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ABSTRACT To improve the safety and effectiveness of human-robot collaboration (HRC), the robot must
plan a safe trajectory before the human movement is finished. Therefore, it is necessary to enable proactive
robot behavior by making accurate intention prediction decisions early in a human motion. Furthermore,
it is desirable to not only provide the long-term trajectory prediction of human motion but also characterize
the uncertainty around it. In this paper, we present a human motion prediction framework to predict the
motion trajectory of human arm in a reaching task. The proposed framework combines partial trajectory
classification and human motion regression. By leveraging on the partial trajectory classification, our
framework makes it possible to recognize the human action and to provide a trajectory prediction before
the human movement is finished. The human motion regression can compensate the low accuracy of the
representative trajectory through the fusion strategy. The proposed framework consists of two phases: online
phase and offline phase. The offline phase aims to learn a regression model with optimized hyperparameters
and a fusion strategy combining different prediction algorithms. In the online phase, based on the partial
motion classification, the future reaching trajectory in a given time step is predicted by using a multi-step
Gaussian process regression and representative trajectory. Experimental results show that our proposed
framework achieved significant performance.

INDEX TERMS Human-robot collaboration, humanmotion prediction, Gaussian process regression, human
action recognition, representative trajectory computation.

I. INTRODUCTION
With the continuous development of robotic technol-
ogy, automatic pathological examination is also constantly
improving. Pathological examination is to discuss the princi-
ple of human disease by observing cell morphology through
a microscope. It requires making cells slides of diseased
human tissues and staining the cells. Benefit from the reli-
ability and high efficiency of robots, the time and cost of
pathological examination are reduced. However, if the robot
can safely interact with human partner in the same work
volume, the efficiency of pathological examination can be
further improved. This new working paradigm is particularly
suitable for making tissue pathological slices. Because this
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kind of work is flexible and still has to be performed by
humans, robots can reduce task completion time by transfer-
ring tools to humans or performing other auxiliary operations.
The safe and successful execution of this scenario requires
that the robot predicts human motions and subtly adjusts
planned trajectories in real-time [1]. Recently, various motion
planning methods have been proposed to improve the robot’s
ability to adjust the planned trajectories [2]–[4]. If human
motion is predicted more accurately, it will help to adjust
the robot’s trajectory in advance and avoid collisions. Due to
this requirement, predicting humanmotion using visual infor-
mation plays a significant role in human-robot collaboration
(HRC) [5].

Physics-based methods are widely used to predict human
motion. This kind of method is based on a physical model
of human motion and its parameters can be estimated both
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FIGURE 1. The structure block diagram of BP-HMT algorithm in offline and online phase.

online and offline by using system identification technolo-
gies. Examples include the use of constant acceleration
model [6] for dynamic obstacle prediction based on Kalman
filter, and hazard inference based on linear motion prediction
of pedestrian [7]. Although these methods have achieved
better performance, the physics-based method cannot pro-
vide the uncertainty of predicted human motion. Further-
more, minimum-jerk model is one of the most common
deterministic methods, which assumes the speed profile of
human motion fits the minimal jerk criterion. Under such
assumption, human motion prediction algorithm based on the
minimum-jerk model is integrated into the motion planning
framework of HRC [8], [9]. Same to the aforementioned
approaches, minimum-jerk model cannot provide confidence
information for the results.

In addition, a lot of efforts have been placed in the
area of human motion prediction using data-driven method.
Data-driven methods utilize a statistical representation of
human motion to predict human behavior. In the practi-
cal application of human motion prediction, there are chal-
lenges associated with gathering motions data using the
current state of the art. First, the errors exist in the col-
lected data impact the accuracy of human motion predic-
tion due to the sensors or poor sampling [10]. Second,
various uncertainties in terms of accurate representation of
the environment will increase with the suddenly or abruptly
change of humanmotion [11]. Compared with other methods,
data-driven approach is advantageous for dealing with uncer-
tainty. In [12], an online Gaussian process regression (GPR)
is proposed to predict human hand trajectory. While this
approach provides uncertainty information about the hand
movement, it is still necessary to improve the accuracy of
long-term prediction.

In this work, we present BP-HMT (Bayesian predictor for
human motion trajectory), a framework for human motion
prediction that synthesizes the classification and regression

methods to predict the future human arm reaching motion.
The BP-HMT algorithm includes a two-phase prediction.
In the offline training phase, the motion-level anticipatory
models are constructed using multiple demonstrations of
human reaching motions. In the online prediction phase,
a partial segment of the human arm trajectory is used for
human intention inference through time series classification.
Then, the human movement trajectory in a given time step is
predicted using amulti-step recursive GPR and representative
trajectory with the execution of the HRC task. This frame-
work aims at solving long-term prediction problems, and its
structure in the HRC system is shown in Fig. 1.

The major contribution of our work relies on the three
points:

(1)We present an algorithm that consists of the inference of
human intention and the prediction of future human motion.
Compared with related methods, our algorithm can not only
predict the future human position in a given time step, but also
provide the uncertainty information of motion trajectory.

