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ABSTRACT This paper probes into the leader-following mean square consensus problem of stochastic
multi-agent systems with randomly occurring uncertainties (ROUs) and randomly occurring nonlinear-
ities (RONs) under impulse time windows (ITWs). A new concept named average left endpoint inter-
val (ALEI) related to ITWs is proposed, which is inspired by the average impulsive interval. Based on
ALEI and Lyapunov stability theory, a unified mean square consensus criterion for both stabilizing and
interference impulses is attained. The introduction of ALEI allows for a larger upper bound of left endpoint
interval and smaller lower bound of left endpoint interval, which makes the preset of ITWs more flexible
and less conservative. The validity of the theoretical results is verified by the numerical simulation.

INDEX TERMS Stochastic multi-agent systems, randomly occurring uncertainties, randomly occurring
nonlinearities, impulse time windows, leader-following mean square consensus.

I. INTRODUCTION
Currently, based on the distributed collaborative control,
multi-agent systems (MASs) has been widely used in social
life by virtue of the powerful functions brought by cluster
effect, such as formation control of robots or aircraft [1],
commercial finance [2], sociology [3], traffic management
and control [4], epidemiological research [5], etc. Consensus
means that all agents tend to a common state eventually
under the control protocol, as a central issue in the field of
distributed cooperative control, which has attracted extensive
attention of researchers in recent years. One or more agents in
MASs are selected as the leader to achieve more convenient
control and ensuring that their followers can achieve the
leader’s state under the action of controller, which leads to
the study of leader-following consensus of linear or nonlinear
MASs [6]–[10].

We know that MASs may be affected by a variety of
internal or external environmental factors in practical appli-
cation, which should be reflected in the construction of
the system model as much as possible. Specifically, the
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unpredictable disturbances and changes of these factors may
lead to the random occurrence of nonlinear intrinsic dynamics
and parameter uncertainties in a probabilistic way with cer-
tain types and intensity. Researchers have proposed concepts
randomly occurring uncertainties (ROUs) in [11]–[13] and
randomly occurring nonlinearities (RONs) in [14]–[16] to
describe the objective phenomenon. In general, the stochastic
variable is assumed to conform Bernoulli distribution. On the
other hand, the dynamic of each agent may be affected by
the stochastic disturbances caused by environmental fluc-
tuation and other factors, which are mainly in the form
of noise. If all agents’ dynamics are subject to different
noises, in this case, the noise is called the heterogeneous
one. Otherwise, it is the same noise. When some practical
systems or applications, such as financial model, smart grid,
unmanned aerial vehicle or robot formation, integrated nav-
igation system, the determination and estimation of aircraft
attitude, are disturbed by such noise, which can be mod-
eled by using Itô formula. In a word, the researchers are
mainly by using Itô formula and Lyapunov stability theory
to solve the consensus problem of stochastic MASs (SMASs)
at present. It is undoubtedly necessary and valuable to study
the leader-following consensus of MASs under the case
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where take one or more of ROUs, RONs and stochastic
disturbances into account simultaneously in [17], [18], etc.
Furthermore, on the basis of [17], the authors studied the
leader-following mean square consensus of delayed SMASs
by means of comparison principle, Lyapunov stability the-
ory and average impulsive interval (AII) in [19]. In [20],
the exponential consensus of SMASs with ROUs and RONs
has been studied via pinning control. Recently, many new
research fields have been combined with the consensus prob-
lem of SMASs, such as decentralised probabilistic consen-
sus control [21], sliding mode control [22], event-triggered
control [23], etc.

Actually, reducing the communication traffic in the work-
ing process of MASs can save the communication cost and
reduce the communication risk (packet dropouts and disorder,
wireless channel congestion, delays, etc.) effectively, so it
is suitable for the actual situation where the communication
bandwidth or communication guarantee level is limited. As an
effective control mechanism to reduce communication traffic
and control costs, impulsive control with strong adaptability
has been introduced into the consensus research of MASs,
and abundant results have been achieved [17], [19], [20].
Many literatures assume that the impulsive controller acts on
the systems at a series of fixed discrete instants. However,
in practical applications such as aircraft formation control,
satellite attitude control, and smart grid, the impulsive control
signal is a series of discrete digital signals generated by the
controller. Affected by random or uncertain factors in the
external environment and the limitations of physical equip-
ment, digital signals may skew or jitter. The so-called jitter
and skew refer to the short-term or long-term deviation of
the position of the digital signal at the actual control time
tk from the ideal time position rk of the signal respectively,
and the deviation value is usually bounded or known. In fact,
the value of tk may be less than, equal to, or greater than
rk . The concept named impulse time window (ITW) is pro-
posed to describe this reality in [24], which stipulates that
one impulse appears in a known time window randomly.
Based on ITW, the uniform stability of impulsive delayed
linear systems has been studied in [25]. In [26], the global
exponential stability of memristive neural networks with
ITW and time-varying delays has been researched. In [27],
the consensus problem of periodically multiple state-jumps
impulsive control systems with ITWs has been discussed in
detail. In [28], the authors focused on the global exponential
stability problem of delayed impulsive functional differential
systems with ITWs, and so on [29]–[34]. For the consensus
or synchronization criteria derived from the above literatures,
there is always an upper bound for the width of ITW. This
also makes the impulsive interval has an upper bound, and
it will cause the appearance of impulse too frequently in
a period of time if the bound is small enough. Without
affecting the control demands and effects, this phenomenon
may increase some unnecessary control costs. Therefore,
how to get a larger upper bound of impulsive interval than
the existing results about ITW (i.e., less conservative) is a

