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ABSTRACT Class cohesion is an important quality attribute that has an impact on other quality attributes
such understandability, testability, and maintainability. Therefore, classes with low cohesion should be
refactored in order to improve their overall qualities. Many cohesion metrics have been introduced in the
literature to automatically assess the quality of the class and support refactoring activities. Most existing
metrics measure the class cohesion based on how the methods of a class are internally related to each other,
while a few metrics measure the class cohesion based on how the methods are externally used by the clients of
the class. Unfortunately, the existing client-based cohesion metrics cannot automatically support refactoring
techniques such as the Extract Class refactoring. Therefore, this article proposes a new client-based cohesion
metric that can be used to automatically identify Extract Class refactoring opportunities. The proposed metric
is theoretically evaluated by proving the compliance of the metric to the mathematical cohesion properties,
while it is empirically evaluated by conducting a large case study on three systems to compare the metric
with other cohesion metrics. Finally, the paper introduces and evaluates an Extract Class refactoring approach

based the proposed cohesion metric.

INDEX TERMS Software engineering, software measurement, cohesion metrics, code refactoring.

I. INTRODUCTION

Software developers strive hard to design classes with
high quality. Class cohesion is one of the most important
quality attributes that influences the maintainability of the
class [1], [2]. Classes with high cohesion are easier to under-
stand and test, and thus easier to maintain. In addition, they
have one responsibility and one reason to change [3]. Class
cohesion is defined as the degree to which the elements of the
class are related to each other [4], [5]. To avoid subjectivities
and opinions about class cohesion and for the purpose of
automation, many researchers have proposed objective met-
rics that tried to measure the class cohesion algorithmically.
However, there is no universal agreement about a metric as
standard cohesion metric because the concept of cohesion
is broad and leaves room for different interpretations of
cohesion. Existing approaches for measuring class cohesion
can be classified based on the view of the class during the
measurement process into two categories: 1) approaches that
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consider only the internal view of the class and 2) approaches
that consider the internal and external view of the class.
Most of existing class cohesion metrics (e.g, [6]-[10]) fall
into the first category in which class cohesion is measured
based on information extracted from the internal elements
(methods and attributes) of the class regardless the other
classes in the system. For example, the Lack of Cohesion
in Methods (LCOM?2) [6] measures the class cohesion based
on the pairs of methods that reference common attributes in
their bodies. Cohesion metrics that fall in the first category
have been used in many studies to support several refactoring
techniques, most commonly the Extract Class refactoring
(e.g., [11]-[13]). On the other hand, approaches in the second
category measure the class cohesion based on information
extracted from the elements of the class and its client classes
where class A is considered as a client of class B if class A
uses an element (a method or attribute) in class B. Only a few
metrics fall into this category and these metrics have not been
exploited in refactoring activities.

The client-based class cohesion metric (CCC) introduced
in [1] and [14] is an example of metrics that measure the
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cohesion of class based on the internal and external view of
the class. The metric measures the cohesion of the class based
on the usage of its public methods by its clients. The idea
behind CCC is that the cohesion of the class is judged by its
clients. If a client uses all the public methods of the class,
then they all contribute to a single responsibility from the
perspective of that client and thus the class is considered to
be cohesive. Otherwise, if the client uses only a subset of the
public methods in the class, then the subset of the used public
methods and the subset of the unused public methods by the
client contribute to different responsibilities and therefore the
class is not cohesive from the point of view of that client.
CCC was theoretically evaluated using cohesion properties
[15] and empirically evaluated by showing its relationship
with testability [14] and maintainability [1]. However, the
metric has the following limitations: 1) It does not automat-
ically support refactoring activities such as the Extract Class
refactoring because it cannot automatically determine the
methods in the class that have low or no relationships because
the metric simply measures the cohesion of the class based
on the number of used methods in the class per each client of
the class regardless the similarities or relationships between
the methods of the class. 2) The metric considers only the
public methods in the cohesion measurement and ignores the
non-public methods in the class such as private and protected
methods.

To overcomes the above limitations, we propose in this
article a new variation of CCC. The new metric measures
the cohesion of a class based on the similarities (in terms of
clients’ usage) between each pair of methods including the
non-public methods. We refer to this kind of similarity as
client similarity between methods and we call the proposed
metric CCSM which stands for Cohesion based on Client
Similarity between Methods. By computing the client sim-
ilarity between each pair of methods in the class, we can
algorithmically identify the methods that have low/high client
similarity. Thus, CCSM can automatically support refactor-
ing techniques such as the Extract Class refactoring by auto-
matically identifying the set of methods that can be extracted
from a given class and put together into a separate class
based on their client similarities. The paper presents a the-
oretical and empirical evaluation for CCSM. Theoretically,
we show the compliance of CCSM to the cohesion properties
defined in [15]. Empirically, we examine the correlations
between 5 cohesion metrics including CCSM based the cohe-
sion data of 1522 classes extracted from three open source
systems for the purpose of comparing CCSM to the other
cohesion metrics. In addition, we present an approach and a
case study to show how CCSM can be used to automatically
support the Extract Class refactoring. Our results indicate
that CCSM is potentially useful and may offer benefits not
offered by the other metrics. The novelty of this work lies on
exploiting the client based cohesion in the (semi) automation
of the Extract Class refactoring activities, which has not been
studied before.
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The contribution of the paper can be summarized as
follows:

« introducing a new client-based cohesion metric (i.e.,
CCSM) that can automatically support refactoring activ-
ities,

« presenting an extensive theoretical and empirical evalu-
ation of CCSM,

« introducing and evaluating an approach based on CCSM
that can automatically identify Extract Class refactoring
opportunities in a given class.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III introduces the proposed met-
ric. The theoretical and empirical evaluations of the proposed
metric are given in Section IV and Section V, respectively.
Section VI presents an Extract Class refactoring approach
based on the proposed metric. Finally, the conclusion and
future work is give in Section VII.

Il. RELATED WORK

Many approaches have been introduced in the literature for
the measurement of class cohesion. These approaches can be
classified based on the view of the class during the measure-
ment time into two sets: 1) internal view-based approaches,
and 2) internal and external view-based approaches. In the
following we discuss and give examples of each set.

