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ABSTRACT In this paper, we present a computer-supported method of searching for quantum caps.
By means of this method and relevant knowledge of combinatorics, many quantum caps in PG(3, 9)
and PG(4, 9) are constructively proven to exist. Then, according to the theorem that each quantum cap
corresponds to a quantum error-correcting code with d = 4, we obtain 278 quantum error-correcting codes.
Most of these results break theGVbound, and a number of them are optimal quantum codes or have improved
parameters.

INDEX TERMS Quantum cap, quantum Hamming bound, quantum error-correcting code, combinatorial
construction.

I. INTRODUCTION
Compared to classic computing, quantum computing has
overwhelming superiority in terms of operation and security.
In 1994, Shor [1] proposed a quantum computer-based algo-
rithm that can factor an integer in polynomial time, which
is impossible for a classic computer. However, due to the
quantum incoherence effect, quantum computing is more
likely to produce errors. Therefore, quantum error correction
is essential in quantum computing.

In 1995, Shor [2] formulated the theory of quantum
error-correcting codes (QECCs) and presented an example of
a quantum [[9, 1, 3]]-code that could correct one error. Since
then, many methods of constructing QEECs have been being
proposed. In 1998, Calderbank et al. [3] built the relationships
between classical linear codes over the field F4 and 2-ary
QECCs, by which abundant QEECs with excellent param-
eters were identified. In 2006, Ketkar et al. [4] proposed a
nonbinary construction theorem that translated the problem
of finding q-ary QECCs into the problem of determining
Hermitian self-orthogonal linear code. For a more detailed
introduction to the construction of QECCs, refer to [5]–[8].

For this paper, the cited construction is given as follows.
Lemma 1 [4]: If C is a q2-ary linear code of length n,

dimension k and dual distance d⊥, which is self-orthogonal
with respect to the Hermitian inner product, then there
exists a pure quantum error-correcting code with parameters
[[n, n− 2k, d⊥]]q.

The associate editor coordinating the review of this manuscript and

approving it for publication was Faissal El Bouanani .

One central theme in quantum error-correction is the con-
struction of QECCs with optimal parameters. A quantum
code [[n, k, d]] is optimal if there is no [[n, k, d + 1]] code.
For the purpose of finding optimal QECCs with d = 4,
researchers focus on quantum caps in PG(r, q). In [11], [12],
the notion of the quantum cap is introduced. The authors
note that a quantum cap of size n in PG(r, q) is equivalent to
the quantum error-correcting code with parameters [[n, n− 2
(r+1), 4]]q. Thus, many 2-ary QEECs of optimal parameters
are constructed by quantum caps in PG(r, 4) (see [9]–[15]).

The case of nonbinary optimal quantum codes is much
more complicated. In this paper, we use mainly the quantum
caps in PG(3, 9) and PG(4, 9) to construct 3-ary quantum
codes. Among the results, most break the Gilbert-Varshamov
(GV) bound, which implies having good parameters, and
some are optimal according to the quantum Hamming bound.
Moreover, compared to the 3-ary quantum codes of d = 3
in [16], [17], our results are more systematic and involve
larger code lengths, some of which even have high code rates.
Therefore, in some situations of one error correction in a
quantum system, the quantum codes we propose are currently
the best coding schemes.
Proposition 1 (Quantum Gilbert-Varshamov Bound [18]):

Suppose that n > k ≥ 2, d ≥ 2 and n ≡ k(mod 2).
Then, there exists a pure quantum code [[n, k, d]]q provided
that

qn−k+2 − 1
q2 − 1

>

d−1∑
i=1

(q2 − 1)
i−1

(
n
i

)
(1)
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Proposition 2 (Quantum Hamming Bound [18], [19]): For
any pure quantum code [[n, k, d]]q, t =

⌊
d−1
2

⌋
, then

qn−k ≥
t∑
i=0

(q2 − 1)
i
(
n
i

)
(2)

The rest of this paper is organized as follows: basic
concepts related to the linear code and projective cap are
recalled in Sect.II. In Sect.III, a computer-supported method
of searching for quantum caps is provided. In Sect.IV,
75 quantum caps in PG(3, 9) are found, and related QECCs
are constructed. In Sect.V, combinatorial construction and
block processing are used to identify 203 quantum caps in
PG(4, 9), and related QECCs are obtained. Finally, we ana-
lyze the optimality of the constructed quantum codes and
present conclusions.