(2) The proposed method can deal with the noisy data in
skeleton tracking in terms of human motion prediction.

(3) In the prediction of human movement trajectory,
we propose a fusion strategy that combines the representa-
tive trajectory, classification model, and sparse GPR. The
fusion strategy determines a trade-off between human motion
regression and representative trajectory depending on their
overall performance in multi-step ahead prediction, which
improves the precision of human motion prediction.

This paper is organized as follows. In section II, the related
works in the area of human motion prediction are discussed.
Section III introduces the basic theory of Gaussian pro-
cess regression. Section IV describes the component of the
BP-HMT algorithm and a fusion strategy used in long-term
human motion prediction. Simulation results and the algo-
rithm performance are analyzed in Section V. Conclusions
and future research directions are presented in Section VI.
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II. RELATED WORK
In this section, we give a brief overview of prior work on
human motion prediction in HRC.

In order to perform early motion recognition and predict
the subsequent human motion, based on the target posi-
tion at which the person arrives or strikes, Gaussian mix-
ture model (GMM) was combined with Gaussian mixture
regression to generate a representative human motion and
estimate the task space area that the human will occupy [13].
Pérez-D’Arpino and Shah modified the GMM classification
algorithm reported in [13] by adding a regularizer to prevent
singularities [14]. For endowing GMM with better extrap-
olation performance, a task-parameterized formulation was
studied in [15], which essentially models local trajectories
and corresponding local patterns. Besides, an online unsu-
pervised learning algorithm was presented to predict human
motion, where the parameters of GMM are learned using
the expectation-maximization (EM) algorithm [16]. Overall,
most of the studies have focused on using GMM model to
predict a goal position. We can not only compute the goal
position that human is reaching toward, but also predict the
trajectory of human motion at each time step.

Hidden Markov model (HMM) is another popular
stochastic modeling technique for human motion [17]–[22].
Vasquez et al. used HMM to represent motion patterns, which
can process observations incrementally by using the growing
neural gas algorithm [19]. Ding et al. used the HMM to pre-
dict the regions in the workspace that are possibly occupied
by humans, the regions can be served as constraints to avoid
obstacles in robot motion planning [20].Wang et al. proposed
a novel approach for modeling the dynamics of human move-
ments in the environment with a grid-based representation,
a variant of the left-to-right HMM is used to directly model
the moving tendency from the current cell to a neighbor
cell [21]. Razin et al. used layered HMM with physiological
data from armmuscles to achieve accurate humanmotion pre-
diction [22]. Although the temporal information is addressed
by the transition probabilities, the continuous distribution of
trajectories cannot be represented completely with HMM.

In order to better predict the trajectory of human motion,
it is necessary to use the dynamic time warping (DTW) [23]
to calculate the similarity between different trajectories. Zhou
and De la Torre developed generalized time warping (GTW),
a technique for temporally aligning multiple multi-modal
sequences (such as video, motion capture, and accelerom-
eter data) from multiple subjects performing similar activi-
ties [24]. Although DTW is suitable for offline processing
of data, the problem of online partial trajectory alignment
is challenging. Pérez-D’Arpino and Shah used online DTW
to calculate the normative length of each human activity to
alleviate the problems caused by time deviation [14]. Fur-
thermore, trajectory overlap and temporary stops can degrade
the performance of existing alignment techniques. To address
this problem, Lasota and Shah presented a Bayesian estimator
that outputs the distributions of possible corresponding points
based on observed partial trajectory data [25]. The main idea

of these studies is to calculate the similarity of different
trajectories by using DTW method. But the error between
the prediction and ground truth value has increased based
on partial trajectory. We use the corresponding point in the
representative trajectory as predicted human position, which
not only improves the accuracy of the prediction process,
but also provides the uncertainty information of the predicted
value.

In the process of human motion prediction, the robot must
quickly infer the intention and future position of other human
partners in HRC [26]–[33]. In order to predict human inten-
tions, Ferrer and Sanfeliu denoted a complete probabilistic
framework that consists of prediction algorithm, behavior
estimator, and intentionality predictor [31]. A best destina-
tion of human reaching toward is estimated by intentionality
predictor, which can greatly enhance the performance of the
prediction algorithm. Quintero et al. proposed a balanced
Gaussian process dynamical model (GPDM) to predict future
pedestrian paths, poses, and intentions, which learns body
motion dynamics of walking and stopping in a compact
low-dimensional latent space [32]. Rehder et al. used a single
artificial neural network (ANN) to solve the problem of inten-
tion recognition and planning-based prediction [33]. Koppula
and Saxena proposed an anticipatory temporal conditional
random field (ATCRF), which learns human intentions from
a dataset with annotated object affordances (the functionality
of the object), human activities, and human motion trajec-
tories [34]. These studies mainly focus on the prediction of
human intention and behaviors, which are not suitable for the
prediction of long-term trajectory.