practical problem that is both meaningful and urgent to be
solved. It is worth learning from the authors’ work in [35],
although it does not involve ITW. Specifically, the unified
synchronization criterion of impulsive dynamical networks
is given by the proposed AII, which expands the upper
bound of impulsive interval and narrows the lower bound
of impulsive interval for synchronizing and desynchroniz-
ing impulses respectively. In [17], the authors introduced
AII into the research on the leader-following mean square
consensus of SMASs with ROUs, and similar results were
obtained.

Based on the above discussions, the leader-following mean
square consensus problem of SMASs with ROUs, RONs and
ITWs is studied in this paper. The main contributions are as
follows.
• The concept of AII is improved to obtain a new one

named average left endpoint interval (ALEI) which related
to ITWs. Based on ALEI, a unified mean square consen-
sus criterion that allow for larger upper bound of impulsive
interval are given. Compared with the existing literatures
with ITWs, such as [24]–[34], the problem of how to get
a larger impulsive interval is solved. This also means that
the frequency of impulsive control for unstable MASs can
be effectively reduced in a period of time, thus saving costs
and enhancing adaptability (i.e., the preset of ITWs is more
flexible).
• Compared with the existing literatures without ITWs

or AII, the researched system model with ROUs, RONs,
stochastic disturbances and ITWs in this paper is more gen-
eral, so our results may be less conservative andmore suitable
for practical situations. In particular, references [35] and [17]
can be the special cases of this paper under some limited
conditions.
• For a kind of stable MASs affected by interference

impulses, if these impulses appear in a series of known ITWs,
a smaller lower bound of impulsive interval can be obtained
by ALEI. This means that the interference impulses should
not occur too frequently in a given time.

The rest of this text is organised as follows. In section II,
we introduce the constructions of system model and control
protocol as well as annotate related details. In section III,
compare the theoretical results which are derived from
Lyapunov stability theory with the existing literatures.
In section IV, our results are verified by one numeri-
cal simulation example. Section V is the summary of the
article.

Nonations: In this paper, R, Rn and Rm×n denote the real
numbers, the n-dimensional Euclidean space and the set of
m × n matrices respectively. N+ is the positive integers set.
| · | and ‖ · ‖ represent the absolute value and the Euclidean
norm (2-norm) respectively. INn is an identity matrix with
order Nn. E(·) is the expectation operator.⊗ is the Kronecker
product. (·)T denotes the matrix’s transpose. λmax(·) repre-
sents the matrix’s maximal eigenvalue. L is the Kolmogorov
operator. Pr represents the occurrence probability of a random
variable.
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II. PROBLEM FORMULATION AND PRELIMINARIES
A. ALGEBRAIC GRAPH THEORY
The communication links between agent and their neigh-
bors in MASs can be represented by the topology graph.
When all information transmission directions are bidirec-
tional, the graph is called undirected. Otherwise, it is a
digraph. For a N order weighted digraph G = (�̃,4,A)
without self-circulation, where �̃ =

{
�̃1, . . . , �̃N

}
is the

node set, 4 = {(�̃j, �̃i) : i, j = 1, . . . ,N } ⊂ �̃ × �̃

is the edge set, A = [aij] denotes the weighted adjacency
matrix, (�̃j, �̃i) represents the information transmission from
�̃j to �̃i, the weight of (�̃j, �̃i) is represented by aij, aij > 0
means that �̃i can receive the information of its neighbor
�̃j. In order to more conveniently and intuitively express the
communication relationship between any two agents, without
losing generality, we choose the weight to be 1 or 0 (i.e.,
receiving is 1, otherwise, it is 0 ). Let D = diag(di, i =
1, . . . ,N ) be the degree matrix, where di = din(�̃i) =∑N

j=1,j 6=i aij. Then the Laplacian matrix can be defined as

L = D−A = [lij], where lij =
{
−aij, i 6= j,
−
∑N

j=1,j 6=i lij, i = j.
If there

exists one leader in MASs, let B = diag(b1, . . . , bN ) denote
the connection matrix between followers and their leader.
If node �̃i receives the leader’s information, for convenience,
let bi = 1. Otherwise, bi = 0.

