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ABSTRACT In this paper, in order to settle the problem of unintentional interference between commu-
nication devices and obtain effective information quickly and accurately in cognitive radio (CR), and an
intelligent modulation pattern recognitionmethod based onwavelet approximate coefficient entropy (WACE)
is proposed. Based on the traditional wavelet entropy, an improved wavelet entropy, WACE, is presented,
which can characterize the modulated signal pattern and suppress the noise effectively. Furthermore, in order
to solve the problem of high complexity for linear weighting calculation, the deep neural network (DNN)
is adopted, and the vector of the WACE is used as the input of the DNN to realize intelligent recognition
of a variety of typical communication signal modulation patterns. Simulation results verify the correctness
of the theoretical analysis, and show that the proposed intelligent recognition method can effectively realize
the modulation pattern recognition of multiple signals at low signal-to-noise ratio (SNR), with relative low
computational complexity.

INDEX TERMS Cognitive radio (CR), modulation pattern recognition, wavelet approximate coefficient
entropy (WACE), deep neural network (DNN).

I. INTRODUCTION
With the rapid increase of wireless devices, the unintentional
interference between devices is becoming more and more
serious. In the field of military and civil communication, how
to suppress the related unintentional interference and obtain
the effective signal modulation pattern in time is an impor-
tant and challenging problem. J.Mitola proposed cognitive
radio (CR) technology in [1], which used the learning ability
of CR to autonomously sense the surrounding spectrum envi-
ronment and respond to the actual electromagnetic situation
in real time. CR technology, as the most potential solution to
overcome the problem of spectrum resource shortage, attracts
a lot of attention, and is one of the potential solutions for
future communication system. Therefore, the anti-jamming
modulation recognition technology in the framework of CR
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has a broad prospect. For example, in electronic countermea-
sures, the modulation recognition technology is applied to the
spectrum sensing of receiving equipment, which can provide
more necessary information for the battlefield command and
decision-making.

A. LITERATURE REVIEW
Wavelet analysis is a local transform of time and frequency,
which can effectively extract information from the signal and
is conducive to the perception of the surrounding electromag-
netic environment. For some time, many CR technologies
are devoted to modulation recognition of communication
signals by using spectrum and cyclic spectrum [2], char-
acteristic parameters and their statistics [3], time-frequency
transform [4], [5], and high-order cumulants [6]-[8]. How-
ever, these methods are difficult to achieve multiresolution
analysis of the modulated signals, which increases the dif-
ficulty of obtaining effective information, and the real-time
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performance of signal analysis and processing is not good.
Thus, in order to grasp the current radio spectrum situ-
ation quickly and accurately, wavelet analysis is applied
to the modulation recognition of communication signals.
In [9], the effective recognition of Arabic speech numbers
is realized by using the wavelet coefficients of speech sig-
nals after discrete wavelet analysis. In [10], a recognition
algorithm based on wavelet variation coefficient difference
and similarity feature is proposed to classify and recog-
nize common digital modulation signals. In [11], continuous
wavelet transform and multi-layer wavelet decomposition
are used to extract the features of signals, and different
classification features are adopted for different modulated
signals. The algorithm does not need symbol period estima-
tion and synchronization time estimation, which improves
the operation speed and recognition rate of modulation
signal.

Traditional feature extraction and classification methods
are mainly based on feature statistics and clustering algo-
rithms. The example, in [12], a density based spatial clus-
tering of applications with noise (DBSCAN) algorithm is
proposed, and combined with K-means clustering algorithm
based on distance, the characteristic values of signals are
directly extracted to realize modulation recognition of com-
munication signals. However, when the noise interference is
serious, the recognition rate is low. In order to keep the recog-
nition rate and reduce the complexity as much as possible,
in [13], a novel method based on constellation structure is
proposed to identify PSK and QAM modulation of different
orders, in the slow and flat fading channel. In [14], two
depth automatic encoders and cyclic spectrum features of
signals are used for modulation recognition, but the recogni-
tion performance is poor in low signal-to-noise ratio (SNR)
environment.