Given some demonstrations or observations, the inverse
optimal control (IOC) algorithm is used to find the cost
or reward function in the trajectory optimization problem.
Berret et al. presented an automated IOC method to simulta-
neously examine several existing costs and any linear com-
bination of them to automatically find the most suitable
cost combination for human motion [35]. Mainprice et al.
used the IOC algorithm to learn the cost function from the
demonstration trajectory of the collaborative assembly task,
the human motion from the current configuration to the tar-
get area is predicted by iteratively replanning the predicted
trajectory using learned cost function [36]. Oguz et al. pro-
posed a framework that combines the IOC method with the
probabilistic motion primitive formulation, which can learn
the motor variability as well as the interpersonal variance at
the same time [37]. Besides, Ben Amor et al. extended the
concept of imitation learning to human-robot interaction sce-
narios and introduced a new representation called interaction
primitives [38]. This method predicts human intentions based
on partial observations to adapt and correlate robot move-
ments. Maeda et al. also used imitation learning to construct a
mixture model of human–robot interaction primitive, which
allows for both action recognition and human–robot move-
ment coordination [39]. In [40], a hybrid motion prediction
method that combines a minimum-jerk model and a dynamic
movement primitives system is used to predict human

227692 VOLUME 8, 2020



Q. Li et al.: Data Driven Models for Human Motion Prediction in HRC

motion. Oguz et al. proposed a supervised learning frame-
work to imitate close proximity dyadic interaction move-
ment behavior and used recurrent neural networks (RNNs)
to learn generalized policies [41]. Kratzer et al. proposed a
human motion prediction framework, which uses a RNN to
encode short-term dynamics and accounts for environmental
constraints by gradient-based trajectory optimization [42].
Although the above methods perform well in the correspond-
ing human motion prediction scenarios, the adjustment of
model parameters is complicated.

Various effective fusion algorithms proposed in recent
years have been applied to the field of human motion track-
ing and recognition. Glonek and Wojciechowski presented
a data fusion method for human tracking, which can more
accurately fuse the limb orientation data from two devices
and compensate their imprecisions [43]. McIlwraith et al.
proposed a framework to describe posture evolution by fus-
ing the environment and wearable sensing patterns [44].
Bu et al. presented a hybrid motion classification framework
that uses product rules to combine the probabilities of candi-
date motions obtained from the Bayesian network task model
and the neural network classifier [45]. Ravichandar et al.
proposed a gaze-based multi-model intention estimator to
infer the target position of human reaching motions [46].
Pasciuto et al. introduced a hybrid motion prediction frame-
work that relies on a reference captured motion database
and combines motion control laws with a knowledge-based
method, which is similar to the actual execution of the refer-
ence motion [47]. A multiple-predictor system that combines
velocity-based position projection, time series classification,
and sequence prediction is introduced in [48], which selects
the optimal predictive output by a polynomial weighting
algorithm. Xiang et al. proposed a hybrid predictive dynam-
ics method to simulate human motion [49]. This method
predicts human motion by combining optimization-based
inverse kinematics, interpolation, and joint contour con-
straints. Cui et al. introduced a probabilistic fusion approach
that combines low-dimensional and high-dimensional states
for human motion tracking [50]. The difference between
our work and the above work is that we consider the spa-
tiotemporal characteristics of all offline trajectories to obtain
representative trajectories, and combine multi-step ahead
GPR to provide the uncertainty of all predicted values. The
proposed fusion strategy provides long-term multi-step pre-
diction results by weighing the prediction performance of
different algorithms in all offline trajectories.

III. GAUSSIAN PROCESS REGRESSION
Gaussian process regression has been widely applied in
the research of human motion prediction. It is a power-
ful and effective method to process nonlinear regression
problems.

In Gaussian process regression [51], [52], a noise-free
latent function f (x) is approximated through a training data
set X ∈ RN×D, Y ∈ RN×1. Such that the relationship between

the function f (xi) and the noisy output yi are given by

yi = f (xi)+ ε (1)

where, i = 1, . . . ,N , {xi,yi} ⊂ {X ,Y }, ε ∼ N (0, σ 2
n ) is an

independent identically distributed Gaussian white noise. To
predict the value f (X∗) at test vector X∗, the joint Gaussian
distribution of the training output f (X ) and the predictive
vector f (X∗) (often shortened to f and f∗, respectively) is
given as follows:[

f n

f n∗

]
∼ N

([
m(X )
m(X∗)

]
,

[
k(X ,X ) k(X ,X∗)
k(X∗,X ) k(X∗,X∗)

])
= N

([
m
m∗

]
,

[
K K∗
KT
∗ K∗∗

])
(2)

where, m(x) is the prior mean function for the Gaussian
process and k(x, x ′) is the prior covariance function. Note
that we have introduced the shorthand notation at the second
part of the equation. The superscript n denotes the number of
training points, subscript ∗ denotes the parameter of the test
set.

Many kinds of functions can be selected to construct the
covariance matrix, and a common choice is the squared expo-
nential covariance function:

k(x, x ′) = λ2f exp
(
−
1
2
(x − x ′)T3−1(x − x ′)

)
(3)

where, λ2f is a signal variance hyperparameter and 3 is a
diagonal matrix of the squared lengthscale hyperparameter.