B. PROBLEM DESCRIPTION AND PROTOCOL
CONSTRUCTION
A first-order SMASs consisting of N agents labeled by
i = 1, 2, . . . ,N and one leader is considered. The dynamical
equation of i-th agent with ROUs and RONs can be described
by:

dxi(t) = [A(t)xi(t)+ ε(t)f (t, xi(t))+ ui(t)] dt

+8(t, xi(t)) dw(t), (1)

where xi(t) ∈ Rn is the state of agent i, A(t) = Ã +
θ (t)2̃3(t)2 ∈ Rn×n is a time-varying matrix, Ã, 2̃ and 2
are known matrices with appropriate dimensions, 3(t) is an
unknown time-varying matrix and satisfies 3T (t)3(t) ≤ I ,
f : R × Rn

→ Rn is a continuous nonlinear function,
ui(t) is the control input, 8 : R × Rn

→ Rn×m denotes
the matrix-valued function of noise intensity. w(t) is an m-
dimensional Wiener process defined on the complete proba-
bility space

(
�,F , {Ft }t≥0,P

)
with filtration {Ft }t≥0 which

satisfies the usual conditions (i.e., F0 contains all P-null sets
and Ft is right continuous), wi(t) and wj(t) are independent
of each other for i 6= j.
Remark 1: θ (t)2̃3(t)2 and ε(t)f (·) are used to model

the behavior of ROUs and RONs, respectively. The stochas-
tic variables θ (t) ∈ (0, 1) and ε(t) ∈ (0, 1) are
Bernoulli-distribution (or 0-1 distribution) sequences, which
satisfy the following assumptions:{

Pr(θ (t) = 1) = θ̂ , Pr(θ (t) = 0) = 1− θ̂ ,
Pr(ε(t) = 1) = ε̂, Pr(ε(t) = 0) = 1− ε̂.

FIGURE 1. The diagram of impulse time windows.

For any appropriate dimensional matrix F̃ , we have equations
E((θ (t)− θ̂ )F̃) = 0 and E((ε(t)− ε̂)F̃) = 0. Meanwhile, θ (t),
E(t) and w(t) are mutually independent.
Remark 2: In [24], [34], although the influence causing

by ITWs were researched, the existence of RONs, ROUs
and stochastic disturbances is not considered, so the derived
results may be conservative. Comparing with [17], [19], etc.,
the existence of ITWs is considered in this paper, so our
results are more suitable for practical applications.
Assumption 1: There is at least one directed spanning tree

with leader as the root node in the fixed topology of SMASs.
The dynamics of the leader is governed by:

dx0(t) = [A(t)x0(t)+ ε(t)f (t, x0(t))] dt

+8(t, x0(t)) dw(t). (2)

Let {rk} denote the ideal impulse control sequence preset
in advance. In practical applications, the impulsive signal
generated by the controller appears in the form of a digital
signal. Due to the digital signal’s jitter or skew, we can get a
real control sequence {tk}, which satisfies t0 < t1 < · · · <
tk < · · · and limk→+∞ tk = +∞, when the impulses act on
the SMASs. As mentioned in the introduction, the impulsive
signal can be seen as randomly appearing in the correspond-
ing ITW.

Note that for signal skew, the deviation value Tk is usu-
ally fixed and knowable (i.e., Tk = |rk − tk | = τ̃ , τ̃ >

0). For the deterministic jitter or system jitter of the sig-
nal, Tk is usually bounded and repeatable and predictable
(i.e., σ̃ = max {Tk , k ∈ N} > 0). Therefore, it is an effective
operation to design the ITW by taking the ideal time rk as the
center point of the window and making the window’s width
greater than or equal to twice the maximum deviation value
(i.e.,

∣∣τ rk − τ lk ∣∣ ≥ 2σ̃ ), as shown in FIGURE1.
Assumption 2: We assume that τ lk−1 < tk−1 < τ rk−1 <

τ lk < tk < τ rk < τ lk+1 < tk+1 < τ rk+1 holds for any adjacent
ITWs, where τ lk , τ

r
k and rk denote the left endpoint, right

endpoint and center point of an ITW respectively, tk and rk
are real and ideal time point when the impulsive control signal
acts on the system respectively.

It must be pointed out that, when the signal has random
jitter that satisfies the Gaussian distribution, the deviation
value will be unbounded theoretically if the test time is long
enough. In this case, the ITWs cannot be preset in advance.
Restricted by current research techniques and methods, ITWs
with unknown widths will be difficult or even impossible to
handle in system modeling and theoretical analysis. There-
fore, the following Assumption 3 is given.
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Assumption 3: All impulsive signals in the control process
will not appear random jitter that obeys the Gaussian distri-
bution.

In summary, based on {tk}, the impulsive control protocol
is designed as follows:

ui(t) =
+∞∑
k=1

δ(t − tk )(Bkα
∑
j∈Ni

aij(xj(t)− xi(t))

+β(Bk − In)bi(xi(t)− x0(t))), (3)

where δ(·) is the Dirac function, Bk ∈ Rn×n denotes the
impulsive gain matrix, α ∈ (0, 1) and β ∈ (0, 1) are
the coupling strengths, j ∈ Ni represents the set of neigh-
bors of agent i. We assume that the state of i-th agent
is right-hand continuous at each impulse instant, that is
xi (tk) = limh→0+ xi (tk + h).

By (1) and (3), we can get the following system model:

dxi(t) = [A(t)xi(t)+ ε(t)f (t, xi(t))]dt
+8(t, xi(t))dw(t), t 6= tk ,
1xi(t) = xi(t)− xi(t−)
= (Bkα

∑
j∈Ni aij(xj(t

−)− xi(t−))

+β(Bk − In)bi(xi(t−)− x0(t−))), t = tk .