Compared with the traditional feature extractions and clas-
sification methods, deep learning has been applied to modu-
lation recognition of communication signals because of its
strong classification ability and fitting ability to nonlinear
functions, which provides a new solution to the problems
existing in wavelet analysis [15], [16]. In [17], a method
based on deep learning is proposed, which combinedwith two
convolutional neural networks trained on different data sets
to achieve a relatively high automatic modulation recognition
rate. In [18], an automatic modulation recognition framework
is established to identify radio signals in communication
systems. After preprocessing the signal data, the deep convo-
lution neural network and the long-term short-term memory
network are considered in the framework. The recognition
rate of the signal is significantly improved compared with
the original method. In order to improve the accuracy of
automatic modulation classification (AMC) in the case of
small data sets, in [19], a hybrid model named Hybrid-
Net is proposed, where a bidirectional gated recurrent unit
(Bi-GRU) is placed after convolutional neural network to
capture temporal dependencies explicitly. In [20], amethod of
modulation recognition by exploiting the graph convolutional

network (GCN). Herein, to convert signals to graphs, the
modulation dataset is divided into multiple subsets.

However, there are two major problems in the application
of discrete wavelet analysis and deep neural network (DNN)
in multi signals modulation recognition. (1) The signal recog-
nition methods only using wavelet analysis rely on the accu-
rate estimation of communication signal parameters. Noise,
frequency offset and other interference factors will bring
large errors to the above identification methods, and the error
reduction methods are also complex, so these identification
methods can not be applied to the complex and changeable
electromagnetic environment. (2) Using the above deep learn-
ing model alone is more complex and requires more space
costs. In the current communication environment, resources
are relatively scarce, so it is more important to keep the
recognition rate stable or even improve while reducing the
complexity. To sum up, in the complex electromagnetic envi-
ronment with low SNR and difficult to obtain accurate modu-
lation parameters, it is a crucial problem to find amethodwith
low complexity and high modulation recognition accuracy.

B. OUR CONTRIBUTIONS
In order to solve the above problems, this paper uses the
method of discrete wavelet analysis combined with DNN
to realize modulation pattern recognition of communication
signals in complex electromagnetic environment. To reduce
the computational complexity of DNN and improve the out-
put performance of modulation recognition at low SNR,
an intelligent modulation pattern recognition method based
on wavelet approximate coefficient entropy (WACE) is pre-
sented. Different from the traditional method, it can effec-
tively extract the correlation features of signals in complex
electromagnetic environment with low SNR, in which it is
difficult to obtain accurate modulation parameters. At the
same time, combining with the DNN can solve the problem
of high complexity of multi signals modulation recognition
using the linear weighting of the WACE alone. Conversely,
the WACE can also be used to characterize the modulation
signal with a small number of features, which can reduce the
number of input variables of the DNN to a certain extent, thus
reducing the training complexity of the DNN. Therefore, this
method complements the advantages of WACE and DNN to
realize modulation pattern recognition of multiple signals.

In general, the key contributions of this work can be sum-
marized as follows:

1) A novel improved wavelet entropy, WACE, is pre-
sented. Compared with traditional wavelet entropy,
WACE has a better ability to characterize modulation
signal patterns and suppress noise, which is beneficial
to modulation pattern recognition.

2) Aiming at the problem that it is difficult to recognize
the modulation patterns in complex and changeable
application scenarios with serious interference between
devices, the exponential factor γ and linear weighting
factor α of WACE are defined, and by dynamically
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FIGURE 1. Modulation recognition system model.

adjusting the two factors, the portability and engineer-
ing application of this method are realized.

3) For the high complexity problem of linear weighting
using WACE alone, in the case of given the exponen-
tial weight factor γ , the WACE combined with DNN
method is used to realize modulation pattern recogni-
tion under low SNR with relative low computational
complexity.