A. INTERNAL VIEW-BASED APPROACHES

In these approaches only the internal elements of the class
are considered during the process of cohesion measurement.
The majority of existing approaches for measuring the class
cohesion are internal view-based approaches. Class cohesion
in these approaches is mostly measured based on the similar-
ities (in terms of referenced attributes) between each pair of
methods in the class. The intuition behind these approaches is
that methods that access attributes in common are related to
each other because they depend on the same data. Thus, the
more methods share attributes in the class, the more cohesive
the class is. An example of these approaches is the approach
by Chidamber and Kemerer in [6]. They introduced the Lack
of Cohesion in Methods (LCOM 2) metric which measures the
cohesion of the class according to the following definition:

P-Q ifP>0Q,

0 otherwise

LCOM?2 =

where P is the number of non-similar pairs of methods and
Q is the number of similar pairs where a pair of methods
is non-similar if the two methods do not reference common
attributes and a pair of methods is similar if both methods
reference at least one common attribute. The value of the
metric is not normalized; it ranges from O to the total number
of the pairs of methods in the class. LCOM?2 is an inverse
cohesion metric because it measures the lack of cohesion
which means the higher the value of LCOM?2 for a class, the
lower the cohesion of the class and vice versa.
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In a similar manner, Bieman and Kang [7] defined the class
cohesion metric Tight Class Cohesion (7CC) which measures
the cohesion of a class based on the number of pairs of public
methods in the class that share common attributes. T7CC is
defined as follows:

PPM

NP
where PPM is the number of pairs of public methods that
directly or transitively share an attribute in the class and NP
is the total number of pairs of public methods in the class.
A pair of public methods directly shares an attribute if the
two methods reference the attribute and transitively shares
an attribute if one of the two methods does not reference
the attribute but it directly or transitively calls a method that
references the attribute.

The above two approaches [6], [7] do not consider the
number of shared attributes between a pair of methods when
calculating the similarity between the pair meaning that a
pair of methods that shares only one attribute has the same
similarity degree as another pair of methods that shares all
the attributes of the class. To address this limitation, Bonja
and Kidanmariam [8] introduced the Class Cohesion (CC)
metric which measures the cohesion of a class based on the
degree of similarity between the pairs of methods in the class.
The degree of similarity between method i and j is defined as
follows:

TCC =

Similarity(i, j) = M

’ |Ai UA|

where A; is the set of attributes referenced by the method
i and A; is the set of attributes referenced by the method .
Then the cohesion of the class is calculated as the average of
similarities between all the pairs of methods in the class.

Al Dallal and Briand [10] proved that CC do not satisfy
all of the key cohesion properties defined in [15]. CC namely
violates the Monotonicity property which holds that the addi-
tion of similarities between the pairs of methods can not
decrease the class cohesion. To address this limitation, they
redefined the degree of similarity between the method i and j
as follows:
|A; N A

IL|

where A; and A; are the set of attributes referenced by the
method i and j, respectively and L is the set of attributes
in class. Similar to CC, they defined the Low-level design
Similarity-based Class Cohesion (LSCC) as the average of
similarities between all the pairs of methods in the class.
Different from all the previous approaches, Marcus et al.
[9] introduced the Conceptual Cohesion of Classes (C3) met-
ric which calculates the cohesion of a class as the average
of the conceptual similarities between each pair of methods
in the class. The advanced information retrieval technique
Latent Semantic Indexing is used to measure the degree of
conceptual similarity between the methods of the class. The
value of C3 ranges from O to 1 where 0 means the class has

Similarity(i, j) =
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has no conceptual cohesion and 1 means the class has fully
conceptual cohesion.

B. INTERNAL AND EXTERNAL VIEW-BASED APPROACHES
A few approaches of class cohesion measurement do not only
consider the internal elements of the class but also consider
how the elements of the class are used externally by its
clients. These approaches known as client-based approaches.
The intuition behind them is that if a client uses the all the
considered elements (methods or attributes) of class, then the
elements of the class are functionally related to each other and
they contribute to one responsibility from the perspective of
that client. Thus, the more elements of the class are used by
the clients of the class, the more cohesive the class is. Lack
of Coherence in Clients (LCIC) introduced in [16] is one of
these metrics. The cohesion of a class is measured by LCIC
as the average of the lack of coherence in all the clients of the
class where the lack of coherence per a client is calculated
as one minus the ratio of the number attributes used by the
client to the number of attributes in the class that the client
can access. Formally, LCIC is defined as follows:
(-

4]
ZXGC |C|

1 otherwise

LCIC = if 1€1 >0,

where C is the set of the clients of the class, A is the set of
the attributes in the class that client x can access, and U is
the set of the used attributes in the class by client x. A key
limitation of LCIC is that it does not consider the relationship
between the methods of class nor how they are used by the
clients. If there is a client that uses one method in the class
and that method references all the attributes in the class, then
the client uses all the attributes of the class and thus the class
is considered to be fully cohesive from the perspective of that
client regardless the other methods of the class. Moreover,
the responsibility of the class is usually determined through
its the methods. Thus, it is important consider the methods
of the class and their relationships when measuring the class
cohesion.

Alzahrani and Melton [14] proposed the Client-based
Class Cohesion (CCC) metric that overcomes the limitation
of LCIC. CCC measures the cohesion of a class based on
the clients’ usage of the public methods of the class. The
definition of CCC is given by:

(xpa)
CcCC = D oreC T if1Cl >0,
1 otherwise

where C is the set of the clients of the class, UPM is the set
of the public methods used by the client x and NPM is the
set of the public methods in the class. However, as explained
in the Introduction Section, CCC has two limitations: it
does not automatically support refactoring techniques such
as the Extract Class refactoring and it does not consider the
non-public methods in the class.
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In this article, we introduce the client-based cohesion
metric CCSM that overcomes the two previously mentioned
limitations of CCC. The main difference between CCSM
and CCC is that CCSM measures the cohesion of a class
based on the similarities between each pair of methods in a
class whereas CCC measures the cohesion of a class based
on the number of public methods used by each client of
the class regardless the similarities between the methods.
In addition, CCSM considers the non-public methods when
measuring the cohesion of a class whereas CCC does not.
The difference between our approach and the internal-view
based approaches is in the way we compute similari-
ties between method pairs. CCSM computes the similarity
between two methods based on the number shared clients
between the methods whereas the majority of the
internal-view based approaches calculate the similarity

between two methods based on the number of shared attributes.

Ill. COHESION BASED ON CLIENT SIMILARITY BETWEEN
METHODS (CCSM)

The Cohesion based on Client Similarity between Methods
(CCSM) is defined based on client similarity between each
pair of methods in the class. In the following, we first define
our model for an object-oriented system. We next define the
client similarity between methods and present the definition
of the proposed cohesion metric (CCSM).

A. MODEL DEFINITION

Definition 1 (System and Classes): An object oriented system
S consists of a set class S = {cy, ¢2, ..., c,} where n is the
number of classes in the system S.

Definition 2 (Methods of a Class): Each class ¢ € S has
a set of methods M(c) = {my,my, ..., my} where k is the
number of the methods in the class c.

