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ABSTRACT In this paper, we investigated depolarization performance of polarized light in fog scattering
system using the indices of polarimetric purity (IPPs) based on the Monte Carlo (MC) algorithm.
We compared and analyzed the performances of degree of polarization (DoP) and IPPs in mono-disperse
and poly-disperse scattering systems. The depolarization performance of mono-disperse scattering system
is dependent on incident infrared wavelength. For the poly-disperse scattering system, the depolarization
performance is significantly dependent on the particle-size distributions and the proportion of small particles.
These results demonstrate that the IPPs can describe the depolarization performances of disperse systems
effectively. It is of great practical significance because it can transmit information in high fidelity better than
the DoP.

INDEX TERMS Indices of polarization purity, Monte Carlo algorithm, degree of polarization.

I. INTRODUCTION
Fog is a common phenomenon in our life. In foggy envi-
ronments, light will be significantly scattered and absorbed
by water droplets, and the light intensity information will
be attenuated seriously, affecting the transmission efficiency
of information [1]. When light transmits in turbid medium,
photons will be strongly scattered, decreasing light inten-
sity and making it impossible to obtain useful information
through intensity. In contrast, polarization can describe the
information since the polarization state of photons could
preserve better after scattering. Besides amplitude, phase,
spatial distribution [2], [3], polarization is another basic char-
acteristic of electromagnetic wave, which can be utilized
to transport information. When light interacts with objects,
the polarization state of light will change accordingly, car-
rying the information of objects. Therefore, it can be used
to characterize the target object [4]. In addition, the polar-
ization of light has better transmission characteristics when
passing a scattering system. Thus, it is beneficial to explore
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the polarization transmission characteristics of light in the
foggy system, achieving high-fidelity transmission. In recent
years, polarization state of light has been widely concerned
for its great potential applications in communication [5], [6],
navigation [7], [8], detection [9], and imaging [10], [11].

Compared with the traditional imaging method, polar-
ization imaging is more effective in highly scatter-
ing system, improving the imaging quality significantly.
Schechner et al. proposed a physical model and algorithm
using polarized light defogging, which achieved good results
and has been successfully applied to underwater polarization
restoration [12]–[16]. Later, this method has been modified
and improved by some other researchers in different scenarios
[17]–[21]. Hu et al. improved this model and polarization
information processing algorithm to effectively solve the
following problems: (1) The restoration of objects with high
degree of polarization (DoP) (low depolarization) in the
scene cannot be realized [17], [19]; (2) Restoration fails
in high-concentration scattering environment [18]; (3) The
restoration effect is poor in a non-uniform light field envi-
ronment [20]. Based on the dependence of light scattering
on wavelength and the optical correlation theory, Shao et al.
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proposed a polarization imaging method through highly
turbidity water [21]. Xu et al. investigated the transmission
characteristics of polarization information in different dis-
perse systems in details, such as mono-disperse and poly-
disperse scattering systems [22]–[25]. Wang et al. studied
the polarization characteristics in the cloud disperse system
[26], [27] and Zhang et al. explored the imaging quality of
biological tissues [28], [29].

However, the structure of the atmospheric environment
is very complicated, and various particles affect the mea-
surement of polarization parameters. Therefore, researchers
are trying to investigate polarization parameters to describe
specific microstructures. Among them, Mueller matrix
(MM) [22]–[28] has attracted more and more attentions
as a characterization method since it can comprehensively
reflect the polarization characteristics of media. In the past
several years, MM has been preliminarily used in optical
communication [22]–[24], polarization imaging [25], [26],
and detection of cancer tissues [28]. It has been demon-
strated that MM of a medium can be further decomposed into
parameters and matrices with physical significance, helping
us understand the properties of the MM [30]–[38]. Among
them, a set of parameters calculated by the covariance matrix
of the Muller matrix is called the indices of polarization
purity (IPPs) [31]–[33], which is a comprehensive parame-
ter describing the degree of depolarization of the scattering
medium [35]–[37], such as biological tissues [38]. Overall,
it has been demonstrated that the IPPs can well describe
the depolarization characteristics of the scattering system in
different scenarios.

In this work, we have numerically studied the depolar-
ization performances of mono- and poly-disperse scattering
systems in the infrared band by using the IPPs, and com-
pared the results with traditional method based on the DoP.
In mono-disperse system, the dependence of depolarization
performance on the incident wavelengths is studied. In poly-
disperse scattering system, we investigate the dependence
of depolarization property on the particle size distribution,
including the mean values and standard deviations of the
scattering particle size.