4) In the case of small training set and low SNR, the
model performance and computational complexity of
the proposed WACE combined with DNN method are
analyzed, and some comparison results are given to
prove that this method has lower complexity, faster
convergence speed and better recognition performance.

The organization of the paper is presented as follows.
In Section II, the system model of communication signal
modulation recognition is given. In Section III, the mathe-
matical definition of WACE is given, and the WACE vector
of each communication signal is calculated as the input of
the DNN. Then, the section IV describes the relevant infor-
mation of the DNN in detail, and analyzes the influence of
related variables on the DNN. In Section V, simulation perfor-
mance of the model for modulation recognition is given, and
the influence of parameter selection is analyzed. Moreover,
the comparison with other paper schemes is also considerd.
Finally, Section VI summarizes the paper.

II. SYSTEM MODEL OF MODULATION RECOGNITION
In this section, a complete communication signal modulation
recognition system model will be established to simulate the
communication situation in complex electromagnetic envi-
ronment, and five representative and widely used communi-
cation signal modulation patterns will be considered.

The communication signal modulation recognition system
model in this paper includes an integrated signal process-
ing center and N potential modulation signal transmitters,
as shown in Fig. 1.

In the field of wireless communication, the signal process-
ing center is the core of the whole system. It is responsible

for receiving and processing signals of various modulation
patterns from all directions, including valid communication
signals and unintentional interference signals. At the same
time, there may also be intentional jamming signals. For
example, in electronic warfare, whether it is to accurately
obtain the information transmitted by our side, or to intercept
the enemy signal to obtain intelligence, or to interfere with the
effective communication of the enemy, it is inseparable from
the modulation recognition technology. In order to reflect
the diverse modulation patterns of communication signals
in complex electromagnetic environment better, five typical
modulation patterns of communication signals are selected in
this paper, and they areminimum shift keying (MSK), quadra-
ture phase shift keying (QPSK), 16 quadrature amplitude
modulation (16QAM), offset-QPSK (OQPSK) and binary
phase shift keying (BPSK) respectively.

III. MODULATIONS RECOGNITION BASED ON WACE
Wavelet entropy is a theory developed on the basis of
wavelet transform, multiresolution analysis and information
entropy. In this section, under the guidance of wavelet theory
and multiresolution analysis, the traditional wavelet entropy
algorithm and the proposed WACE algorithm are analyzed
respectively.

A. WAVELET THEORY AND MULTIRESOLUTION ANALYSIS
Wavelet analysis is a time-frequency analysis method. For
any function f (t) ∈ L2(R), the continuous wavelet transform
is

Wf (a, b) =< f , ψa,b > = |a|−1/2
∫
R
f (t)ψ

(
t − b
a

)
dt,

(1)

where a is the scaling factor, b is the translation factor, a, b ∈
R; a 6= 0, and ψa,b is the the scaling and translation wavelet
sequences of the basic wavelet ψ(t). In practice, continuous
wavelet must be discretized. Discrete wavelet transform is to
discretize continuous parameter a, b into m, n, and the basic
wavelet function of discrete wavelet transform is

ψm,n(t) = 2−
m
2 ψ(2−mt − n). (2)

Then the discrete wavelet transform of any function is

WTf (m, n) =
∫
R
f (t) · ψm,n(t)dt. (3)

Multiresolution wavelet analysis decomposes a signal into
components at different scales using orthogonal wavelet basis
function (Daubechies 5 (db5) wavelet basis function in this
paper). The implementation process is equivalent to repeat-
ing a set of high-pass and low-pass filters to decompose a
time series signal: High-pass filters produce high-frequency
detail components of the signal, and low-pass filters produce
low-frequency approximate components of the signal. Each
time the low-frequency component of the previous scale is
decomposed again, and two decomposition components of
the next scale are obtained [21], as shown in Fig. 2.
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FIGURE 2. Multi-level discrete wavelet decomposition structure.