Definition 3 (Public and Non-Public Methods of a Class):
Each class ¢ € § has a set of public methods Mp,;(c) and
a set of non-public methods M,,,(c) such that Mp,(c) N
anub(c) = ¢ and Mpup(c) U Mypup(c) = M(c).

The public methods of the class M) are the methods
that can be called from any class in the system.

The non-public methods of the class M,;up(c) are the meth-
ods that can be only called from certain classes in the system.
For example, private methods in the class ¢ can be called from
the class ¢ and no other class in the system can call them.

Definition 4 (Clients of a Method): Each method
m € M(c) has a set of clients Clientsyy(m) =
{clienty, clienty, . .., client,} where x is the number of clients
the method m has and client; is any class in system excluding
the class ¢ (i.e., client; € § — ¢) that is a direct or indirect
client of m (see Definition 5).

Definition 5 (Direct and Indirect Clients of a Method):
Each method m € M(c) has a set of direct clients
Clientsypir(m) and a set of indirect clients Clientsyyqir(m)
such that Clientsyp;r(m) U Clientsyqir(m) = Clientsy (m).

The direct clients of the method m are the classes (exclud-
ing the class c¢) that have a direct static or polymorphic call
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for the method m. Some of non-public methods (e.g., private
methods) in the class ¢ cannot have direct clients because they
cannot be called from any other class in the system.

The indirect clients of the method m are the classes that
are direct clients of another method ' in the class ¢ such that
the method m’ directly or indirectly calls the method m. Any
non-public method in the class ¢ can have indirect clients as
they can be called from any other method in the class c.

Definition 6 (Clients of a Class): The class ¢ has a set
of clients Clientsc(c) = {clienty, client, ..., client,} which
is the union of Clienty;(m) for each m € M(c). That is
Clientc(c) = UmeM(c){ClientM(m)}.

B. METRIC DEFINITION

The proposed metric measures the cohesion of a class based
on the degree of client similarity between each pair of meth-
ods in the class.

Definition 7 The Degree of Client-Based Similarity
Between Two Methods): Let ¢ € S and m;, m; € M(c). Then
the degree of client-based similarity between the method m;
and the method m; is defined by:

Simeiients(Mi, mj)
|Clientsp (m;) N Clientsyy (my)|
= |Clientsc ()|
0 otherwise

if |Clientsc(c)| > 0,

ey

Definition 8 (Cohesion Based on Client Similarity Between
Methods of a Class(CCSM)): The cohesion based on client
similarity between the methods of class c is defined as aver-
age of the degrees of client similarities between each pair of
methods in the class ¢ and it is formally given by:

k—1 k
2
CCSM(c) = m E E Simclienss(mi, m/) )
i=1 j=i+1

where k is the number of methods in the class c.

C. AN EXAMPLE OF CCSM

We give a simple example to better understand how CCSM
can be applied to measure the cohesion of a class. Consider
class A shown in Fig. 1. In order to measure the CCSM for
the class A, we need first to extract its set of methods which
is the following:

M(A) = {al, a2, a3, a4}.
We next extract the clients of each method in the class.
Clientsp(al) = {B}.!
Clientsy(a2) = {B}.

Clientsy (a3) = {B}.
Clientsy (a4) = 'C}.

After we have extract the clients of each method in the class
A, we can extract the clients of the class which is the union of
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public class B {
public class A { A obJA;
public void bi1()
{ objA.a2();

}
public void b2()

private void al()

{

}
public void a2()

{ { objA.a3();
no b

} } .

public void a3()

{ public class C {
al(); A objA;

public void ci1()
{ objA.ai();

}

public void a4()
{

}

FIGURE 1. Three hypothetical classes.

TABLE 1. The degree of client similarity between each pair of methods in
the class A.

a2 a3 a4
al | 05 [05]0
a2 0510
a3 0

all the clients of its methods.
Clientsc(A) = {B, C}.

We next calculate the degree of client similarities between
each pair of methods in the class using Equation (1), see
Table 1.

Finally, we calculate the CCSM of the class A using Equa-
tion (2).

CCSM(A) = x (0.5+0.54+0+0.5+0+0)

44 —1)
CCSM(A) = 0.25

IV. THEORETICAL EVALUATION OF CCSM
Briand et al. [15] defined four mathematical properties for
cohesion metrics. Cohesion metrics that satisfy these prop-
erties are expected to be better quality indicators. In the
following, we prove CCSM satisfy all of these properties.
Property 1 (Non-Negativity and Normalization): This
property holds that the value of a cohesion metric for a
class is not negative and normalized. CCSM clearly satisfies
the Non-Negativity and Normalization property because the
minimum value of CCSM is 0 and the maximum value of

IClass B is an indirect client of the private method al because Class B
calls the method a2 which in turn calls the method al

VOLUME 8, 2020

Class E Class F

Client 1 Client 2 Client 3 Client 1 Client 2 Client 3

CCSM(E) =0 CCSM(F) = 1

FIGURE 2. Two hypothetical classes E and F. Each pair of methods in the
class E has 0 degree of client similarity as there is no two methods used
by a common client whereas the degree client similarity between each
pair of methods in class F is 1 as each method is used by the same set of
clients.

it is 1. The value of CCSM is 0 when the methods of the
class have disjoint sets of clients because the degree of the
client similarity between each pair of methods will be 0 using
Equation (1) (see class E in Fig. 2 as an example). The value
of CCSM is 1 when all the methods of the class have the same
set of clients because the degree of client similarity between
every pair of methods in the class will be 1 using Equation
(1) (see class F in Fig. 2). Thus, the interval of CCSM is [0,
1] and therefore the metric satisfies Property 1.

Property 2 (Null and Maximum Value): This property holds
that the value of a cohesion metric for a class is null if there
are no relationships between the elements of the class, and the
value of a cohesion metric for a class is the maximum if all the
possible relationships between the elements of the class are
present. In case of CCSM, two methods have a relationship
(i.e., some degree of client similarity) if they share common
clients. The value of CCSM is O (null) when there is no
relationship between any pair of methods in the class (i.e.,
the degree of client similarity between each pair of methods
is 0, see class E in Fig. 2) and the value of CCSM is 1 (the
maximum) when each pair of methods in the class have a full
relationship by sharing all clients of the class (i.e., the degree
of client similarity between each pair of methods is 1, see
class F in Fig. 2 for example). Therefore, CCSM satisfies the
Null and Maximum Value property.