II. PRELIMINARIES
A. FUNDAMENTALS OF LINEAR CODES
Let Fq be a finite field with q elements, and let Fnq be the
n-dimensional vector space over Fq. A k-dimensional sub-
space C ofFnq is called a q-ary linear [n, k] code and is denoted
as C = [n, k]q. If the minimal Hamming distance of C is d ,
then C is denoted as C = [n, k, d]q.
For x = (x1, · · · , xn) and y = (y1, · · · , yn)∈Fnq, the

Euclidean inner product is defined as

(x, y) = x · y =
n∑
i=1

xiyi. (3)

If x, y∈Fn
q2
, their Hermitian inner product is defined as

(x, y)h = x · yq =
n∑
i=1

xiy
q
i . (4)

If C = [n, k]q, its Euclidean dual code C⊥ is

C⊥ = {x ∈ Fnq | (x, y) = 0 for all y ∈ C}. (5)

For C = [n, k]q2 , its Hermitian dual code C⊥h is

C⊥h = {x ∈ Fnq2 | (x, y)h = x · yq = 0 for all y ∈ C}. (6)

A code C is Hermitian self-orthogonal if C ⊆ C⊥h. Let
G = (gi,j) be a generator matrix of C and G†

= (gqi,j)
T

be the conjugate transpose of G; then, C is Hermitian
self-orthogonal if and only if G · G†

= 0.
Definition 1: Let C = [n, k]q and G = (α1, · · · , αn) be a

generator matrix of C. If J = {j1, · · · , js} ⊆ {1, · · · , n} =
[n], ω(J ) = {ωj1 , · · · , ωjs} is a subset of nonzero elements in
Fq, G(ω(J )) = (β1, · · · , βn) with βjl = ωjlαjl for jl ∈ J and
βi = αi for i ∈ [n]\J ; then, the code C′ with generator matrix
G(ω(J )) is an equivalent code of C. J and ω(J ) are called the
varied set and varied value, respectively.

B. FUNDAMENTALS OF THE PROJECTIVE CAP
Let PG(r, q) be the r-dimensional projective space over Fq.
An n-cap in PG(r, q) is a set of n points, no three of which
are collinear. Two caps in PG(r, q) with no common points
are called disjoint caps. For two K1 and K2 caps in PG(r, q),
if K1 is a subset of K2, K1 is called a subcap of K2, and this
relation is denoted as K1 ⊂ K2. An n-cap is called complete
if it is not contained in an (n+ 1)-cap. The n-cap in PG(r, q)
with the largest size is called the maximal cap.

If we write the n points of an n-cap K in PG(r − 1, q) as
columns of a matrix, we obtain an r × n matrix Gr,n such
that any three columns of Gr,n are linearly independent, and
Gr,n is called a representative matrix of K . For two different
representative matrices Gr,n and G′r,n of K , there are some
J ⊆ [n] and ω(J ) such that G′r,n = Gr,n(ω(J )).
If Cr,n is generated by Gr,n, then Cr,n is called a cap code.

Clearly, Cr,n is an [n, r] code with dual distance 4. When
Cr,n is a Hermitian self-orthogonal code, Gr,n is called a
quantum cap. Therefore, according to Lemma 1, we have the
following.
Lemma 2 [7], [14]: The following are equivalent:
• A quantum n-cap in PG(r − 1, q2).
• An [n, k]q2 linear code of dual distance 4, which is

self-orthogonal with respect to the Hermitian form.
• A pure quantum [[n, n− 2r, 4]]q code.
From two special quantum caps in PG(r − 1, 9), we can

obtain the following.
Lemma 3 [11]: Let Gr,n and Gr,m be quantum caps in

PG(r − 1, 9) and m < n.
• If Gr,m is a submatrix of Gr,n, then there is a quantum

n− m cap.
• If Gr,n and Gr,m are disjoint quantum caps, then there is

a quantum n+ m cap.
In this paper, we concentrate on quantum caps in PG(3, 9)

and PG(4, 9).