In Fig. 2, S represents the original signal, An represents
the low-frequency approximate component on the scale n
obtained after the decomposition of the original signal, and
Dn represents the high-frequency detail component on the
scale n. In the field of wavelet analysis, multiresolution
analysis can decompose the signal to be analyzed by one
or more layers through discrete wavelet transform to obtain
the approximate component (low-frequency component) and
detail component (high-frequency component). The approx-
imate component can be considered as the main part of the
signal, while the detail component can be considered as a
supplement to the approximate component. The detail com-
ponent does not change the important attributes of the original
signal, mainly reflects the instantaneous state information of
the original signal. At the same time, the detail component
may contain some key information of the original signal,
or some noise. Thus, this decomposition method is also
conducive to the denoising of the signal polluted by noise.
Meanwhile, most of the random noise and high frequency
interference between devices are distributed in the detail
component. To some extent, we can use this feature to achieve
better modulation recognition performance by reducing the
proportion of detail component and increasing the proportion
of approximate component.

In order to suppress noise and unintentional interference
between devices to the greatest extent, obtain information
quickly and effectively, and improve spectrum utilization
as much as possible. Based on the above, the limit case
may be considered: If all the low-frequency components are
taken and the high-frequency components are discarded, the
anti-noise performance will be greatly improved, but some
key information of the signal will be lost.

This paper makes up for this problem by two means.
(1) If the wavelet coefficients of the original signal are
added to the multiresolution analysis of the modulated signal
to form the wavelet domain features together with other
scale analysis results, no information of the original sig-
nal will be lost. (2) If the appropriate wavelet function is
selected to make the energy of each scale more concentrated
on the low-frequency components, the denoising effect is
better.

dbN wavelet (N is the order of the wavelet function)
performs well in the field of signal denoising, therefore, this
paper selects this wavelet. There are two aspects to consider
when choosing the order N in this paper. (1) N in the wavelet

corresponds to the vanishing moment of the wavelet function.
The larger the vanishing moment, the smaller the high fre-
quency coefficient, the more concentrated the signal energy,
and the better the noise removal effect. (2) The increase of
vanishing moment N will also cause too much noise to be
concentrated in the low frequency component, which will
affect the denoising effect, and will also make the support
length of the wavelet function longer. Ulteriorly, excessive
support length will significantly increase the computational
complexity. To sum up, this paper chooses db5 wavelet func-
tion to concentrate signal energy and obtain the best denoising
effect.

B. TRADITIONAL WAVELET ENTROPY ANALYSIS
In this section, two traditional wavelet entropy are mainly
analyzed, which are wavelet energy entropy and adaptive
wavelet entropy.

1) WAVELET ENERGY ENTROPY
By combiningmultiresolution wavelet analysis with informa-
tion entropy, the definition and calculation method of wavelet
energy entropy for any signal can be obtained [21].

Suppose that any digital signal s(n) with n sampling
points is decomposed on M scales. On a given decom-
position scale m, the wavelet coefficient vector is Am =

(am1, am2, . . . , am,n),m = 1, 2, . . . ,M . A vector sequence
{A} can be formed by the wavelet coefficient vector
A1,A2, . . . ,AM of each decomposition scale. In this paper,
the vector norm of wavelet coefficients can be used to
describe the closeness of wavelet coefficients at differ-
ent scales, and the energy on scale M can be defined as

Em = ||Am||
2
=

n∑
i=1
|ami |

2. The normalized energy pm =

Em

/
M∑
j=1

Ej of the wavelet coefficients at each scale is used

as the distribution of the energy sequence instead of the
probability distribution of the signal. Ulteriorly, the entropy
based on the energy distribution is called the wavelet energy
entropy, which is defined as

Hwe = H (p1, p2, . . . , pM ) =
M∑
j=1

pjlog2pj. (4)

2) ADAPTIVE WAVELET ENTROPY
The concept of adaptive wavelet entropy is based on infor-
mation entropy, in [22], the definition of adaptive wavelet
entropy is given by combining information entropy theory
with discrete wavelet transform