Property 3 (Monotonicity): This property holds that the
addition of relationships between the elements of a class
cannot decrease the cohesion of the class. Given a class c, let
|Clientsc(c)| > 0 and m;, m; € M(c). Let |Clientsp (m;) N
Clientsp (m;)| = 0. Then the methods m; and m; have no
relationship because they do not share a client, which means
the degree of client similarity between the two methods is 0.
The addition of a relationship between the methods m; and
m; means adding one of existing clients of the class to the
set of clients of each method (i.e,. 3 client; € Clientsc(c)
and we add client; to Clientsps(i) and Clientsy;(j) such that
|Clientsy (m;) N Clientsy(mj)] > 0). When this addition
occurs, the value of CCSM will never decrease. In fact, it will
increase because this addition of relationship between the
methods m; and m; will increase degree of client similarity
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Class G Class H

ojoloicIolo

Client 1 Client 2 Client 3 Client 1 Client 2 Client 3

CCSM(G) = 0.111 CCSM(E) = 0.222

FIGURE 3. Methods m2 and m3 has no relationship in class G as they are
not used by a common client. A new relationship between the two
methods is added in class H by making client2 use the method m3.

between the two methods and it will never decrease it between
any other two methods in the class. Therefore, CCSM satis-
fies Monotonicity property.

For example, consider the classes G and H shown in Fig. 3.
The methods m2 and m3 in class G has no relationship
because they are not used by a common client. When we
added a new relationship between the two methods in the
class H the value of CCSM for the class H increased from
0.111 to 0.222.

Property 4 (Cohesive Modules): This property holds that
when two unrelated classes A and B are merged into one Class
M, the cohesion of the resulting class M cannot be more than
the maximum cohesion of the original A and B.

Letm;, mj € M(A) and k be the number of methods in class
A. Then:

5 k=l &
COSM(A) = 15—y 2 2 Simeticns(mis )
i=1 j=i+1
By substituting Sinmcjienss(m;, m;) with Equation (1), we get:

230 Yoy |Clientsy (my) O Clientsy (m))|
k(k — 1)|Clientsc(A)|

CCSM(A) =

For simplicity, let a = 2317 Y5, | [Clientsy (m;) N
Clientsy (m;)| and b = |Clientsc(A)|. Then:

CCSM(A) = T

Similarly with class B, let m;, m]’ € M(B) and [ be the
number of methods in class B. Then

23 Yy |Clientsy (mf) N Clientsy (m))|
I(I — 1)|Clientsc(B)|

Also, for simplicity, let ¢ = 2 Zf;} Z;:i_H |Clientsy (m;) N
ClientsM(mJ’.)| and d = |Clientsc(B)|. Then:

CCSM(B) =

CCSM(B) = m

In our case of CCSM, the two classes A and B are unrelated

if there does not exist a method in class A that shares a
common client with a method in class B (i.e.,7 m € M(A) and
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A m' € M(B) such that |Clientsy (m) N Clientsy (m')| > 0).
This implies that:
a+c

k+Dk+1—-1D0b+d)
a+c

- K2 4+1242k —k =D +d)
Assume that CCSM (A) > CCSM (B), then:

CCSM (M) =

a c al(l — 1)d
> >c
ktk—1Db — - 1d k(k —1Db —
N al(l—l)d+ > et
kk—1p T4=cT4
N al(l — 1)d + ak(k — 1)b > ¢+
c+a
k(k — )b -
a(l(l — 1)d + k(k — 1)b)
>
= Kk — Db Zceta
N a - c+a
k(k —1)b — Il —1)d +k(k —1)b
N a - c+a
k(k —1b — (12 =Dd + (k2 — k)b
- a—+c

K2+12 42k —k —D(b+d)
= CCSM(A) > CCSM(M)

Therefore, CCSM satisfies the Cohesive Modules property.

To better understand how CCSM satisfies the Cohesive
Modules property, consider the classes I, J and M shown in
Fig. 4. The classes I and J are unrelated because there is no
method in class I that shares a client with a method in class J.
The value of CCSM for the class J is 0.833 which higher than
the value of CCSM for the class I (CCSM (1) = 0.333). When
we merge the two classes I and J into one class, the resulting
class will be the class M. The CCSM of the resulting class M
is 0.233 which is less than value of CCSM of the class J.

V. EMPIRICAL EVALUATION

We conduct a case study to empirically evaluate CCSM and
compare it with other well-known class cohesion metrics
based on classes extracted from real systems.

A. CONSIDERED SYSTEMS AND CLASSES
We selected three systems in our case study namely:
JHotDraw version 9.0 [17], ArgoUML version 0.34
[18], and Xerces2 version 2.12.0 [19]. JHotDraw is a
two-dimensional graphics framework for structured drawing
editors. ArgoUML is a UML modeling tool that supports all
standard UML diagrams. Xerces2 is a library for parsing,
validating and manipulating XML documents. We selected
these systems based on the following criteria: the systems
are open source, implemented in Java, and from different
domains. In addition to meeting the above criteria, we con-
sidered these three systems because they have been used in
several well-known studies in the field (e.g., [10], [12], [13]).
Table 2 reports the number of classes we consider from
each system. We select any class that meets the following
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Class | Class

@ @V@ QOO
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CcsM(1) = 0.333 CCSM(J) = 0.833
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N

Client 2
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CCSM(M) = 0.233

FIGURE 4. Class M is resulted from merging the two unrelated classes |
and J. Classes | and J are unrelated because the methods in class I share
no clients with methods in class J.

TABLE 2. Number of considered classes from each system.

System Number of Studied Classes
JHotDraw 9.0 341
ArgoUML 0.34 783
Xerces2 2.12.0 398

requirements: the class has at least two methods, one attribute
and one client. The reason of setting these requirements is
to have a defined value for each considered metric and to
avoid special cases for the considered metric (e.g., the case
of having a class with no clients for the metric CCSM). The
total number of the considered classes from the three systems
is 1522.

B. CONSIDERED METRICS

We select the following metrics in our case study:
LCOM?2,LSCC, CCC, #Methods and CCSM. LCOM?2
and LSCC are internal view-based class cohesion met-
rics. We considered these two metrics because they are
well-known metrics that have been studied and evaluated
previously in the literature (e.g., [2], [10], [20], [21]). CCC
is a client-based class cohesion metric and we considered it
because the newly proposed metric CCSM is a variation of it
and we want compare both metrics to each other. #Methods is
a size metric that counts the number of methods in the class.
We considered the size metric #Methods because size is an
important characteristic of the class that has an impact on
other quality attributes of the class such as fault-proneness
and we wanted to investigate the relationship between the
considered cohesion metrics and the size.
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Parse the source code of each class in the
given system and extract the required
information for calculating each
considered metric

Number of methods >=2
and
Number of attributes >=1
and
Number of clients >=1

Yes

Calculate the considered Discard the
metrics for the class class

FIGURE 5. The main steps for calculating the considered metrics by our
Java tool.