III. NEW METHOD OF SEARCHING FOR QUANTUM CAPS
Let F3 = {0, 1, 2} be the finite field of order 3, and let f (x) =
x2+2x+2 be a primitive polynomial in F3[x]. We can define
that F9 = F3/(f (x)) = {0, 1,w,w2,w3, 2,w5,w6,w7

},
where w is a root of x2 + 2x + 2. For ease of presentation,
we use the figures 3, 4, 5, 6, 7, and 8 to represent the elements
w,w2,w7,w5,w3, and w6, respectively.
Next, we define the set A = {1,w2, 2,w6

} ⊆ F9 and set
B = {w,w3,w5,w7

} ⊆ F9. Clearly, the elements in set A
satisfy (1)4 = (w2)4 = (2)4 = (w6)4 = 1 and the elements in
set B satisfy (w)4 = (w3)4 = (w5)4 = (w7)4 = 2. Thus, the
following definition can be given.
Definition 2 [14]: Let N : F9 −→ F3 be the norm

(N (x) = x4, x ∈ F9) map. Suppose C is an [n, k]9 code,
the norm code of C is the ternary code N (C) ⊆ Fn3 spanning
F3 by the norms N (c) = (N (c1),N (c2), · · · ,N (cn)), where
c = (c1, c2, · · · , cn) ∈ C. Denote the Euclidean dual code of
N (C) by N (C)⊥.
Reference [14] gives two results related to the quantum

cap.
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Lemma 4 [14]: If C= [n, k]9, then C is Hermitian
self-orthogonal if and only if (x, x)h = 0 for all x ∈ C.
The authors did not give a complete proof of the following

lemma; thus, we provide a supplementary explanation.
Lemma 5 [14]: Let C be an [n, k]9 with dual distance d .

If there exists at least one codeword of N (C)⊥ having weight
m, then we can obtain a Hermitian self-orthogonal code with
parameters [m,≤ k]9 and dual distance d .

Proof: Let G be a generator matrix of C, and let v =
(v1, v2, · · · , vn) ∈ N (C)⊥ be a word of weight m. When i ∈
{i1, · · · , im} ⊆ [n], vi 6= 0.

Case 1: Assume the nonzero coordinates of v consist of
only 1; then, the obtained Hermitian self-orthogonal code can
be generated based on some columns of G. For more details,
refer to the proof of Theorem 2 in [14].

Case 2: Assume the nonzero coordinates of v consist of 1
and 2 and set J = {j| vj = 2} ⊆ {i1, i2, · · · im}. Next, choose J
as the varied set and let ω(J ) = {w}, where w is a primitive
element of F9. For the sets A,B ⊆ F9, it is easy to check
that w · A = B and w · B = A. Therefore, for equivalent
code C′ generated by G(ω(J )), there must exist a codeword
v′ ∈ N (C′)⊥ with nonzero ordinates of all 1. By case 1,
we can get a Hermitian self-orthogonal code with parameters
[m,≤ k]9 and dual distance d generated by some columns of
G(ω(J )).

Combining the above Lemma and proof with caps, we can
easily obtain the following corollary.
Corollary 1: Suppose Gr,n is an n-cap in PG(r − 1, 9) and

v is a codeword of N (Cr,n)⊥ having weight m.
(1) If the nonzero coordinates of v consist of only 1, then

there exists a quantum m-cap from Gr,n in PG(r ′, 9), r ′ ≤
r − 1.

(2) If the nonzero coordinates of v consist of 1 and 2, then
there exists a quantum m-cap from Gr,n(ω(J )) in PG(r ′, 9),
r ′ ≤ r − 1, where J = {j|vj = 2} and ∀j ∈ J , ωj = w.
Example 1: From [20], there exists a 20-cap in PG(5, 9),

which is denoted by G∗, where

G∗ =



11111111111111111111

33333333333333333333

07887044440788704444

12474218481247421848

07887044447887044440

12474218482474218481


Assume C∗ is its related linear code. By calculation it

is easy to get that v1 = (11111111110101010101), v2 =
(22222222221111111111) ∈ N (C∗)⊥. Thus, a quantum
10-cap in PG(4, 9) can be obtained by deleting the 11th,
13th, 15th, 17th and 19th columns of G∗. When the varied
set J = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, one can also derive that
G∗(ω(J )) is a quantum 20-cap in PG(5, 9).
It is noteworthy that the dimensions of all obtained quan-

tum caps in PG(3, 9) and PG(4, 9) are unchanged.