E (S) =

∑
m |Sm|

P

N
, (5)

where adaptive wavelet entropy E is a real number, S is the
original signal s(n) decomposed by discrete wavelet trans-
form, P is an exponential weight, 1 ≤ P < 2, Sm is the m-th
layer signal of the original signal after the discrete wavelet
transform, and N is the length of signal Sm.
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C. WACE
The two wavelet entropy mentioned above, including wavelet
energy entropy and adaptive wavelet entropy, have achieved
good results in their respective fields. However, if they are
used in modulation recognition of CR, especially when the
SNR of the modulation signal to be identified is low, the two
wavelet entropy cannot achieve good recognition results. For
example, in [23], adaptive wavelet entropy is used for multi
signals modulation recognition, and the average recognition
rate is about 95% when there is in the absence of noise
in the back propagation (BP) network. However, when the
SNR is low, the recognition performance of this method for
somemodulated signals decreases rapidly and the recognition
performance is not good.

Based on this, an improved wavelet entropy,WACE, is pre-
sented, and it is the entropy value calculated from all the
wavelet approximation coefficients of the signal. The vector
of the wavelet approximation coefficient can be expressed as

Wm = (wm,1,wm,2, . . . ,wm,n), (6)

where m represents the decomposition scale parameter, m ∈
1, 2, . . .M , and vector element wm,i(i = 1, 2, . . . , n) is
a wavelet approximation factor. If the wavelet coefficients
of the original signal are considered as W0, a new vector
sequence {W} can be formed from W0,W1,W2, . . . ,WM .
Each subsequence in sequence {W} is weighted by a
2-norm, and the exponential terms in the 2-norm are treated as
weights to calculate the weighted 2-norm of the approximate
coefficient vectors of the wavelet at each scale

||Wm|| =

√√√√( n∑
i=1

|wm,i|γ
)
, (7)

where γ is the exponential weight item. After this step,
the vector sequence {W} of wavelet approximate coeffi-
cients in different scales is transformed into 2-norm weighted
sequence {||W||}. Here, the wavelet coefficients of the orig-
inal signal are weighted by 2-norm and added to the vector
sequence to ensure that the information of the original signal
is not lost in the feature extraction of the wavelet domain.

Suppose the signal is decomposed at M scales and the
approximate coefficient vector of the wavelet on scale m is
Wm = (wm1,wm2, . . . ,wm,n). Energy at scale m is defined as

Em = ||Wm||
2
=

n∑
i=1

|wm,i|γm = 0, 1, . . . ,M . (8)

To increase the number of wavelet entropy features of
the signal to be identified, referring to the concept of adap-
tive wavelet entropy, the WACE is given with the following
expression

Em−approx =
Em
Lm
=
||Wm||

2

Lm
=

n∑
i=1
|wm,i|γ

Lm
, (9)

γapprox = (γ0−approx , γ1−approx , . . . , γM−approx)T, (10)

where A represents the WACE of the m-layer of discrete
wavelet decomposition, Lm is the length of the m-layer
wavelet approximation coefficient, and γapprox is an expo-
nential weight vector. In this way, the meaning of WACE is
the average energy of wavelet approximate coefficient per
length of signal in a certain scale, or the average energy
of wavelet approximate coefficient of digital signal at each
sampling point. This improved wavelet entropy represents
the average energy of each wavelet approximate coefficient
length in any signal, and reflects the uncertainty of signal at
different decomposition scales, this is why we call it WACE.

For different signals, the WACE at a certain scale can
reflect the characteristics of the signal at that scale. When
a signal is decomposed into M -level by discrete wavelet
transform,M + 1 WACEs can be calculated according to (9).
Here, each layer of WACE represents certain wavelet domain
characteristics of the signal. In order to make them represent
the signal together, the entropy vector is constituted by the
WACE in each layer, which can be expressed as follows

Eapprox = (E0−approx ,E1−approx , . . . ,EM−approx)T. (11)

Compared with wavelet energy entropy and adaptive
wavelet entropy, WACE has many advantages in modulation
recognition. (1) By discarding the high-frequency coeffi-
cients after discrete wavelet decomposition and using db5
wavelet with larger vanishing moment, the extracted entropy
vector of WACE has stronger anti noise ability. (2) By
selecting different weight vector γapprox , the proportion of
low-frequency components is increased, and the interference
of high-frequency noise is suppressed. In the same noise
environment, the number of decomposition layers can be
reduced, the computational complexity can be reduced, and
the recognition speed can be faster.