We can find the posterior distribution of both f and f∗ given
y using Bayes rule as:

p(f n∗ |f
n) =

p(f n, f n∗ )
p(f n)

= N (µn∗, 6
n
∗∗)

µn∗ = m∗ + KT
∗ (K +6n)−1(y− m)

6n
∗∗ = K∗∗ − KT

∗ (K +6n)
−1K∗ (4)

where m and K are used to denote the properties of prior
distributions, µ and 6 are used for posterior distributions.

IV. THE BP-HMT ALGORITHM FOR HUMAN MOTION
PREDICTION
The BP-HMT algorithm combines representative trajectory
computation, time series classification, and human motion
regression. The first component of BP-HMT algorithm pro-
vides a set of spatially accurate representative trajectories of
each task, which is achieved through calculating the aver-
age of all training trajectories at same durations. The next
component analyzes the similarity between the current par-
tial trajectory and each representative trajectory by DTW
method [23]. Then, the representative trajectory that is most
similar to the current partial trajectory is used to predict the
position of human motion within a given time step. Further-
more, the third component of BP-HMT algorithm computes
the prediction of joint movement trajectory by a multi-step
ahead GPR, which improves the continuity of the predicted
trajectory, reduces the prediction error, and calculates the
uncertainty of human motion.
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An important characteristic for data-driven human motion
prediction algorithms is the full use of historical trajectory
data. In this paper, we study the movement trajectories of the
right hand. The trajectories of human joints are collected to
build a training set DT when human perform different tasks.
Based on statistical analysis of tracked positions of human
joints, the human motion toward several goal locations is also
used to build a set of representative motions. Each trajectory
is represented using T time frame of human motion, and k
represents the instantaneous time.

A. REPRESENTATIVE TRAJECTORY COMPUTATION
The first step of BP-HMT algorithm is to define a set of
representative trajectory Y R, based on the training setDT . The
durations of different trajectory in the same task are simply
normalized to a single nominal duration T nom. Then, each
trajectory is resampled by finding a cubic spline fit to the
trajectory in a single nominal duration T nom.
A probabilistic representation for each task as follows:

µk =
1

Ndem

Ndem∑
i=1

Y nomi,k

6k =
1

Ndem−1

Ndem∑
i=1

(
Y nomi,k −µi,k

) (
Y nomi,k −µi,k

)T (5)

where, µ is the mean vector and 6 is covariance vector of all
the trajectories in the same task. Y nom is the position vector
of human motion with duration T nom and k is time step, Ndem
denotes N demonstrations of the same task.

As a result, the representative trajectory is obtained using
the mean vector of each task. The representative trajectory of
each task is denoted as a set of positions yRk sampled at time
steps k = 1, 2, . . . ,T nom. The movement trajectories of the
right hand on the X-axis and its representative trajectory are
shown in the Fig. 2.

B. TIME SERIES CLASSIFICATION
For the safety and efficiency of HRC, it is necessary to infer
what humans are doing (e.g. take test tube from desktop)
by the time series classification method. The first step of
the time series classification is to search the representative
trajectory of target motion class. Based on the observed
on-going human motion, the similarity is measured among
the observed partial trajectory and each of representative tra-
jectories by usingDTWmethod [23]. Then, the representative
trajectory of target motion class is identified through the com-
parison of similarity. To predict the position ŷk+dm of human
movement in a given time step dm, a suitable representative
point yRα that corresponds to the current observed position yk
should be identified. The representative point yRα is selected in
a representative trajectory. The subscript α denotes the index
of representative point that is closest to the current position,
which can be obtained by calculating the minimum spatial

FIGURE 2. The blue solid line represents the trajectories resampled from
the dataset, the red solid line represents the representative trajectory and
the shaded area represents the variance per time step.

Euclidean distance:

α = argmin
i∈[1,T nom]

∥∥∥yRi − yk∥∥∥ (6)

After the representative point yRα is determined, the repre-
sentative point will be used as a base point. Then, in the repre-
sentative trajectory, the points within the range of multi-step
ahead time dm after the base point are used as predicted
points. The predicted position ŷk+dm can be obtained as
follows:

ŷk+dm = yRα+dm (7)

Due to the uncertainty of human motion, the error between
the motion trajectory of each joint and the representative
trajectory is inevitable. Although the representative trajectory
can achieve better performance in the long-term prediction,
there are still large errors in the initial stage of the action.
Therefore, the humanmotion regressionmethod is introduced
to further improve the prediction accuracy. Based on the
current observation point, the distribution of future points
and their uncertainty can be obtained by combining human
motion regression and representative trajectory.