C. PLANNING

The main purpose of our case study is investigate the relation-
ship between the proposed cohesion metric CCSM and the
other considered metrics. For this purpose, we first compute
set of descriptive statistics for each considered metric includ-
ing the minimum value, first quartile, median, third quar-
tile, maximum value, mean, and standard deviation to give
an overall picture of the differences and similarities among
the considered metrics. In addition, we calculate Pearson’s
correlation coefficients between each pair of the considered
metrics. The value of a correlation coefficient which ranges
from —1 to +1 reflects the strength of the linear relationship
between the two metrics. A value of —1 indicates a perfect
negative correlation between the two metrics and a value of
+1 indicates a perfect positive correlation between the two
metrics. If the value of correlation coefficient is 0, then there
is no linear relationship between the two metrics. Similar to
[22], in this case study, we consider correlation of 0.1 to be
trivial, 0.1 — 0.3 minor, 0.3 — 0.5 moderate, 0.5 — 0.7 large,
0.7 - 0.9 very large, and 0.9 — 1 almost perfect.

D. TOOLS

We developed our own Java tool based JavaParser [23] to
automatically compute the considered metrics. The main
steps for computing the considered metrics by our tool is
depicted in Fig. 5. Our tool parses the source code of each
class in the given system and extract the required information
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TABLE 3. Descriptive statistics for the considered metrics based on the 341 classes selected from JHotDraw 9.0.

Metric Min. | 1stQu. | Median | 3rd Qu. | Max. | Mean | Std. Dev.
#Methods 2 5 8 12.67 80 16 12.43
LCOM2 0 1 14 109.6 2734 61 309.01
LSCC 0 0.003 0.033 0.103 1 0.1 0.189
CCC 0 0.041 0.117 0.259 1 0.333 0.325
CCSM 0 0.017 0.049 0.149 1 0.167 0.234

TABLE 4. Descriptive statistics for the considered metrics based on the 783 classes selected from ArgoUML 0.34.

Metric Min. | 1stQu. | Median | 3rd Qu. | Max. | Mean | Std. Dev.
#Methods 2 3 6 14 409 12.52 26.295

LCOM2 0 1 9 55 83344 | 373.2 | 4210.478
LSCC 0 0 0.015 0.076 1 0.099 0.215
CCC 0 0 0.105 0.5 1 0.297 0.372
CCSM 0 0.003 0.067 0.322 1 0.228 0.317

TABLE 5. Descriptive statistics for the considered metrics based on the 398 classes selected from Xerces2 2.12.0.

Metric Min. | 1stQu. | Median | 3rd Qu. | Max. | Mean | Std. Dev.
#Methods 2 4 9 19 125 15.69 18.383
LCOM2 0 0 14 90.5 7220 195.9 704.611

LSCC 0 0.005 0.04 0.199 1 0.17 0.275

CCcC 0 0 0.17 0.342 1 0.282 0.329

CCSM 0 0.02 0.067 0.189 1 0.166 0.245

for calculating the considered metrics. For example, we need
to know the clients of each method in the class in order to
calculate the proposed metric CCSM . The tool automatically
counts the number of methods, attributes and clients of the
class. If the number of methods is greater than or equal
to 2 and number attributes is greater than or equal to 1 and
the number of clients is greater than or equal to 1, the tool
computes the considered metrics for the class and reports the
results in a file. Otherwise, the class is discarded. At the end,
the tool generates one CSV file that includes the values of the
metrics for all the considered classes in the given system.

We used the free software project R [24] to compute
the descriptive statistics for the considered metrics and the
Pearson’s correlation coefficients between them based on the
results generated by our Java tool.

E. RESULTS AND DISCUSSION

Tables 3, 4, and 5 report descriptive statistics for the consid-
ered systems. The results show that the minimum value of
the cohesion metrics CCSM, CCC, and LSCC is 0 and the
maximum value of the these metrics is 1. As we explained in
our theoretical evaluation of CCSM in Section IV, the value
of CCSM is 0 when the methods of the class in question have
disjoint sets of methods and the value of the metric is 1 when
all the methods have the same set of clients. The value of
CCC is 0 when each client in the class uses only one public
method in the class (refer to [14] for more details) and the
value of the metric is 1 when each client in the class uses all
the public methods of the class. For LSCC, the value of the
metric is 0 when the class does not have a pair of methods
that reference a common attribute in the class and the value
of the metric is 1 when each method in the class references
all the attributes of the class.
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The mean and quartiles of CCSM, CCC, and LSCC are rel-
atively small which indicates that the values of these metrics
are relatively small for most the considered classes across the
three systems. The reason behind the small values of CCSM
and CCC is that they are affected by the methods of the class
that are not used by the clients of the class. In the case of
CCC, in order for a class to be fully cohesive, all the clients
of the class must use all the public methods of the class which
means all the public methods of the class share all the clients
of the class. Similarly for CCSM, in order for a class to be
fully cohesive, all the methods in the class must share all the
clients of the class. Ideally, it is better if all the methods of
the class share all clients of the class because this means the
methods of have a strong relationship and they all contribute
to a single responsibility from the perspective of the clients
of the class. In reality, classes usually have core methods
that are used by most of the clients and utility methods that
are only used by some of the clients which leads to smaller
values of CCSM and CCC. For LCSS, all the methods of the
class must reference all the attributes in the class in order for
a class have a full cohesion value. In practice, classes usually
have methods that only reference some of the attributes in the
class which leads to smaller values of LSCC. An example of
these methods are the getters > and the setters® in the class.
A getter or setter usually references only one attribute in the
class.

We can observe that LCOM 2 has extremely greater mean,
median, and maximum values compared to the other cohesion
metrics. This is because the LCOM?2 is not normalized (i.e.,
it does not have an upper bound), whereas the values of the

2A getter is a method that is responsible for reading the value of an
attribute in the class

3A setter is a method that is responsible for updating the value of an
attribute in the class.
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TABLE 6. Pearson’s correlations between the metrics for the classes
selected from JHotDraw 9.0.

#Methods | LCOM2 | LSCC | CCC | CCSM
#Methods 1 0.868 -0.195 | -0.277 | -0.139
LCOM2 1 -0.165 | -0.169 | -0.048
LSCC 1 0.022 -0.031
CCC 1 0.605
CCSM 1

TABLE 7. Pearson’s correlations between the metrics for the classes
selected from ArgoUML 0.34.

