approach.

Although the proposed method can find the minimal cov-
ered set of FBMs, it cannot find the minimal covering set
of legal markings. Hence, we cannot ensure the reachability
of all legal markings when designing Petri net supervisors.
In the future, we will consider to design a maximally permis-
sive Petri net supervisor only by the minimal covered set of
GFBMs.
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