(4)

Let ei(t) = xi(t) − x0(t), 1ei(tk ) = ei(tk ) − ei(t
−

k ),
f (t, ei(t)) = f (t, xi(t)) − f (t, x0(t)) and 8(t, ei(t)) =
8(t, xi(t)) − 8(t, x0(t)). Note that the leader is uncontrolled
at any time, i.e., 1x0(tk ) = x0(tk ) − x0(t

−

k ) = 0. System (4)
is transformed into the following error system (5):

dei(t) = [A(t)ei(t)+ ε(t)f (t, ei(t))]dt
+8(t, ei(t))dw(t), t 6= tk ,
1ei(t) = Bkα

∑
j∈Ni aij(ej(t

−)− ei(t−))

+β(Bk − In)biei(t−), t = tk .

(5)

Let e(t) = (eT1 (t), . . . , e
T
N (t))

T , F(t, e(t)) =

(f
T
(t, e1(t)), . . . , f

T
(t, eN (t)))T and 8(t, e(t)) =

(8
T
(t, e1(t)), . . . , 8

T
(t, eN (t)))T . By using the Kronecker

product, system (6) can be obtained as:
de(t) =

[
(IN ⊗ A(t)) e(t)+ ε(t)F(t, e(t))

]
dt

+8(t, e(t))dw(t), t 6= tk ,
e (t) = Zke

(
t−
)
, t = tk ,

(6)

where B = diag (b1, · · · , bN ) is the connection matrix,
Zk = IN×n − (αL)⊗ Bk + (βB)⊗ (Bk − In) ∈ RNn×Nn.
By (6), for t = tk , it yields:

‖e (t)‖ =
∥∥Zke (t−)∥∥ ≤ ‖Zk‖ ‖e (t−) ‖. (7)

Remark 3: With different matrix Bk , the following three
cases may occur at each time tk .

Case 1. If ‖e (t)‖ <
∥∥e (t−)∥∥, the k-th impulse is beneficial

to the error system’s convergence. Namely, the impulse is
stabilising.

Case 2. If ‖e (t)‖ =
∥∥e (t−)∥∥, the k-th impulse is invalid

for the controlled system.

Case 3. If ‖e (t)‖ >
∥∥e (t−)∥∥, the k-th impulse is adverse

to the error system’s convergence. In other words, the impulse
is destabilising.
Remark 4: Let ρ = supk∈N+ λmax(ZTk Zk ) =

supk∈N+ ‖Zk‖
2. Since the graph of SMASs is fixed, the value

of ‖Zk‖ only depends on the selection of Bk . For any k ∈ N+,
the following three cases are discussed.

a. When ρ ∈ (0, 1), it means that ‖Zk‖ < 1, and thus all
impulses are stabilizing. Specifically, the authors supposed
that Zk = µINn in [35], and it yields 0 < ρ < 1 while |µ| <
1, so the impulses are called synchronizing ones. It is worth
noting that the object system can be stable or unstable.

b. When ρ = 1, one has ‖Zk‖ = 1, and so the presence of
one ormore impulses is invalid.Meanwhile, the object system
can be stable or unstable. Similarly, |µ| = 1was given in [35].
c. When ρ > 1, it can infer that one or more impulses

are destabilizing. In other words, stabilizing and destabilizing
impulses may exist simultaneously and the number of desta-
bilizing ones cannot be predicted. In this case, the impulses
generated by the controller can be equivalently regarded as
an interference source. Note that interference impulses are
not always destructive, and some of them may contribute to
the stability of the system. When interference impulses are
considered, if the object system is required to achieve the con-
sensus, it is usually assumed that the system is stable. Unlike
this case, all impulses are desynchronizing while |µ| > 1
in [35].

Some related definitions, assumption and lemmas needed
in Section III are given.
Definition 1: For an impulse sequence {tk} in time period

(t,T ), and one impulse appears randomly in a known ITW,
if the value of ALEI is equal to τa (positive number), then
there exists a positive integer N0 such that

T − t
τa
− N0 ≤ Ns(t,T ) ≤

T − t
τa
+ N0, (8)

where Ns(t,T ) represents the number of left endpoints for
ITWs in the sequence within the time period.
Remark 5: When the ITW is not considered, the concept

of AII was used to obtain a larger upper bound of impulsive
interval for a given non-uniform impulse sequence in [35].
Then, when the window exists, how to get a larger upper
bound of impulsive interval becomes a practical problem.
Note that the width of all the windows may not be fixed and
the instant when the impulse appears is random. However, for
a given series of windows, the position of the left endpoints
is fixed. We know that the value of AII is related to the
interval between any two adjacent fixed impulse instants,
that is, inf{tk+1 − tk} < Ta < sup{tk+1 − tk}, where Ta is
the value of AII. Therefore, motivated by the design of AII,
we propose the concept named ALEI which related to the left
endpoint interval between any two adjacent fixed windows,
and its value is subject to the maximum and minimum value
of the left endpoint interval. Based on ALEI, we can obtain a
larger upper bound of the interval between the left endpoints
of the windows, which means a larger width of ITW can
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FIGURE 2. Diagram of the maximum number of left endpoints in time
period (t, T ).