#Methods | LCOM2 | LSCC | CCC | CCSM
#Methods 1 0.857 -0.053 | -0.133 -0.14
LCOM2 1 -0.038 | -0.055 | -0.053
LSCC 1 -0.007 | -0.041
CCC 1 0.64
CCSM 1

TABLE 8. Pearson’s correlations between the metrics for the classes
selected from Xerces2 2.12.0.

#Methods | LCOM2 | LSCC | CCC | CCSM
#Methods 1 0.838 -0.291 -0.15 -0.159
LCOM2 1 -0.165 | -0.097 | -0.077
LSCC 1 -0.076 -0.1
CCC 1 0.578
CCSM 1

other cohesion metrics range from O to 1, inclusively. The
minimum value of LCOM?2 is 0 and this occurs when the
number pairs of methods that share an attribute is greater than
number of pairs of method that do not share an attribute.

Finally, the results in Tables 3, 4, and 5 indicate that CCSM
has in general smaller values than CCC. The reason behind
this is that CCSM computes the cohesion of the class based
on the client similarities between each pair of methods in
the class, whereas CCC computes the cohesion of a class
based on the number of used public methods in the class by
the clients of class regardless the client similarities between
the methods of class. As a result, the value of CCSM will
be greatly and negatively affected by the number of pairs of
methods that do not share common clients compared to CCC.
This leads to having smaller values of CCSM compared to the
values of CCC in most cases. The standard deviation of both
metrics is relatively similar.

Tables 6, 7, and 8 present the Pearson’s correlation coeffi-
cients between each pair of the considered metrics across the
three systems. The results show that the correlation between
the cohesion metric LCOM?2 and the size metric #Methods
is very large. The reason behind the very large correlation
between these two metrics is that LCOM?2 is greatly influ-
enced by the number of methods in the class because the
metric is not normalized.

CCSM has trivial correlations with the internal view-based
cohesion metrics LCOM?2 and LSCC and the size metric
#Methods across the three systems. The trivial correlations
between CCSM and the internal view-based cohesion metrics
LCOM?2 and LSCC indicate that CCSM addresses a differ-
ent aspect of cohesion that is not addressed by the internal
view-based cohesion metrics. This was expected because
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CCSM measures the cohesion of a class based on the shared
clients of the class between the methods of the class, whereas
the internal view-based metrics measure the cohesion based
on the shared attributes between the methods. The correla-
tion between CCSM and CCC is moderate across the three
systems because both metric measure the cohesion based on
the clients of the class.

The correlations between LSCC and LCOM? is trivial
across the three systems even though both metrics mea-
sure the cohesion based on the shared attributes between
the methods. Two reasons behind this. First, LCOM?2 is not
normalized. Second, LSCC considers the number of shared
attributes when measuring the degree of similarity or relation-
ship between two methods, whereas LCOM?2 does not. If we
have a class that has 4 attributes and there are two methods in
the class that share one attribute, then the degree of similarity
between the two methods is % in the case of LSCC, whereas
the degree of similarity between the two methods is 1 in the
case of LCOM?2 because LCOM?2 considers two methods to
be fully similar if they share at least one attribute in the class.

The directions of correlations between the three cohesion
metrics CCSM, CCC, and LSCC and the cohesion metric
LCOM?2 is negative because the LCOM?2 is an inverse cohe-
sion metric meaning that higher values of LCOM?2 indicate
lower cohesion, whereas CCSM, CCC, and LSCC mea-
sure the cohesion directly. Also the directions of correla-
tions between CCSM, CCC, and LSCC and the size metric
#Methods is negative because usually the class becomes less
cohesive when its size increases. LCOM?2 has positive corre-
lation with #Methods because as we explained previously the
LCOM?2 measures the lack of cohesion and larger classes tend
to have higher lack of cohesion. The direction of the correla-
tion between the CCSM and LSCC is negative. We expected
these two metrics to have positive correlation because they
both measure cohesion directly. However, the magnitude of
the correlation between the these two metrics is extremely
low. We can say there is no relationship between the two
metrics. The reason behind this extremely low correlation
between the two metric is that they measure different aspects
of cohesion.

Overall, we find the results of the metric CCSM encour-
aging. The metric has trivial correlations with the internal
view-based cohesion metrics and the size metric #Methods,
which means the metric addresses properties of quality that
are not addressed by other metrics. This is good because the
metric can be used to complement the other internal-based
cohesion metrics and the size metric #Methods when pre-
dicting external quality attributes that are believed to be
influenced by cohesion and size such as fault-proneness,
maintainability and testability. In addition, the CCSM has
moderate correlation with CCC. This is also good because
CCC was found to be usefull predictor for testability [14]
and maintainability [1] and we expect CCSM to be also
useful predictor for testability and maintainability since it
has moderate correlation with CCC. However, we believe
CCSM is more beneficial than CCC because it considers
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all the methods of the class when measuring the cohesion,
whereas CCC considers only the public methods. In addi-
tion CCSM can automatically support refactoring techniques
such as Extract Class refactoring which can not be auto-
matically supported by CCC as we will see in the next
Section.

F. THREATS TO VALIDITY

Several factors may affect the results of our empirical eval-
uation and limit our interpretation. First, the selected three
systems are open source systems and implemented in the
same programming language (i.e., Java). In addition, the
domains of selected systems may not be representative of
all the domains in the software industry. Furthermore, the
size and the number of classes considered from the the
selected systems may not be representative for the classes
of the systems in the software industry. As suggested by
[10], we need to consider a set of systems from the software
industry that are representative in terms of the size and the
number of classes and in terms of domains; and implemented
in different programming languages in order to generalize our
results.

VI. USING CCSM TO SUPPORT EXTRACT CLASS
REFACTORING

Extract Class refactoring refers to the process of splitting a
class that has many responsibilities (known as a Blob or God
Class) into a set of smaller classes, each of which has a single
responsibility [25]. Cohesion is used to indicate whether a
class has one responsibility or more because a highly cohe-
sive class is believed to have only a single responsibility
[13]. Therefore, many approaches (e.g., [11]-[13], [26]-[38])
have employed cohesion metrics to automatically support the
Extract Class refactoring because performing manually the
Extract Class refactoring costs much time and effort. In these
approaches, the different responsibilities of a non-cohesive
class are determined by identifying the methods in the class
that have strong similarities or relationships. Each group
of methods that have strong relationships is suggested to
be extracted into a separate class. Only internal view-based
cohesion metrics have been used to support the Extract Class
refactoring. Therefore, we introduce an approach that uses
the newly proposed client-based cohesion metric CCSM to
support the Extract Class refactoring. The approach is an
extension of our previous works [39], [40] on the Extract
Class refactoring.