In this paper, the selection of weight vector matrix is
1.5 times of unit column vector, and the reasons are as fol-
lows. (1) After adding 1.5 exponential term, the residual noise
in low frequency coefficients of each scale can be further
weakened, and the key information which is conducive to
feature extraction can be amplified. (2) If the exponential
weights change in the same direction with the number of
decomposition layers, the key information in the lower-scale
coefficients will be obscured, disturbing the feature extraction
of modulated signals, resulting in a decrease in recognition
rate or speed. Conversely, if the exponential weight vec-
tor changes in the opposite direction with the number of
decomposition layers, some of the noise in the small-scale
coefficients will be amplified so that useful features of the
modulated signal may not be extracted, and the recognition
rate will also be reduced. Of course, depending on the actual
problem solving, different exponential weights can be applied
to make the WACE achieve better analysis processing effect,
that is, the improved wavelet entropy has good portability
in other fields. In Section V-C , the influence of different
selection of exponential weight vector a on multi signals
modulation recognition is analyzed in detail.
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FIGURE 3. Network input and network model.

IV. NECESSITY OF INTELLIGENT RECOGNITION AND
NETWORK MODEL
A. NECESSITY ANALYSIS OF INTELLIGENT RECOGNITION
In theory, the use ofWACE can realize the modulation pattern
recognition of two signals even multi signals through linear
weighting, and the feature quantity T can be expressed as
follow, where a is the weight vector.

T = a1E0−approx + a2E1−approx + · · · + anEM−approx
= (a1, . . . , aM+1)(E0−approx , . . . ,EM−approx)T

= aEapprox . (12)

However, this modulation pattern recognition has many
shortcomings in practice. (1) When a different signal is
received, even the same modulation pattern, needs to be
re-identified due to differences in noise, frequency offset, etc.,
and the selected linear weighting coefficient and exponen-
tial weighting vector need to be changed frequently but not
always enable to find a clear calculation formula. Ulteriorly,
only relying on experience will lead to a decline in recogni-
tion efficiency, which will affect the performance of the sys-
tem. (2) In the complex electromagnetic environment, if the
detection and identification of parameters are completed, the
calculation complexity is high, the steps are cumbersome, and
the cost of time and space will be very high, which cannot
meet the requirements of rapid modulation recognition.

Therefore, this paper uses WACE combined with DNN for
intelligent recognition. (1) The use of DNN does not require
too many parameters, and the weights can be directly used for
signalmodulation recognition after training and optimization,
with high recognition efficiency and low complexity. (2)
DNN has strong feature extraction and classification capa-
bility for the recognition of multi modulation signals, which
avoiding the cumbersome process of pairwise recognition
in traditional algorithms, and identifying multi modulation
patterns in one step. In addition, in a complex electromagnetic
environment, DNN-based intelligent modulation recognition

is more conducive to the construction of CR systems, and
then intelligently perceive the surrounding radio environ-
ment. This paper will analyze the superiority of the pro-
posed WACE and the necessity of intelligent recognition in
section V-D.

B. THE NETWORK MODEL OF INTELLIGENT
RECOGNITION
In this paper, the network model of intelligent recognition is
a DNN model, which has three layers, including 6 nodes in
the input layer, 30 neurons in the hidden layer, and 5 nodes
in the output layer, as shown in Fig. 3. In the DNN model,
the 6 input nodes of the input layer are determined by the
dimension of the WACE vector Eapprox . When the decompo-
sition scale is 5, the dimension of Eapprox is 6. If the decom-
position scale is too small, the extracted WACE components
are too few and the feature quantity is insufficient, which
will affect the accuracy of modulation recognition and is not
conducive to fighting noise. Conversely, if the decomposition
scale is too large, it will not only increase the complexity of
the DNN, but also has too many features, which will make
the generalization of the DNN worse and is not conducive to
signal modulation recognition.