FIGURE 3. Diagram of the minimum number of left endpoints in time
period (t, T ).

be obtained. This further means that a larger upper bound
of impulsive interval can be derived, and the forementioned
problem is solved effectively.
Lemma 1: Under Assumption 2, for an impulse sequence
{tk} in time period (t,T ), there exist some positive numbers
1τmin, 1τmax, 1τ̃min, 1τ̃max, Bmin and Bmax such that

T − t
1τmax

− 1 ≤ Ns(t,T ) ≤
T − t
1τmin

+ 1, (9)

where Bmin and Bmax are the minimum and maximum widths
of ITW respectively, 1τ̃min = infk∈N+

{
τ lk+1 − τ

r
k

}
≥

0, 1τ̃max = supk∈N+
{
τ lk+1 − τ

r
k

}
, 1τmin = infk∈N+{

τ lk+1 − τ
l
k

}
= Bmin + 1τ̃min = Bmin and 1τmax =

supk∈N+
{
τ lk+1 − τ

l
k

}
= Bmax +1τ̃max.

Proof : a. By FIGURE2, we have Ns(t,T ) = k − m + 1.
Therefore, it can be attained easily from T-t ≥ 1τmin(k −m)
that Ns(t,T ) ≤ T−t

1τmin
+ 1.

b. By FIGURE3, Ns(t,T ) = k − m can be derived. Then,
it can get from T-t ≤ (k − m − 1)1τmax + 21τmax that
Ns(t,T ) ≥ T−t

1τmax
− 1.

To sum up, we have inequality (9). The proof is completed.
Remark 6 : Obviously, if the ITWs is not considered in

SMASs, then we have τ lk+1 − τ lk = tk+1 − tk . At this
time, Definition 1 in [35] and Definition 1 in this paper are
equivalent (i.e., Ta = τa), and T−t

sup{tk+1−tk}
− 1 ≤ Ns(t,T ) ≤

T−t
inf{tk+1−tk}

+ 1 can also be obtained from Lemma 1 in this
paper, whereNs(t,T ) is the number of impulses in the period.
In order to ensure that the subsequent proof process can be

carried out smoothly, we need the following assumption.
Assumption 4: For all i = 1, . . . ,N and xi, x0 ∈ Rn, there

exist non-negative constants φ and ϕ such that ‖f (t, xi) −
f (t, x0)‖ ≤ φ‖xi−x0‖ and ‖8(t, xi)−8(t, x0)‖ ≤ ϕ‖xi−x0‖.
Lemma 2 [36]: For all vectors x, y ∈ Rn and constant$ >

0, we have xT y+ yT x ≤ $xT x +$−1yT y.
Definition 2: The leader-following mean square consensus

of SMASs is said to be achieved via impulsive control if
limt→∞ E(‖xi(t)− x0(t)‖2) = 0 holds for all agents.

III. MAIN RESULTS
Theorem 1: Under the above statements, if there exist con-
stants τa and $ such that ln(ρ)/τa + λmax(4) < 0, then
the leader-following mean square consensus of system (4)
with ITWs can be achieved via impulsive control (3), where

ρ = supk∈N+ ‖Zk‖
2 and 4 = Ã + ÃT + θ̂2$−12̃2̃T

+

$2T2+
(
2ε̂φ + ϕ2

)
In.

Proof. Construct the Lyapunov function candidate

V (t, e(t)) = eT (t)e(t). (10)

The stochastic derivative of (10) is derived by the Itô formula
along the trajectory of system (6) as follows.

dV (t, e(t)) = LV (t, e(t))+ 2 eT (t)8(t, e(t))dw(t), (11)

LV (t, e(t)) = 2eT (t)[(IN ⊗ A(t))e(t)+ ε(t)F(t, e(t))]

+ trace[8
T
(t, e(t))8(t, e(t))]. (12)

By Lemma 2, we have

2 eT (t)(IN ⊗ A(t))e(t)

≤ eT (t)(IN ⊗ (Ã+ ÃT + θ̂2$−12̃2̃T
+$2T2))e(t)

+ 2(θ (t)− θ̂ )eT (t)(IN ⊗ (2̃3(t)2))e(t).

Next, it can be obtained by Assumption 4 that

trace(2
T
(t, e(t))2(t, e(t))) ≤ ϕ2eT (t)e(t)

and

2ε(t)eT (t)F(t, e(t))

= 2ε̂eT (t)F(t, e(t))+ 2(ε(t)− ε̂)eT (t)F(t, e(t))

≤ 2ε̂φeT (t)e(t)+ 2(ε(t)− ε̂)eT (t)F(t, e(t)).

To sum up, according to (12), we can get

ELV (t, e(t)) ≤ eT (t)
(
IN ⊗

(
Ã+ ÃT + θ̂2$−12̃2̃T

+ $2T2+
(
2ε̂φ + ϕ2

)
In
))

e(t)

≤ λmax(4)EV (t, e(t)).