In the following, we first discuss the potential benefits of
using client-based cohesion metrics in supporting the Extract
Class refactoring. We next explain the limitation of the
client-based cohesion metric CCC in supporting the Extract
Class refactoring. Then we present the proposed approach
that exploits CCSM to support the Extract Class refactor-
ing and present an example of application for the proposed
approach. Finally, we present an Extract Class refactoring
case study.
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A. THE BENEFITS OF USING CLIENT-BASED COHESION
METRICS IN SUPPORTING THE EXTRACT CLASS
REFACTORING

Client-based cohesion metrics can be potentially more ben-
eficial in supporting the Extract Class refactoring than the
cohesion metrics that consider only the internal view of the
class for the following reasons: While internal view based
metrics can only identify the methods that have low similar-
ities or relationships with each other, client-based cohesion
metrics can in addition to that identify the case of having a
class that has low cohesion and many clients. More attention
should be paid to that case because if the class has low
cohesion and many clients, not only the maintenance effort
of the class will increase but also the the maintenance effort
of its clients will increase as they depend on the class. One
the other hand, if the class has low cohesion and no clients
or a few number clients, then the overall maintenance effort
of the class and its clients will be low comparing to the
previous case. Another benefit of using client-based cohesion
metrics in the Extract Class refactoring is that it supports
the adherence to the Interface Segregation Principle (ISP)
which states that clients of a class should not be forced to
depend on methods they do not use in the class [3]. ISP is
an important design principle and failing to adhere to it can
increase the overall maintenance of the system. For example,
when a client of a class exerts changes to some methods in the
class, the other clients of the class can be affected even if they
do not use those methods [3]. Client-based cohesion metrics
can be used to identify the methods of the class that are used
by disjoint sets of clients. Those methods can be extracted
into separate classes.

B. THE LIMITATION OF CCC IN SUPPORTING THE

EXTRACT CLASS REFACTORING

The cohesion metric CCC cannot automatically identify the
methods of a class that have high/low similarities (or rela-
tionships) because the metric measures the cohesion of the
class based on the number of used methods by each client
of the class and the metric does not compute the similarities
between the methods. As a result, the metric cannot auto-
matically support the Extract Class refactoring. For example,
consider the class A and its clients represented in Fig. 6 where
the circles represent the methods of the class A and the arrows
represent the usage of the methods by the clients of A. It is
clear that the methods m1, m2 and m3 have strong client
similarity. Also, the methods m4, m5 and m6 have strong
client similarity. If we split the class A into two classes where
the first the class has the methods m1, m2 and m3 and the
second class has the methods m4, m5 and m6, we will have
two classes with high cohesion and we will better adhere
to ISP because we will not force the clients to depend on
methods they do not use. The metric CCC cannot be used to
automatically split the class A into two classes as suggested
above because the metric does not calculate the similarities
between the methods of the class. Therefore, we introduced
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FIGURE 6. Class A and its clients.

in this article the cohesion metric CCSM which can automati-
cally support the Extract Class refactoring because the metric
calculates the similarity between each pair of methods in the
class.

C. THE PROPOSED APPROACH OF THE EXTRACT CLASS
REFACTORING BASED ON CCSM

The proposed approach takes as an input a class to be refac-
tored and automatically suggests a set of classes that can
be extracted from the original class. The suggested classes
should have higher cohesion than the original class. The flow
chart in Fig. 7 shows the main steps of our approach. The first
step is to parse the code of the class and extract its methods.
Next, we extract the clients of each method in the class by
parsing the code of the other classes in the system to identify
client classes according to Definition 4.

Algorithm 1 is applied next to classify the methods of the
class into disjoint sets based the proposed metric CCSM . The
algorithm takes as an input the set of methods of the class
and a refactoring threshold value and returns as an output a
list (L) of disjoint sets of methods each of which represents
a candidate class that may be extracted from the original
class. The algorithm creates the disjoint sets one by one. The
input threshold value is used to determine if a method to be
classified is added to the last created set or added into a new
set. If the refactoring threshold value is high and the client
similarities between the methods of the class are generally
low, each method will probably be added into a different set,
which means each extracted class will have only one method.
On the other hand, if the threshold value is low and the client
similarities between the methods are relatively high, all the
methods cam be suggested to be placed into a single class,
which means no class will be extracted from the input class.
To mitigate this issue, we can compute the CCSM for each
pair of methods (in the input class) as a separate class that has
only two methods and then choose the median of the non-zero
results as a refactoring threshold value.

Algorithm 2 is applied next to merge small sets of methods
with other sets to avoid extracting classes with a small number
of methods. The algorithm takes as an input the list of sets
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Algorithm 1 An Algorithm for Classifying the Methods of
the Class
Input: 1) M(A): the set of methods of the class to be refac-
tored (class A). 2) Threshold: a refactoring threshold
value.
Qutput: L: alist of disjoint sets of methods
Initialisation:
I L=l
2: while |[M(A)| > 1do
3:  find the two methods m;, m; € M(A) such that the
value of CCSM ({m;, m;}) is the largest compared to the
value of CCSM for any other two methods in M (A);

remove m;, m; from M (A);

while [M(A)| > 0do

10: find the method m; € M (A) such that the value of
CCSM (D + {my}) is the largest compared to the
value of CCSM (D + {my}) for any method m, €

4:  add m;, mj to a new set D;

5. if CCSM (D) < Threshold then
6: break;

7. else

8:

9:

M(A) — {my}
11: if CCSM (D + {my}) > Threshold then
12: add my to D,
13: remove my from M (A);
14: else
15: break;
16: end if
17: end while
18: addDto L;
19:  end if

20: end while

21: while [M(A)| > 0do

22:  add each remaining method m, in M(A) to a new set
and add the set to L;

23:  remove m, from M(A);

24: end while

25: return L

L resulting from Algorithm 1 and the minimum number
of methods that each extracted class can have and returns
as an output the list L after merging the small sets in list.
Algorithm 2 merges any set D (in the input list) that has a
number of methods less than the input minimum number of
methods with the set X in the input list such that X # D and
the value of CCSM (D + X) is the largest compared to the
value of CCSM (D + Y) for any Y in the input list such that
Y#DandY #X.