II. THEORY
A. SIMULATION METHOD
We performed all numerical simulations by using polarized
Monte Carlo (MC) algorithm, which has been implemented
in calculation of propagation of polarized light in scattering
media [39]. A flow-chart including both the main steps of
both standard and polarized MC programs is shown in Fig. 1.
The steps 1, 2, 3, 4, and 5 are carried out only in the polarized
MC program and the other steps should be included in both
cases. In step 1, a reference plane is defined to describe the
polarization state of light. In step 2, the polarization state
of launched photons is defined by Stokes vector. In step 3,
the scattering angle θ and azimuthal angle ψ are chosen
based on the phase function of the considered scatters and a
rejection method. In steps 4 and 5, the reference plane, Stokes

FIGURE 1. Flow chart of polarized MC program.

vector and meridian plane should be updated for each scat-
tering event owing to the randomness of scattering. Further
details about the polarized MC method used in the paper can
be found in [39].

Stokes vector (S=[I, Q, U, V]T) is used to describe the
polarization of incident light. The DoP notation is usually
used in this field and can be expressed as

DoP =

√
Q2 + U2 + V 2

I
(1)

The degrees of linear polarization (DoLP) and degrees of cir-
cular polarization (DoCP) can be expressed by the following
formulas DoLP =

√
Q2 + U2

I
DoCP =

|V |
I

(2)

B. INDICES of POLARIMETRIC PURITY
The MM can completely describe the optical properties of
a scattering medium. Therefore, it is important to decom-
pose the MM. According to the concept of parallel decom-
position of Stokes vectors, we can consider the emitting
light as a convex linear combination of several incoherent
totally polarized states. TheMueller-Jonesmatrix can be used
to describe a pure non-depolarizing deterministic system,
in which the completely polarized incident light will result in
emitting light with complete polarization. Due to the one-to-
one relation between MM and Hermitian matrix H, any par-
allel decomposition expressed in terms of H can be directly
translated into the corresponding expression in terms of MM,
and vice versa. H can be expressed as the following convex
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linear combination by four coherency matrices that represent
respective pure systems [34], [35]

H =
3∑
i=0

λi

trH
Hi (3)

Hi = (trH)(ui ⊗ u∗i ) (4)

where λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0 and µI (i = 0,1,2,3) are
mutually orthogonal feature vectors, and then the IPPs can
be defined by the following equation

P1 =
λ0 − λ1

trH
P2 =

λ0 + λ1 − 2λ2
trH

P3 =
λ0 + λ1 + λ2 − 3λ3

trH

(5)

The combination of P1, P2, and P3 forms a three-
dimension space and each point in this space can repre-
sent depolarization characteristic of a media. For example,
the coordinate (0, 0, 0) and (1, 1, 1) correspond to ideal
depolarization and non-depolarizing samples, respectively.
For other point, the values of the P1, P2, and P3 could be
utilized to study the intrinsic depolarizing mechanism. The
following quadratic relation between the depolarization index
(P) and the three indices of purity (P1, P2 and P3) can be
obtained as:

P2 =
1
3

(
2P21 +

2
3
P22 +

1
3
P23

)
(6)

where the greater the absolute value of P is, the better the
polarization protection ability of the display medium is.

III. RESULTS AND DISCUSSION
The scattering and absorption of mist particles will not only
weaken the intensity of light, but also change the polarization
state of incident light. For depicting the photon scattering,
we established a realistic fog environment model to simulate
the propagation behavior of photon. The incident polarized
light travels along the z-axis, and the incident light is a point
source, in which the incident wavelength are 3.8µm-4.6µm
and 10µm-12µm. We simulated the transmission of light in
the scattering medium by emitting photons with number of
107 for both ensuring the simulation accuracy and saving
time, as schematically shown in Fig. 2.

Considering that the main component of fog is water, thus
the refractive index of mist particles is set as n = 1.33.
We ignored the dispersion of water since the slightly variation
on refractive index of mist particles has no significant influ-
ence on the performances of DoP and IPPs. The refractive
index of atmosphere is set as n = 1 because fog usually
forms in the atmospheric surface layer with refractive index
approaching n = 1. We use a semi-infinitely wide detection
plane to receive scattered photons from different paths. The
transmission distance is L.

FIGURE 2. The schematic of the MC transport model.

FIGURE 3. The DoP as a function of transmission length L at different
incident wavelengths: (a) λ = 3.8µm-4.6µm, (b) λ = 10µm-12µm.