IV. QUANTUM CAPS IN PG(3,9)
According to [21], the largest size of known caps in PG(3, 9)
is a complete 82-cap that contains three types of points
denoted by (x1, x2, x3, x4)T ∈ F4

9, as follows:
type 1: x1 = 1, x22 + 2x3x4 = w3;

type 2: x1 = 0, x3 = −
x22
2 , x4 = 1;

type 3: x1 = x2 = x4 = 0, x3 = 2.
It is easy to verify that there are 82 points in total

and that 82-cap has a representative matrix G4,82, where
G4,82 = (G4,28,G4,27,G′4,27),

G4,28 =


1111111111111111111111111111
0000000011111111333333334444
1347268513472685134726851347
5862743131586274627431584315

 ,

G4,27 =


111111111111111111111111111
444477777777222222226666666
268513472685134726851347268
862715862743315862746274315

 ,

G′4,27 =


111111111111111110000000000
688888888555555550134726850
513472685134726850142814282
843158627158627431111111110

 .
It is easy to check that G4,82 · G

†
4,82 = 0. Hence, G4,82

generates a Hermitian self-orthogonal code C4,82, and it is a
quantum cap.
First, we choose G4,82 as the starting point. From G4,82,

we can directly find a quantum 8-cap that is defined as:

G4,8 =


11111100
14766618
33646812
13771511

 .
According to Lemma 3, there is also a quantum 74-cap.

TABLE 1. Quantum caps and corresponding varied sets.

Then, after computation, the norm code N (C4,82) and its
Euclidean dual code N (C4,82)⊥ can be obtained. We find that
when 75 ≤ t ≤ 81, there exists a codeword of weight t
whose nonzero coordinates consist of 1 and 2 contained in
N (C4,82)⊥. Thus, by Corollary 1, there exists quantum caps
of sizes 75, 76, 77, 78, 79, 80, and 81 from G4,82(ω(J ))
with different varied sets. These seven quantum caps and
corresponding varied sets are listed in table 1.
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Next, to reduce the amount of computation, we choose the
latter 54-cap as the starting point. Let G4,54 = (G4,27,G′4,27)
and denote its corresponding code by C4,54. From the code
N (C4,54)⊥, we find that it contains the codeword of weight t ,
where t ∈ {9, 10, · · · , 34}∪{41, 42, · · · , 47}, whose nonzero
coordinates consist of only 1. Therefore, there exists a quan-
tum cap of size t from G4,82, where 9 ≤ t ≤ 73.
On the basis of the above results, the following theorem is

true.
Theorem 1: Assume s ∈ {8, 9, · · · , 82}; then, there exists

a quantum s-cap in PG(3, 9) and a related pure [[s, s−8, 4]]3
quantum error-correcting code.

V. QUANTUM CAPS IN PG(4,9)
In this section, to obtain quantum caps in PG(4, 9), two
solutions are proposed. The first is to use quantum caps
in PG(3, 9) to combinatorially construct quantum caps in
PG(4, 9). Second, we find the corresponding matrix of the
212-cap, which is the largest size of known cap in PG(4, 9).
We then divide this matrix into 5 blocks and search for
quantum caps.
Theorem 2: Let Gr,m and Gr,n be quantum subcaps of

the same large cap in PG(r − 1, q) with sizes m and n,
respectively. Denote the cap code of Gr,m by Cr,m. If Cr,m
contains a word of weight m, then there exists a quantum
(m+ n)-cap in PG(r, q).

proof: Assume Gr+1,m+n =
(

c′ 0
Gr,m Gr,n

)
, where c′

is a codeword of Cr,m having weight m. Clearly, any three
columns of Gr+1,m+n are linearly independent, so Gr,m+n
is still a cap. Then, since Gr,m and Gr,n are quantum caps,
we have c′ · G†

r,m = 0, Gr,m · G
†
r,m =Gr,n · G

†
r,n = 0,

c′ · (c′)† = 0. Thus, Gr+1,m+n · (Gr+1,m+n)† = 0. Gr+1,m+n
is a quantum cap of size m+ n in PG(r, q).