For t ∈ [tk−1, tk ), suppose that positive constant 1t be small
enough such that t +1t ∈ (tk−1, tk ), then we have

EV (t +1t, e(t +1t))− EV (t, e(t))

=

∫ t+1t

t
ELV (s, e(s))ds

Furthermore, one has

D+EV (t, e(t)) = ELV (t, e(t)) ≤ λmax(4)V (t, e(t)). (13)

When t ∈
[
t0, τ l1

)
, it can be obtained from (13) that

EV (τ l1, e(τ
l
1)) ≤ EV (t0, e(t0)) exp(λmax(4)(τ l1 − t0)). (14)

When t ∈
[
τ lk , tk

)
and k ≥ 1, we can get from (13) that

EV (t−k , e(t
−

k ))≤EV (τ
l
k , e(τ

l
k )) exp(λmax(4)(tk−τ lk )). (15)

When t = tk and k ≥ 1, it follows that

EV (tk , e(tk )) = E(eT (t−k )Z
T
k Zke(t

−

k ))

≤ ‖Zk‖2EV (t
−

k , e(t
−

k )). (16)

When t ∈
[
tk , τ rk

)
and k ≥ 1, it can be derived by (13) that

EV (τ rk , e(τ
r
k )) ≤ EV (tk , e(tk )) exp(λmax(4)(τ rk −tk )). (17)
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When t ∈ [τ rk−1, τ
l
k ) and k ≥ 2, by (13), one has

EV (τ lk , e(τ
l
k ))

≤ EV (τ rk−1, e(τ
r
k−1)) exp(λmax(4)(τ lk − τ

r
k−1)). (18)

Therefore, for t ∈
[
τ l1, t1

)
and k = 1, it can be obtained from

(14) and (15) that

EV (t−1 , e(t
−

1 ))

≤ EV (τ l1, e(τ
l
1)) exp(λmax(4)(t1 − τ l1))

≤ EV (t0, e(t0)) exp(λmax(4)(t1 − t0)). (19)

When t = t1, according to (16) and (19), we have

EV (t1, e(t1))

≤ ‖Z1‖2EV (t
−

1 , e(t
−

1 ))

≤ ‖Z1‖2EV (t0, e(t0)) exp(λmax(4)(t1 − t0)). (20)

For t ∈
[
t1, τ r1

)
, according to (17) and (20), we can get

EV
(
τ r1 , e

(
τ r1
))

≤ EV (t1, e (t1)) exp
(
λmax(4)

(
τ r1 − t1

))
≤ ‖Z1‖2 EV (t0, e (t0)) exp

(
λmax(4)

(
τ r1 − t0

))
. (21)

When k = 2, by (18) and (21), it yields

EV
(
τ l2, e

(
τ l2

))
≤ EV

(
τ r1 , e

(
τ r1
))
exp

(
λmax(4)

(
τ l2 − τ

r
1

))
≤ ‖Z1‖2 EV (t0, e (t0)) exp

(
λmax(4)

(
τ l2 − t0

))
. (22)

For t ∈
[
τ l2, t2

)
, it follows from (15) and (22) that

EV
(
t−2 , e

(
t−2
))

≤ EV
(
τ l2, e

(
τ l2

))
exp

(
λmax(4)

(
t2 − τ l2

))
≤ ‖Z1‖2 EV (t0, e (t0)) exp (λmax(4) (t2 − t0)) . (23)

When t = t2, by from (16) and (23), one can attain

EV (t2, e (t2))

≤ ‖Z2‖2 EV
(
t−2 , e

(
t−2
))

≤ ‖Z1‖2 ‖Z2‖2 EV (t0, e (t0)) exp(λmax(4)(t2 − t0)).

(24)

For t ∈
[
t2, τ r2

)
, according to (17) and (24), we can obtain

EV
(
τ r2 , e

(
τ r2
))

≤ EV (t2, e (t2)) exp
(
λmax(4)

(
τ r2 − t2

))
≤ ≤ ‖Z1‖2‖Z2‖2EV (t0, e(t0)) exp(λmax(4)(τ r2 − t0)).

(25)

By the simple induction, for t ∈
[
tk , τ rk

)
, we have

EV (t, e(t))

≤ ‖Z1‖2 · · · ‖Zk‖2EV (t0, e(t0)) exp(λmax(4)(t − t0))

≤ ρkEV (t0, e (t0)) exp (λmax(4) (t − t0))

= ρNs(t,T )EV (t0, e (t0)) exp (λmax(4) (t − t0)) . (26)

a. When ρ ∈ (0, 1), it can be seen from Remark 4 that all
impulses are stabilising, by (26) we have

EV (t, e(t))

≤ ρNs(t,T )EV (t0, e (t0)) exp (λmax(4) (t − t0))

≤ ρ((t−t0)/τa−N0)EV (t0, e (t0)) exp (λmax(4) (t − t0))

= ρ−N0EV (t0, e(t0)) exp((ln(ρ)/τa + λmax(4))(t − t0)).