C. HUMAN MOTION REGRESSION
Despite the excellent properties of GPR, there are still some
obvious deficiencies. To reduce the number of parameters
and the complexity of the computation, an active subset Xu
is selected from training set. Then, we find the posterior
distribution of the inducing outputs fu at the corresponding
inducing input points Xu.

p(f nu |f
n) = N (µnu, 6

n
u ),

µnu = m(Xu)+ Kuf K
−1
ff (f − m(X )),

6n
uu = Kuu − Kuf K

−1
ff Kfu (8)
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where, µnu is the mean function and 6n
uu is the covariance of

inducing point set.
Given a new input vector X∗, the joint distribution of

inducing outputs fu and predicted outputs f∗ is expressed as:[
f nu
f n∗

]
∼ N

([
µnu
µn∗

]
,

[
6n
uu 6

n
u∗

6n
∗u 6

n
∗∗

])
µn∗ = m(X∗)+ K∗uK−1uu (µnu − m(Xu)),

6n
∗∗ = K∗∗ − K∗uK−1uu (Kuu −6n

uu)K
−1
uu Ku∗. (9)

The sparse online noisy input Gaussian process (SONIG)
[53] regression is an approach that tackles the incorporation
of new noisy measurements in constant runtime and reduces
the computation complexity by using online sparse GPR.

Therefore, when a new pair of input and output measure-
ments (x+, y+) are available (the measurement is approx-
imated using distribution x+ ∼ N (x̃+, 6+x) and y+ ∼
N (f̃+, 6+f )), the distribution fu is refined online by calcu-
lating the posterior distribution p(f n+1u |x̃+, f̃+, f nu ). The pos-
terior distribution of the inducing input vector fu can be
calculated as follows:

f n+1u ∼ N (µn+1u , 6n+1
uu ),

µn+1ui = µ
n+1
ui (x̃n+1+ )+

1
2
tr

(
d2µn+1ui (x̃n+1+ )

dx2+
6n+1
+x

)
,

6n+1
uiuj =6

n+1
uiuj(̃x

n+1
+ )+

(
dµn+1uj (x̃n+1+ )

dx+

)
6n+1
+x

(
dµn+1ui (x̃n+1+ )

dx+

)T

+
1
2
tr

((
d26n+1

uiuj (x̃
n+1
+ )

dx2+

)
6n+1
+x

)
(10)

where, µn+1ui and 6n+1
uiuj denote the posterior distribution of

individual elements. The superscript n+1 denotes the number
of training points.

Additionally, our purpose is to predict a future trajectory
of human motion. For the timely motion planning of robots,
it is necessary that more information about human motion
trends can be gathered. Hence, an iterative multi-step ahead
prediction method is used for predicting future trajectory at
time step k . However, according to the definition of the input
and output in GPR, the prediction of outputs ŷk , . . . , ŷk+d
depend on the given of measurements {xi, yi}

k+d
i=k . Therefore,

when the yk is estimated at current time step k , the distribution
of ŷk+1 at time step k+1 is also obtained. Then, the distribution
of ŷk+1 can be used as a virtual measurement to estimate
the yk+1. This progress is repeated until yk+d is estimated.
Furthermore, to reduce computation complexity, it is impor-
tant that the inducing input points can be adjusted while the
algorithm is running. It is possible to add a new measure-
ment to the inducing point set when the new measurement
is far from each of the inducing points. It is also possible to
remove inducing input points between the current point and
the closest inducing point to reduce computation complexity.
We check if xk is already close to any existing inducing input
point, the normalized squared distance dist(xk , xui ) can be

calculated as follows:

dist(xk , xui ) = (xk − xui )
T(xk − xui ) (11)

where, xk is the current input point and xui is the inducing
input point.

If the normalized squared distance is below a given thresh-
old, it means xk close to the inducing input point xui . Then
xuiwill be removed and xk can be added to inducing point
set Xu.

D. THE FUSION STRATEGY OF BP-HMT ALGORITHM
In the previous section, the basic structure of the BP-HMT
algorithm is introduced. In this section, the fusion strat-
egy and the two phases of BP-HMT algorithm are further
described. Specifically, the two phases include offline phase
and online phase. The basic prediction model is established in
the offline phase, and the movement trajectory of right hand
is predicted in the online phase.

In the offline phase of BP-HMT algorithm, each trajectory
in the dataset is trained by noisy input Gaussian process
(NIGP) [54]. The NIGP method is used to tune the hyper-
parameters hNIGP by maximizing the marginal likelihood
based on human motion trajectory. Then, the average value of
hyperparameters and representative trajectories are indexed
with label vectors in the database.

In order to obtain better prediction performance, we pro-
pose a fusion strategy that combines the prediction results of
the time series classification and the human motion regres-
sion. In the offline phase, different methods are used to pre-
dict all motion trajectories in the training set. The prediction
errors are calculated to evaluate the performance of each
method at different stages. Then, a suitable predictionmethod
can be selected after a switching time point ks is given. The
time point ks can be calculated as follows:

E tsck =
∥∥yk − ŷtsck ∥∥

Ehmrk =

∥∥∥yk − ŷhmrk

∥∥∥
ks = argmin

k∈[1,dm]

Ndem∑
i=1

(
E tsci,k − E

hmr
i,k

)2
(12)

where, yk is the ground truth value, ŷtsck and ŷhmrk are predicted
values calculated by time series classification and human
motion regression, respectively. E tsck and Ehmrk represent the
Euclidean distance between the ground truth and predicted
value in the xyz spatial coordinate system. ks is an algorithm
switch point. dm is the step length of multi-step ahead time.
In the online phase, the measurement data of the motion

trajectory is collected for human action recognition and
human motion regression. First, the DTW method is used
to calculate the similarity between the current stage and the
representative trajectory of each task. The label of the most
similar task is used to obtain the representative trajectory
yR, hyperparameters hNIGP and switching time step ks of
the corresponding task in the database. Then, the multi-step
ahead regression and representative trajectory are combined
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to calculate the predicted value. From different prediction
methods, the predicted human motion and its uncertainty can
be obtained. The online phase of the BP-HMT algorithm is
summarized in Algorithm 1.