A. COMBINATORIAL CONSTRUCTION OF QUANTUM CAPS
By means of Theorem 2, quantum subcaps of the 82-cap in
PG(3, 9) can be used to combinatorially construct quantum
caps in PG(4, 9).

Case 1. In Sect.IV, we have given the representative matrix
G4,8 of quantum 8-cap in PG(3, 9). Denote the corresponding
linear code by C4,8. According to its representative matrix,
there exists a word of weight 8 contained in C4,8 that is
defined as c′ = (14766618). Hence, we can obtain the matrix

G5,8+n =

(
c′ 0
G4,8 G4,n

)
, where G4,n is the quantum n-cap

constructed in Sect.IV. According to Theorem 2, there exists
a quantum (8+ n)-cap in PG(4, 9), 8 ≤ n ≤ 82.
Case 2. Let G4,81, G4,n be the quantum 81-cap and

quantum n-cap in PG(3, 9), respectively, where 10 ≤

n ≤ 82. Denote the corresponding linear code of G4,81
by C4,81. After a computer search, we find there exists
a word c′ of weight 81 contained in C4,81, where c′ =
(664755743443766715377351546453133238151841548728
486118578818875716138835871781551). Similarly, we can

TABLE 2. The existing quantum caps from 5 blocks.

obtain the matrix G5,81+n =

(
c′ 0

G4,81 G4,n

)
. Thus, there

exists a quantum (81+ n)-cap in PG(4, 9).
A summary of the results in case 1 and case 2 indicates

that there exists a quantum cap in PG(4, 9) of size t , where
t ∈ {16, 17, · · · , 163}.

B. BLOCK PROCESSING OF THE 212-CAP IN PG(4,9)
Currently, the known maximum cap in PG(4, 9) is the
212-cap constructed by Edel and Bierbrauer ( [16], [21]). This
cap is also complete, and we give its representative matrix as
follows: G5,212 = (G1

5,43,G
2
5,43,G

3
5,43,G

4
5,43,G5,40), shown

at the bottom of the next page.
Through the first conclusion of Corollary 1, we search for

all possible quantum caps that these five blocks contain. The
search results are listed as follows.

The former four blocks ofG5,212 include quantum subcaps
of sizes 30, 36, 30, and 33, respectively. If we denote the
union of the former four blocks as G5,172, we can conclude
that a quantum 129-cap is contained in G5,172. By deleting
the columns of the quantum 129 subcap from G5,172, a new
43-cap can be obtained and defined as G5,43, shown at the
bottom of the next page.

For G5,43, it is easy to check that it contains quantum
caps of sizes 15, 18, 21, 24, and 27. In combination with the
disjoint quantum 129-cap, we can construct quantum subcaps
ofG5,172 with sizes of 144, 147, 150, 153, and 156.Moreover,
since the last block G5,40 contains quantum caps of size t ,
11 ≤ t ≤ 30, which are disjoint with all the quantum
caps from G5,172, one can derive by pairwise combination
that there exists quantum caps in PG(4, 9) of size t , where
t ∈ {11, 12, · · · , 15} ∪ {164, 165, · · · , 186}.

Next, the above discussion indicates that G5,172 contains a
quantum 156 subcap. Therefore, by deleting the columns of
the quantum 156-cap from G5,172, we can obtain a 16-cap.
Denote this 16-cap by G5,16. Then, by combining G5,16 with
the last block of G5,212, an 56-cap can be constructed and
defined asG5,56 = (G5,16,G5,40). Denote the generated code
of G5,56 by C5,56. We can then obtain the norm code N (C5,56)
and its Euclidean dual code N (C5,56)⊥.
After computation, we find that when t ∈ {31, 32, · · · , 44}
∪{48}, there exists a codeword of weight t whose nonzero
coordinates consist of only 1 contained in N (C5,56)⊥.
By Corollary 1, there exists quantum caps of sizes t
from G5,56.
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TABLE 3. Quantum caps and related varied sets.

In addition, when t ∈ {10} ∪ {45, 46, · · · , 56}\{48},
N (C5,56)⊥ includes the codeword of weight t whose nonzero
coordinates consists of 1 and 2. Thus, we can also obtain
quantum caps with sizes of the same values fromG5,56(ω(J )),
where the varied sets J are all different. The sizes of the
quantum caps and their related varied sets are listed below.