(27)

b. When ρ = 1, we can get ρ−N0 = 1 and
ln(ρ) = 0, Remark 4 shows that one or more impulses are
invalid. It follows from (26) that

EV (t, e(t))

≤ ρ−N0EV (t0, e(t0)) exp((ln(ρ)/τa + λmax(4))(t − t0)).

(28)

c. When ρ > 1, it can be seen from Remark 4 that the
impulses are an interference source. It yields from (26) that

EV (t, e(t))

≤ ρNs(t,T )EV (t0, e (t0)) exp (λmax(4) (t − t0))

≤ ρ((t−t0)/τa+N0)EV (t0, e (t0)) exp (λmax(4) (t − t0))

= ρN0EV (t0, e(t0)) exp((ln(ρ)/τa + λmax(4))(t − t0)).

(29)

Let H = max{ρN0 , 1, ρ−N0}. In summary, according to
(27-29), then we have

EV (t, e(t))

≤ HEV (t0, e(t0)) exp((ln(ρ)/τa + λmax(4))(t − t0)).

(30)

Consequently, we can get e(t) → 0 when t → +∞ as
k → +∞. It means that system (6) is globally expo-
nentially stable in the mean square sense. In other words,
the leader-following mean square consensus of system (4)
can be achieved via impulsive control (3). This completes the
proof.
Remark 7 : By Remark 6, if τ rk = τ lk , one has τa =

Ta. At this time, let Pr(ε(t) = 1) = 1, then we can get
Theorem 1 of [17]. In addition, let ‖Zk‖ = µINn and τ rk = τ

l
k ,

we have ρ = |µ|2. Then, consensus criterion 2 ln(|µ|)
Ta
+

λmax(4) < 0 can be obtained by Theorem 1 in our paper,
which is similar to Theorem 1 in [35].
Remark 8: We know that parameters ρ and λmax(4) are

related to the selection of Bk , and different matrices may lead
to different results. By Theorem 1 in this paper, the following
two cases are discussed:

a. When λmax(4) ≥ 0, the premise for unstable
system (4) to achieve the consensus eventually is that
ρ < e−τaλmax(4) < 1 holds for all parameters. By Remark 4,
we know that all impulses are stabilizing.

b. When λmax(4) < 0, for 1 < ρ < e−τaλmax(4), the con-
sensus of stable system (4) can be achieved. By Remark 4,
the impulses are equivalent to a series of interference ones.
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If ρ ≤ 1, all impulses are stabilizing and the consensus
criterion can be satisfied always for the given conditions.

By Remark 8, our consensus criterion is suitable to judge
whether the stable or unstable systems can achieve the
consensus under the effects of stabilizing or interference
impulses. Therefore, the obtained criterion in this paper is a
unified one.
Remark 9: By substituting Lemma 1 into (26), the follow-

ing conclusions are given.
(a1) When ρ ∈ (0, 1), on the one hand, one has

ln(ρ)/1τmax+ λmax(4) < 0. Since τa < 1τmax, it meas that
the obtained criterion by Theorem 1 can be satisfied easily
under the same parameters. On the other hand, ln(ρ∗)/(τ lk+1−
τ lk ) + λmax(4∗) < 0 is further obtained while ROUs, RONs
and stochastic disturbances are not considered, which is
similar to that obtained in [24]–[34]. For the convenience
of comparison, it is assumed that the values of ln(ρ∗) and
λmax(4∗) are the same in all references. Then, we have
τa < − ln(ρ∗)/λmax(4∗) and τa < 1τmax, which means
that the upper bound of τa is − ln(ρ∗)/λmax(4∗). Since τa
is always less than 1τmax objectively, thus by introducing
the concept of ALEI into this paper, 1τmax can be bigger
than− ln(ρ∗)/λmax(4∗). This means that the allowable upper
bound of the width of ITWs increases synchronously. In other
words, a larger impulsive interval can be derived, which is less
conservative for the presetting of ITWs.

(a2) When ρ > 1, it yields ln(ρ)/1τmin + λmax(4) < 0.
Due to τa > 1τmin, thus the same conclusion with that in part
(a1) can be derived.

Obviously, the above statements in Remark 9 reflect the
superiority of the proposed concept of ALEI in this paper,
which applies for a wider range of applications.
Remark 10: The relationship between related param-

eters in ALEI and impulsive properties is discussed as
follows.

(aa1) When all impulses are stabilising, the more numbers
of impulses are applied to control the systems, the better
the control effect is. In this case, we can increase the upper
bound of Ns(t,T ) in Definition 1. Moreover, part (a1) in
Remark 9 shows that the smaller the value of τa is selected,
the easier the systems to achieve the consensus is. In this
regard, it is a feasible choice to decrease the value of τa and
keep the value of N0 unchanged or increased.
(aa2) When the impulses exist as an interference source,

it means that the numbers of impulses should be as small
as possible. Part (a2) in Remark 9 indicates that the bigger
the value of τa is selected, the closer the requirement meets.
Therefore, we can increase the value of τa and keep the value
of N0 unchanged or decreased.
In addition, although the value of N0 has no influence on

whether system (4) can achieve the consensus eventually,
it can affect the convergence rate of the system by determin-
ing the upper and lower bounds of the numbers of ITWs on
the interval (t,T ). In other words, the ideal control effect can
be achieved by adjusting the value of N0 according to actual
demands.