Algorithm 1BP-HMTAlgorithm for HumanMotion Predic-
tion in Online Phase

Input: The measurement point vector:
(x1, y1), (x2, y2), . . . , (xk−1, yk−1)
Output: Predicted value: ŷok+1, . . . , ŷ

o
k+dm

Initialization: kThreshold , distThreshold
while True do
Wait for a new measurement point: (xk , yk )
if k < kThreshold then
label t = argmin

t=1,...,n
distDTW ({yi}ki=1, {y

R,t
i }

k
i=1);

(yR, hNIGP)= database(labelt );
Obtain the switch time step ks from database.

else
Calculate α using Eq. (6);
Calculate µkui , 6

k
uiuj using Eq. (10);

Calculate µk∗, 6
k
∗∗ using Eq. (9);

for d = 1 to dm do
Calculate ŷtsck+d using Eq. (7);
Xu = Xu

⋃
xk+d ;

Calculate µk+dui , 6k+d
uiuj using Eq. (10);

Calculate µk+d∗ , 6k+d
∗∗ using Eq. (9);

Obtain ŷhmrk+d from µk+d∗ .
if dist(xk+d , xui ) ≤ distThreshold then
Xu = Xu\{xui};

end if
end for
The predicted output:
{ŷoi }

k+dm
i=k+1 = {ŷ

hmr
i }

k+ks
i=k+1

⋃
{ŷtsci }

k+dm
i=k+ks+1

end if
k = k + 1;

end while

V. EXPERIMENTAL
To evaluate the performance of BP-HMT algorithm, a table-
top manipulation task is conducted. The human motion from
three participants is captured by a Kinect depth sensor oper-
ating at a 20 Hz frame rate, and only upper body joints are
tracked for action recognition. The prediction performance
of BP-HMT algorithm for reaching motion with different
target positions is discussed. The initial state of human is
a static pose in front of a table. Since we want to cover a
wide range of reaching motions, each participant is required
to reach eight targets from the starting position facing the
table, as shown in Fig. 3. In the online prediction process,
kThreshold is set as 10, and distThreshold is set as 0.1. The
number of inducing point of BP-HMT algorithm is updated
online. All the experiments are performed on the MATLAB
2015 platform with a 1.5GHz Intel core i3 processor.

FIGURE 3. Prediction of hand movement trajectory in reaching tasks with
different target positions. The test tube that marked with red circle is the
one that human will grab. The future trajectory of hand movement (dash
line) is predicted based on the past trajectory (solid line).

The SONIG-based multi-step ahead regression [12] is
compared with the proposed BP-HMT algorithm in a gen-
eral HRC environment. A target position can be inferred
naturally when human arm reaching toward an object on
the table. Then, the future human motion trajectory is
generated recursively by SONIG algorithm using noisy
input points in an online manner. However, compared
with the SONIG algorithm, the BP-HMT algorithm can
deliver reliable online human motion prediction even for
a long prediction time. Therefore, it is necessary to com-
pare the performance of BP-HMT and SONIG methods
by further measuring the accuracy of multi-step ahead
prediction.

Furthermore, the BP-HMT algorithm is also compared
with the Bezier curve [55] and the minimum-jerk model [56].
Four position points are used to define the shape of the
trajectory in the Bezier curve: action start point, action end-
point, and two control points. The start position of the tra-
jectory is used as start point, the action endpoint and two
control points are selected from the representative trajecto-
ries in the training set. Four parameters are also used to
define the trajectory curve in the minimum-jerk model: the
current position, the end position of the human movement,
the current speed, and endpoint speed. The current position
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and speed are obtained using real-time motion information
of human joints. The position and speed of the end-
point are selected from the representative trajectories in the
training set.

In order to evaluate the performance of different methods,
mean absolute error (MAE) and mean relative error (MRE)
are selected as numerical criteria:

ex(t) = xd (t)− xr (t),

ey(t) = yd (t)− yr (t),

ez(t) = zd (t)− zr (t); (13)

EMAE =
1
N

N∑
t=1

√
(ex(t))2+(ey(t))2+(ez(t))2 (14)

EMRE =
1
N

N∑
t=1

√(
ex(t)
xr (t)

)2

+

(
ey(t)
yr (t)

)2

+

(
ez(t)
zr (t)

)2

(15)

where, in a xyz spatial coordinate system, xd (t), yd (t), and
zd (t) are predicted values at time k + d . xr (t), yr (t), and zr (t)
are ground truth values at time k + d .