Thus far, we have obtained the quantum t−cap from
G5,56 or its variation, where t ∈ {10} ∪ {31, 32, · · · , 56}.

Then, by combining these results with the disjoint quantum
156 subcap of G5,172, we can obtain quantum cap of size t ,
187 ≤ t ≤ 212, and a solitary quantum 10-cap in PG(4, 9).
Thus, by combining all the results in Sect.V, the following

theorem can be obtained.
Theorem 3: Assume s ∈ {10, 12, · · · , 212}; then, there

exists a quantum s-cap in PG(4, 9) and a related pure
[[s, s− 10, 4]]3 quantum error-correcting code.

VI. PARAMETER ANALYSIS OF QUANTUM CODE
In this section, the constructed quantum codes are analyzed
in detail. It is easy to check that when 10 ≤ s1 ≤ 82 and 20 ≤
s2 ≤ 212, both quantum codes [[s1, s1−8, 4]]3 and [[s2, s2−
10, 4]]3 break the GV bound. Thus, most of the constructed
quantum codes are of great parameters. Then, according to
the quantum Hamming bound, we can also give the following
theorem.
Theorem 4: Assume 15 ≤ s1 ≤ 82 and 44 ≤ s2 ≤ 212;

then, all [[s1, s1 − 8, 4]]3 and [[s2, s2 − 10, 4]]3 quantum
error-correcting codes are optimal.

G1
5,43 =


0063005710203060006300571020306057753663844
0514601830582780051460183058278026385247712
0265085372162638107340672351641334877216085
0514034241367348051403424136734826388571820
1111111111111111111111111111111111111111111

 ,

G2
5,43 =


8577557753663844857757548846371526438754884
6614326385247712661430476302440158610047630
3051445682351406770821325725407460625627115
7560226388571820756027254854640152043725485
1111111111111111111111111111111111111111111

 ,

G3
5,43 =


6371526438547846832157843654784683215784363
2440158610512371852368542751237185236854277
8783051703074608611325478383053204627158641
4640152043086103172368875108610317236887516
1111111111111111111111111111111111111111111

 ,

G4
5,43 =


6006300750021005577775533664488007500840075
4384783627134612506062583050278521378155213
5872745218463573204610853761428725485461587
3573675708220561428281464138734068101370681
1111111111111111111111111111111111111111111

 ,

G5,40 =


0084633612216336122148368346000000000021
7815607443206074432047830625112473730020
7438086103173204250684123765480076531230
0137475268454752684536752814008176764420
1111111111111111111111111111111011111100

 .

G5,43 =


6006301057756875488412484673446833753648585
1688403726382641603005601182171877628508313
6063302434872304651535737858332017405618447
1064434326385741038505038385803166816384131
1111111111111111111111111111111111111111111

.
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TABLE 4. Comparison of the QECCs in this paper and those in [22], [23].

TABLE 5. Comparison of the QECCs in this paper and those in [16].

Proof: For 15 ≤ s1 ≤ 82, it is not difficult to check
2∑
i=0

8i
(
s1
i

)
> 38. One can derive that a pure [[s1, s1 −

8, 5]]3 code does not exist by quantumHamming bound; thus,
[[s1, s1 − 8, 4]]3 is an optimal code. Similarly, we can check

for 44 ≤ s2 ≤ 212,
2∑
i=0

8i
(
s2
i

)
> 310, which implies that

[[s2, s2 − 10, 4]]3 is an optimal code.
In addition, by comparing all constructed results with the

quantum codes in [16], [22], [23], 248 quantum codes are
found to be new and some have better parameters. Here,
we list only the QECCs that have better parameters than those
of the quantum codes in [16], [22], [23].

VII. CONCLUSION
From the known maximum caps in PG(3, 9) and PG(4, 9),
we have found 278 quantum caps of different sizes, whose
representative matrices can be directly obtained. Then, by use
of these quantum caps, we also constructed 278 related
quantum error-correcting codes with d = 4 in succession.
According to the GV bound and quantum Hamming bound,
most of the quantum codes are optimal.

Although our codes could only correct one error in the
quantum system, compared to the known 3-ary quantum
codes of d = 3, our codes have larger sizes and parts of them
have higher rates. In other words, for the case of a high rate
with only one error correction required, the quantum codes
we constructed are the best coding schemes at present.
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