FIGURE 4. The topology of stochastic multi-agent systems.

IV. NUMERICAL SIMULATION
In this section, one numerical simulation example is given to
validate the correctness of our results.
Example 1: Consider a class of SMASs composed by four

followers and one leader, and the system dynamics (Chua’s
oscillator [37]) is described by (i = 0, 1, 2, 3, 4):

ẋi1(t) = −p1xi1(t)+ p1xi2(t)− p1g (xi1(t)),
ẋi2(t) = xi1(t)− xi2(t)+ xi3(t),
ẋi3(t) = −p2xi2(t),

where g(xi1(t)) = m2xi1(t) + 0.5(m1 − m2)(|xi1(t) + 1| −
|xi1(t) − 1|), m1 < m2 < 0, p1 = 9.21, p2 = 15.995,
m1 = −1.25 and m2 = −0.758,

f (t, xi(t)) =

−0.5 (m1 − m2) (|xi1(t)+1| − |xi1(t)−1|)
0
0

 ,
Ã =

−p1 (1+ m2) p1 0
1 −1 1
0 −p2 0

 .
Let 8(t, xi(t)) = [0.3 sin2(t)xi1(t), 0.3 sin2(t)xi2(t),
0.3 sin2(t)xi3(t)]T ,2̃ = diag(0.6,−0.2, 0.6), 2 =

diag(0.16, 0.6,−0.26), and 3(t) = diag(− sin(t),
cos(t),− sin(t)). Then, we can get φ = 11.5125 and ϕ = 0.3.
By FIGURE4, we have

A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , L =


0 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


and B = diag(1, 0, 0, 1). Let θ̂ = 0.8, ε̂ = 0.4, α = 0.6, β =
0.8 and Bk = diag(0.6, 0.6, 0.6, 0.6), the initial values of all
agents are x0(t) = (0.2,−6, 3.6)T , x1(t) = (−7.6, 1, 6)T ,
x2(t) = (8,−1.6,−3)T , x3(t) = (8, 0,−3.9)T and x4(t) =
(−7, 1,−1)T respectively. To sum up, it can be attained by
calculation that ρ = 0.8835, λmax(4) = 26.1863 and
τa < 0.00473. Let τa = 0.004.
For convenience, all ITWs are preseted as shown in

FIGURE5, where {1τ̃min,1τmin + 1τ̃min, . . . ,

(N0−1)1τmin+1τ̃min,N0τa,N0τa+1τmin, . . . ,2N0τa, . . .}
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FIGURE 5. Impulse time windows in time period
(
t0, T

)
.

FIGURE 6. The impulsive interval.

FIGURE 7. Schematic diagram of the impulse sequence.

and

τ lk − τ
l
k−1 =



1τ̃min, k = 1,
1τmin, k ≥ 2
and mod (k,N0) 6= 0,
N0(τa −1τmin)+1τmin +1τ̃min, k ≥ 2
and mod (k,N0) = 0.

are the left endpoint sequence and the left endpoint
interval of the ITWs respectively. Obviously, we have
infk∈N+

(
τ lk − τ

l
k−1

)
= 1τ̃min and supk∈N+

(
τ lk − τ

l
k−1

)
=

N0 (τa −1τmin) + 1τmin + 1τ̃min. Let 1τ̃min = 0.001,
1τmin = 0.002 and N0 = 10. Then, simulation
Figures 6-9 are given.

FIGURE 8. State errors of Agents 1 and 2.

FIGURE 9. State errors of Agents 3 and 4.

By FIGURE6 and FIGURE7, we have (1tk)max =

t19 − t18 = 0.0199 and (1tk)min = t40 − t39 = 0.0011.
Based on the same parameters, it can be obtained from The-
orem 1 in [38] that tk+1 − tk ≤ 0.00946. Therefore, Theo-
rem 1 in [38] does not apply to the impulse sequence shown
in FIGURE7. However, the results in this paper allow for a
larger bound of impulsive interval in the impulse sequence,
which is less conservative than that in [38], etc. Moreover,
FIGURE8 and FIGURE9 show that the error trajectories of
all agents can converge to 0 approximately before 0.1s, which
means that the leader-following mean square consensus of
SMASs can be achieved eventually.

V. CONCLUSION
In this article, the influence of factors RONs, ROUs and
stochastic disturbances is considered comprehensively in the
MASs’ model. The leader-following consensus of SMASs
in the mean square sense is studied under ITWs. In order
to obtain a larger upper bound of the impulsive interval,
we extend AII to the general case where the ITW is objective
existence and propose the new concept named ALEI. Based
on ALEI, we derive a unified consensus criterion that can be
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used to analyse the consensus problem of different types of
SMASs with stabilizing or interference impulses. By com-
paring with the existing results related to ITWs, our results
have been proved by Section IV to be less conservative from
the perspective of allowing a larger upper bound of impulsive
interval. In the future, we will try to introduce the finite-time
or fixed-time control protocol into this paper to obtain a faster
convergence rate.
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