A. HUMAN ACTION RECOGNITION
In this section, we evaluate the effectiveness of BP-HMT
algorithm in observing different durations of human trajec-
tories. We recorded eight sets of motion trajectories when
human reaching toward an object at different positions on
the table, and the scenario as shown in Fig. 3. The BP-HMT
algorithm is used to calculate the accuracy of action recog-
nition for each set of trajectories. A leave-one-out cross
validation (LOOCV) is used as evaluation method. In each
validation, one action is used as test set, others actions as
training set. The recognition performance of the BP-HMT
algorithm for the three sets of trajectories in the recorded
actions is shown in Fig. 4.

The action recognition accuracy according to the par-
tial trajectory labeled with corresponding action is shown
in Fig. 4 (a). The red circle marks represent the case when the
trajectory of the action 1 is used as test data. The blue square
marks represent the case when the trajectory of the action 2 is
the correct action, and the black cross marks represent the
case when the action 3 is the correct action. The data mea-
sured from the motion capture system is used as a noiseless
case. When 60% of the task is observed, the action 1 can
be correctly recognized in all tests. Furthermore, the noisy
data is also necessary to evaluate the performance of human
action recognition. As shown in Fig. 4 (b), Gaussian noise
with zero mean and standard deviation of 3 cm is added
on the observed point. The observations are changed by the
superimposed noise, which increases the possibility of false
human motion recognition. Fig. 4 (c) shows the case that the
Gaussian noise has a standard deviation of 6 cm. In this case,
long-term observation is required to obtain higher recognition
accuracy.

FIGURE 4. The accuracy of human action recognition with different
amounts of noise. (a) Noiseless observation. (b) Observations added with
zero-mean Gaussian noise and standard deviation 3 cm. (c) Observations
added with zero-mean Gaussian noise and standard deviation 6 cm.

B. COMPARISON WITH RELATED WORKS
While we focused on human action recognition in the pre-
vious experiments, the human motion trajectory lasting 1s
is predicted in this section. The motion trajectories of the
right hand reaching different positions on the desktop are
saved in different datasets, and each dataset records 20 hand
motion trajectories. The prediction results of four methods
are compared in eight trajectory sets. Furthermore, the range
of multi-step ahead times considered is 0.5s to 1.5s, in incre-
ments of 0.05s. As shown in Fig. 5, the long-term prediction
accuracy of the BP-HMT algorithm is higher than others, and
the reasons for its performance are futher analyzed.

In order to analyze the experiment results, the predic-
tion errors of all trajectories are computed for each of
the four methods (i.e. the SONIG algorithm, Bezier curve,
minimum-jerk model and our BP-HMT algorithm). These
results are combined into separate vectors to calculate the
mean prediction errors of each prediction method at corre-
sponding time step.

Compared with the SONIG and BP-HMT algorithm,
the mean prediction error of the Bezier curve and
minimum-jerk model at initial stage of multi-step ahead
prediction (e.g. 0.55s to 0.7s in Fig. 5 (b), or 0.55s to
0.9s in Fig. 5 (c)) is higher. The reasons for this case are
analyzed: the Bezier curve and minimum-jerk model rely
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FIGURE 5. The overall mean errors of multi-step ahead prediction. The BP-HMT algorithm is compared with other methods in eight
test sets.
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TABLE 1. The overall MAE of human motion prediction in eight task test sets.

TABLE 2. The overall MRE of human motion prediction in eight task test sets.

on four parameters to fit the overall trajectory of hand
motion. But the joints position or velocity can be affected by
noise or sudden change of limb movement direction, which
will change the parameters of the model and produce large
prediction errors. Due to the representative trajectory is the
statistical mean of multiple motions, the higher error is also
produced using representative trajectory when the variance
is large. In order to deal with this problem in the initial
stage mentioned above, the iterative multi-step regression is
combined with representative trajectory through the fusion
strategy to reduce the prediction error. In addition, the itera-
tive multi-step regression can also provide the calculation of
uncertainty.

Among the long-term predictions of the four methods,
the mean prediction error of the BP-HMT is lower. Although
the Bezier curve and the minimum-jerk model also exhibited
a trend toward decreased performance at multi-step ahead
time, their mean error growth rate is lower than that of the
SONIG method. This case is further analyzed as follows:
Because the overall trajectory movement trend is predicted in
the Bezier curve and the minimum-jerk model, the prediction
accuracy of the model is limited by four parameters. On the
contrary, since the long-term prediction of SONIG method
is not constrained by the target position, it is conceivable
that the prediction error continues to increase. In addition,
the BP-HMT method uses the corresponding points on the
representative trajectory as the output, so it has the smallest
error in long-term trajectory prediction.

C. STATISTICAL ANALYSIS OF THE PREDICTION RESULTS
To analyze the performance of eachmethod, theMAE of each
trajectory in test set is computed. These results are combined
into separate vectors to calculate the overall MAE in each
task. As shown in Table 1, the accuracy of the BP-HMT algo-
rithm in long-term prediction is higher than other algorithms
in eight human reaching tasks. The MRE of each trajectory
is also computed, and the overall MRE in each task is shown
in Table 2.