A. MONO-DISPERSE SCATTERING SYSTEM
Amono-disperse scattering system is simulated to explore the
depolarization response of the scattering system. The particle
radius is r = 1 µm and the particle number density is
2.1 × 10−11/µm3. For comparison, the scattering system is
illuminated by both circularly polarized light (S=[1,0,0,1])
and linearly polarized light (S=[1,1,0,0]) with wavelengths
of 3.8µm-4.6µm and 10µm-12µm. The simulation results
are shown in Fig. 3. In the mono-disperse scattering system,
as transmission distance increases, both DoCPs and DoLPs
decrease in a similar trend. The reductions of DoCPs and
DoLPs could be attributed that the photons undergo more
collisions in a longer transmission. In addition, the DoCPs
and DoLPs increase as the incident wavelength increases.
According to the Mie scattering theory, the wavelength
increases may result in the decreasing scattering coefficient,
so more forward scattered photons could be collected by the
detector. Nevertheless, Figs. 3 (a) and 3(b) show that although
the DoCPs increases with the increasement of incident wave-
length, the change is not significant. Meanwhile, DoCPs and
DoLPs show small variations at wavelengths of λ = 10µm
and λ = 12µm. Therefore, it is difficult to describe the
transmission performance of the scattering system at different
wavelengths.

Regarding to this, we use IPPs to study the depen-
dences of the depolarization characteristics of mono-disperse
medium on the incident light wavelength and transmission
distance. For this purpose, the scattering system is separately
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FIGURE 4. The polarization purity index P1, P2, P3 and the polarization
purity P change with the transmission length L in the infrared bands of
(a), (b) λ = 3.8µm-4.6µm, and (c), (d) λ = 10µm-12µm.

illuminated by four kinds of light sources, including
natural light (S=[1,0,0,0]), horizontally polarized light
(S=[1,1,0,0]), 45◦ linearly polarized light (S=[1,0,1,0]),
and circularly polarized light (S=[1,0,0,1]). The simulation
results are shown in Fig. 4.

The polarization purity indices P1, P2, P3 and depolar-
ization index P have upward tendency with the increasing
incident wavelength. According to the Mie scattering theory,
when the incident wavelength increases, the scattering coef-
ficient decreases, and more photons reach the forward detec-
tion surface, so the polarization purity of the system increases,
and the corresponding system depolarization performance
is less. As the transmission distance increases, the photons
will collide with more particles, so the number of photons
received in the forward direction will decrease. Therefore,
the calculated depolarization index P of scattering system
will be reduced, and the corresponding depolarization perfor-
mance will increase. It can be observed that the polarization
purity indices P1, P2, P3 and depolarization index P can
well describe the depolarization characteristics of the scat-
tering medium. Moreover, a comparison between Fig. 3 and
Fig. 4 shows that IPPs can distinguish the depolarization
performance of scattering media at different transmission
distances and different incident wavelengths better than the
DoP. Regarding to this result, we hereafter use IPPs to analyze
the depolarization characteristics of poly-disperse scattering
media.

B. POLY-DISPERSE SCATTERING SYSTEM
In order to better simulate the real fog environment, we need
to construct a scattering medium system composed of a
mixture of different particles. We at first mix particles with
two different sizes of r = 1µm and r = 3µm, and the

FIGURE 5. The DoP, the polarization purity index P1, P2, P3 and the
depolarization index P as the function of the relative volume fraction of
small scatter (RVFOS) at different incident wavelength:
(a), (b) and (c) λ = 4.2µm; (d), (e) and (f) λ = 10µm.

concentration of the particles is 2.1∗10−11/µm3. The ratio
of the number of small particles to the total particle num-
bers is defined as the mixing ratio. The scattering system
is separately illuminated by light source with wavelength of
λ = 4.2µm and λ = 10µm. The simulation results are shown
in Fig. 5.