The final step in our approach is to suggest the extraction
of classes based on the output of Algorithm 2 where each
set in the output of the algorithm represents a candidate class
that can be extracted from the original class. The attributes of
the class are not considered in our approach. However, they
can be automatically distributed among the extracted classes
suggested by our approach based the use of the attributes by
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Algorithm 2 An Algorithm for Merging Small Candidate
Classes
Input: 1) L: the output of Algorithm 1 which may include
small sets of methods. 2) minNumMethods: the minimum
number of methods that each extracted class can have.
Output: L after merging small sets
Initialisation:
1: for Din L do
if |D| < minNumMethods then
find X in L such that X # D and the value of
CCSM (D + X) is the largest compared to the value
of CCSM(D + Y) for any Y in L such that Y # D
and Y # X;
4 add the elements of D to X;
5: remove D from L;
6: endif
7: end for
8: return L

w N

Extract the methods of the class

Extract the clients of each method

Classify the methods of the class into disjoint
sets based on CCSM using Algorithm 1

Merge small sets with other sets
using Algorithm 2

Suggest the extraction of classes with
methods corresponding to the disjoint sets

FIGURE 7. The process of the proposed approach for extract class
refactoring.

the methods in the extracted classes. Each attribute can be
added to the extracted class that has the largest number of
methods that use the attribute. Our approach automatically
suggests the set of classes that can be extracted from a given
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TABLE 9. The CCSM values for each pair of methods in the class c;.

m2 | m3 m4 | mS mé6 m7 | m8 | m9 ml0
ml | 1 0.667 | 0 0 0 0 0 0 0
m2 0.667 | O 0 0 0 0 0 0
m3 0 0 0 0 0 0 0.25
m4 0.667 | 0.667 | O 0 0 0
m5 1 0 0 0 0
mé 0 0 0 0
m7 1 0.667 | 0
m8 0.667 | 0
m9 0
TABLE 10. The considered Blobs from GanttProject 1.10.2.
Class Name #Methods | Clients
GanttProject 90 40
GanttGraphicArea 43 7
GanttTree 48 12
ResourceLoadGraphicArea | 29 4
TaskImpl 46 41

class. A software engineer may evaluate the suggested classes
and approve them or make some changes to them by moving
the methods and attributes between the suggested classes.

D. AN EXAMPLE OF APPLICATION

To better understand the proposed approach, we present an
example to show how the approach can be applied. Suppose
we want to perform the Extract Class refactoring on the class
c1 that has the following set of methods:

M(c1) = {my, my, m3, mg, ms, me, my, mg, my, mo}.
Suppose each method has a set of clients as follows:

Clientsy (my) = {3, c3},
Clientsy (my) = {cp, c3},
Clientsy(m3) = {ca2, 3, ca},
Clientsy (ms) = {cs, ce},
Clientsy;(ms) = {cs, cq, 7},
Clientsy (me) = {cs, ce, 7},
Clientsp (m7) = {cs, c9},
Clientsp(mg) = {cs, co},
Clientsy(mg) = {csg, c9, C10},
Clientspy (m10) = {c4, c11}.

In order to select an appropriate refactoring Threshold
value, we calculate the CCSM for each pair of methods (in
the class c¢1) as a separate class that has two methods. The
results are given in Table 9. The median of the non-zero values
reported in Table 9 is chosen as a refactoring Threshold value,
which is 0.667.

Algorithm 1 is applied next to classify the methods of ¢

into disjoint sets of methods. The output of Algorithm 1 is the
following list:

L = [{m1, mo, m3}, {ma, ms, me}, {m7, mg, mo}, {mio}l.

The list L contains 4 sets. Each of the first three sets has
three methods, while the last set in list has only one method.
Algorithm 2 is applied on the list L to avoid extracting classes
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TABLE 11. The results of refactoring the considered Blobs using the proposed approach.

Pre-refactoring
#Methods | CCSM

Class Name

Refactoring Threshold | Post-refactoring

#Methods | CCSM

GanttProject 90 0.002

0.143 15 0.057
8 0.054
11 0.055
16 0.059
22 0.058
0.06

0.067
0.079

GanttGraphicArea 43 0.188

1.0
0.392
0.667
0.667
1.0

(98]

GanttTree 48 0.032
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—_

0.368
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ResourceLoadGraphicArea | 29 0.279
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TaskImpl 46 0.035
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that have a small number of methods. We set the value of
minNumMethods to 2, which specifies the minimum number
of methods that each extracted class can have. The output of
Algorithm 2 is the following:

L = [{m1, my, m3, myo}, {myg, ms, meg}, {m7, mg, mo}].

Algorithm 2 merged the set {m¢} with the set {m, my, m3}
to avoid extracting a class that has only the method mg.
Each set in the list L after applying Algorithm 2 represents
a candidate class the can be extract from the original class c.

The values of CCSM for the extracted -classes
{my, my, mz, myo}, {mg, ms, mg}, and {m7, mg, mo} are 0.292,
0.778, and 0.667, respectively, whereas the value of CCSM
for the original class c¢; is 0.044. The values of CCSM
improved significantly for the extract classes compared to the
original class.

E. EXTRACT CLASS REFACTORING CASE STUDY
We present a case study to empirically evaluate the proposed
approach of the Extract Class refactoring. For this purpose,
we apply the proposed approach on real Blobs selected from
GanttProject version 1.10.2. GanttProject is an open source
tool implemented in Java that is used for scheduling and
managing projects. We evaluate our approach by comparing
the cohesion of the original classes (Blobs) with cohesion
the extracted classes suggested by our approach. We use the
proposed metric CCSM to measure the cohesion of the con-
sidered classes. We expect extracted classes to have higher
CCSM values than the original classes.

Table 10 reports the names of the selected classes from
GanttProject and the number of methods (excluding construc-
tors) and clients of each class. We select these classes because
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they were identified as Blobs in previous research [12], [41]
and because each of them has at least two clients.

Table 11 reports the results obtained by applying the pro-
posed Extract Class refactoring approach on the considered
Blobs. The refactoring threshold value for each Blob is set to
the median of the non-zero values resulting from computing
the CCSM for each pair of methods in the Blob. The min-
imum number of methods that an extracted class can have
is set to two. The results in Table 11 include the number
of methods and CCSM values of the original classes and
extracted classes. They indicate that the proposed approach
is potentially useful as the cohesion of the extracted classes
suggested by the approach are higher than the cohesion of the
original classes.

VII. CONCLUSION AND FUTURE WORK
The paper introduced a client-based cohesion metric that
supports the Extract Class refactoring. The metric was the-
oretically evaluated using the cohesion properties and it was
empirically evaluated by comparing its measurements with
the measurements of other cohesion metrics based on classes
extracted from three open source systems. In addition, the
paper proposed a refactoring approach that employed the
newly introduced cohesion metric to automatically identify
Extract Class refactoring opportunities. A case study based
on real classes selected from an open source system showed
the potential usefulness of the proposed refactoring approach.
A future study can extend the refactoring approach pre-
sented in this article by using the proposed client-based
cohesion metric in combination with other well-known
internal view-based cohesion metrics to better support the
Extract Class refactoring. In addition, the use of client-based

227913
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cohesion to predict fault-prone classes is left open for future
research.
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