The overall mean error (across all datasets) of the BP-HMT
algorithm is 36.9%, 55.3%, and 33.5% lower than that of
the SONIG, Bezier curve, and minimum-jerk model, respec-
tively. As indicated by the results in Table 1, the BP-HMT
nearly always outperformed the other three prediction meth-
ods. The prediction accuracy of BP-HMT is improved most
obviously in the task 1, task 6 and task 5. Compared with
SONIG, Bezier curve and minimum-jerk model, the pre-
diction accuracy is improved by 52.9%, 69.4% and 44.5%.
But in the task 3 and task 4, the prediction accuracy of the
BP-HMT algorithm is only 13.1%, 36.6%, and 14.5% higher
than that of the SONIG, Bezier curve, and minimum-jerk
model, respectively.

Furthermore, the MRE is also used to evaluate the perfor-
mance of the long-term prediction, as shown in Table 2. The
MRE of the BP-HMT is 29.9%, 53.0%, and 20.3% lower
than that of the SONIG, Bezier curve, and minimum-jerk
model, respectively. The results of BP-HMT algorithm nearly
always outperformed the other prediction methods, except
for task 6 and task 8. The prediction accuracy of BP-HMT
algorithm is improved most obviously in the task 1 and task
5. Compared with SONIG, Bezier curve and minimum-jerk
model, the prediction accuracy is improved by 43.9%, 63.4%
and 49.0%. But in the task 7, task 2 and task 4, the prediction
accuracy of the BP-HMT algorithm is only 12.2%, 36.1%,
and 11.1% higher than that of the SONIG, Bezier curve, and
minimum-jerk model, respectively.

D. EXPERIMENTAL RESULTS OF TYPICAL TASKS
In the above work, our reaching task is to move the hand from
the same initial position to different positions on the desktop.
This reaching task is used to test the long-term prediction
performance of different methods. However, the BP-HMT
algorithm needs to be discussed with the typical trajectories
of different start and end positions in general HRC scenario.
Therefore, the hand movement trajectories in three typical
tasks are collected to further evaluate the prediction perfor-
mance of the BP-HMT algorithm. As shown in Fig. 6, three
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FIGURE 6. Human hand movement trajectories when performing different tasks. The three typical tasks are as follows: (a) take test tube from
desktop, (b) reaching tube holder, and (c) transferring test tube. The blue solid lines are training samples while performing a task. The red solid line
shows the representative trajectory of hand movement.

FIGURE 7. The overall mean errors of multi-step ahead prediction. The BP-HMT algorithm is compared with other methods in three typical
tasks.

FIGURE 8. Prediction results of the BP-HMT algorithm. The blue solid line represents the prediction trajectory. The red solid line represents the
observation. The shaded area represents the variance of x, y, z positions per time step in Cartesian space, respectively.

typical tasks are: take test tube from desktop, reaching tube
holder, and transferring test tube.

The overall mean errors of the predicted trajectory at each
time step are shown in Fig. 7. The same LOOCV procedure
is used to evaluate the performance of long-term prediction,
where one trajectory is used as the test set, the other trajec-
tories are used as the training set. The overall mean errors
are calculated with the error of each corresponding time step
in all test sets. In Fig. 7 (a) to (c), the overall mean error
of the proposed BP-HMT algorithm is lower than the other
three methods (SONIG, minimum-jerk model, and Bezier
curve). But for 0.8 s to 0.9 s in Fig. 7 (a), the prediction
error of BP-HMT algorithm is higher than that of the SONIG

algorithm. Similar to the previous analysis, although the pre-
diction results are constrained in the long-term prediction
using representative trajectories, the prediction results are
still affected by the variance of the training set. An exam-
ple of a predicted trajectory is shown in Fig. 8, which is
defined by predicted values and corresponding variances in
all dimensions. The spatial position of the observation at the
corresponding time step is calculated by BP-HMT algorithm.
With the increase of step size, the error also increases. But
the BP-HMT algorithm can provide the variance of the pre-
dicted trajectory. Therefore, the safety in the HRC can be
further improved by considering the uncertainty of human
behavior.
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VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed an approach that consists of rep-
resentative trajectory computation, time series classification,
and human motion regression. In the offline phase of the
proposed algorithm, a probabilistic model of human motion
with optimized hyperparameters is trained and the repre-
sentative trajectory of each task is computed. Based on the
learned model and newly obtained measurements, the time
series classification and sparse GPR are used for multi-step
ahead prediction in the online phase. To improve the predic-
tion accuracy of representative trajectory, we adopt a fusion
strategy to obtain the optimized fusion point to combine
the results of time series classification and human motion
regression. The results show that with the combination of
human motion classification and regression, our approach
can extract and understand the human intention, which have
better performance of long-term human motion prediction.

In future work, we will investigate the scalability of the
approach. Currently, supervised learning with labeled action
types is learned to recognize human action. More variety
and size of captured data is processed and learned with
the requirement of better predictive performance in general.
To recognize some action and the human movement trajec-
tory that is not in the dataset, some unsupervised methods
based on the action clustering algorithm will be used online.
We hope that our work can improve the safety and reliability
of HRC in the future.
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