In this scattering medium, as shown in Figs. 5 (a) and (d),
we can see that DoCP and DoLP increase with increasing
mixing ratio, however their changes are smoothly, and cannot
describe the depolarization performance of the scattering
system under different mixing ratios. In Figs. 5(b) and 5(e),
the polarization purity indices P1, P2, and P3 increase as the
mixing ratio increases, and they can describe the depolar-
ization performance of the scattering system under different
mixing ratios, indicating that the depolarization ability of
the scattering medium is gradually reduced with increased
mixing ratio. Then we calculated the corresponding depolar-
ization index P and plotted the results in Figs. 5(c) and (f),
it can be observed that the value of P also increases as
the mixing ratio increases, the larger its value, the smaller
the depolarization effect of the scattering system. In other
words, the depolarization ability of the scattering medium
decreases as the mixing ratio increases. It is because when the
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number of small particles in the scattering system gradually
increases, the total scattering coefficient decreases and more
photons can be received in the forward detection. As a result,
the incident polarized light cannot be quickly depolarized
into unpolarized light, leading to the decreased depolarization
ability of scattering system. The above simulation results
show that the depolarization performance of the two-particles
mixing system under forward-detection positively depends
on the mixing ratio. Figure 5 shows that IPPs can describe
the depolarization performance of scattering media under
different mixing ratios better than DoP.

In fact, the particle size of a real fog environment follows
a certain distribution, which has a certain influence on the
depolarization performance of the scattering system. Lognor-
mal distribution is applicable to all random processes and can
well reflect the distribution characteristic of the fog particles.
Therefore, we investigated a poly-disperse scattering system,
where the distribution of particle size can be expressed as the
following lognormal distribution [40]

Ns =
1

√
2πσ r

e−
[ln r−lnR]2

2σ2 (7)

where R and σ is the mean value and standard deviation
of the distribution inside scattering system, respectively.
Equation (7) shows that the sizes and densities of particles
depend on the standard deviations σ . We set the mean radius
of particles as R = 1.5µm and the standard deviation as
σ = 0.3µm, σ = 0.5µm and σ = 0.7µm. As the standard
deviation σ increases, the size distribution of the particles will
become wider and the particle spectral density will change
accordingly, as shown in Fig. 6.

FIGURE 6. The particle spectral distribution Ns with standard deviation of
σ = 0.1µm, σ = 0.3µm, σ = 0.5µm and R=1.5µm.

We performed numerical simulations of the poly-disperse
scattering system, where the mean value of particles radius is
R = 1.5µm and the standard deviations are σ = 0.3µm,
σ = 0.5µm and σ = 0.7µm. The simulation results are
plotted in Fig. 7. We can see from Figs. 7 (a) and (d) that
DoLPs and DoCPs have minor changes even coincide as the
standard deviation σ increases. Therefore, it is difficult to
use DoLPs and DoCPs to describe the dependence of depo-
larization effect of the scattering system on standard devia-
tions. From Figs. 7(b), 7(c), 7(e) and 7(f), we can see that

FIGURE 7. The DoP, the polarization purity index P1, P2, P3 and the
depolarization index P are functions of transmission length L with
different standard deviations: (a), (b) and (c) λ = 4.2µm,
(d), (e) and (f) λ = 10µm.

the polarization purity indices P1, P2, P3 and depolarization
index P of the scattering system will all become larger when
the standard deviation σ increases. This phenomenon shows
that in a poly-disperse scattering system, the depolarization
performance of scattering systems with same average radius
is positively correlated with the standard deviation. When the
standard deviation is large, the size of the particles included
in the scattering system will increase, as shown in Fig. 6.
As a result, the probability of forward scattering increases
and more photons could be received by the forward detector.
Figure 7 demonstrates that IPPs can describe the dependence
of depolarization performance of the scattering system on
standard deviation better than DoP.

Overall, the results above show that the depolariza-
tion performances of the poly-disperse scattering system
significantly depend on the scattering particle radius and the
standard deviations of particle size distributions. The most
important is that the depolarization performances of the scat-
tering system can be characterized by the IPPs effectively
compared to the DoP.

IV. CONCLUSION
In this paper, we numerically investigated the evolution
of depolarization performance of polarized light in fog-
scattering system by using MC algorithm. We compared
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and analyzed the change of DoP and IPPs in different scat-
tering systems, including mono-disperse and poly-disperse
scattering systems. For the mono-disperse scattering system,
both DoP and IPPs decrease when the transmission distance
becomes larger. However, IPPs could distinguish the depo-
larization responses at different wavelengths better than DoP.
In addition, two poly-disperse systems were studied: if there
are only two kinds of particles, the depolarization perfor-
mance depends on the mixing ratio of the particles; if the
system has more than two kinds of particles, the depolariza-
tion performance will be affected by the standard deviation of
the particle size distribution. The above results demonstrate
that the IPPs can describe the depolarization performances
of disperse systems more effectively. Therefore, the IPPs
may be efficient in other polarization technologies, such as
the polarization detection, polarization imaging polarization
communications and so on.
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