The learning rule of DNN is a random gradient descent
algorithm, which has higher processing speed and stability
when input complexity is lower than batch algorithm. The
learning method is a BP algorithm driven by a cross-entropy
cost function. In this paper, considering high performance
and simplicity, we use the cross-entropy cost function in
the training process and the mean square error (MSE) cost
function in the subsequent performance evaluation of the
convergence curve of each modulation signal. The activation
function of the hidden layer is the Sigmoid function, and the
activation function of the output layer is the Softmax function.
In addition, in [23], it selects 200 samples of each modulation
signal, then calculates its adaptive wavelet entropy vector and
obtains a better convergence effect through DNN training.
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FIGURE 4. The model performance in the absence of noise.

Therefore, in the training optimization process of this paper,
the training set is 200 calculated WACE vectors Eapprox
of randomly generated MSK, QPSK, OQPSK, BPSK, and
16QAM modulated signals, and the test set is 100 calculated
WACE vectors Eapprox of randomly generated MSK, QPSK,
OQPSK, BPSK, and 16QAM modulated signals.

In [24], a clustering algorithm is used to extract the char-
acteristic parameters of the modulated signal, and then a dual
hidden layer DNN is used to identify and classify the modu-
lated signal. However, this method has a higher complexity
and a lower recognition rate under low SNR. In contrast,
using the WACE vector as the input of the DNN can reduce
the number of layers. Especially, when the SNR of the input
signal is low, it can reduce the training complexity of theDNN
effectively and ensure a certain correct recognition rate.

V. SIMULATION RESULTS AND ANALYSIS
In this section, five modulation signals are simulated using
the model proposed in this paper, and the modulation recog-
nition situations under different SNR are compared. Then,
the influence of different exponential weight vector γapprox
on the recognition is analyzed. Finally, the superiority of the
model under low SNR is verified and compared with other
paper schemes. Herein, we mainly analyze and compare the
performance of WACE and two traditional wavelet entropy
when the intelligent recognition network is not used, and
the performance of the proposed WACE method and clus-
tering method, high-order cumulant method, cyclic spectrum
method for feature extraction. Furthermore, the above fea-
tures combined with DNN for modulation pattern recognition
are also taken into account.

A. IDEAL SITUATION IN THE ABSENCE OF NOISE
In the simulation experiments, as described above, the five
modulation signal patterns in this paper are MSK, QPSK,
16QAM, OQPSK and BPSK. Oversampling each modulated
signal produced by the same parameters, each modulated

signal has 500 sampling points, and the carrier frequency of
the modulated signal varies according to the actual situation.
Under ideal noise-free conditions, themodulation recognition
of the five signals is shown in Fig. 4(a) and Fig. 4(b).

Fig. 4(a) shows the recognition performance in an ideal
environment without noise, and the recognition rate of
16QAM, MSK, OQPSK and QPSK signals increases grad-
ually from 0 to nearly complete recognition with the increase
of training epochs of DNN. Similarly, Fig. 4(b) shows the
change of recognition rate of BPSK signal with training
epochs in an ideal environment without noise. Among the five
modulation signal patterns in this paper, the vector feature
of WACE of BPSK signal is the most obvious compared
with the other four modulation signal patterns. Thus, after
several training epochs of DNN, the gap between the actual
output and the true correct value is very small. In Fig. 5,
when the number of training is small, the value of BPSK
signal convergence curve is very small, which is similar to
the final convergence state of other four modulation signals.
Therefore, the recognition rate of BPSK signal is at a high
level at the beginning, gradually tends to be stable with the
increase of training epochs, and the correct recognition rate
of test set is higher. In addition, in the recognition process, the
training epochs required for the five signal recognition rates
to reach the stationary state are different, and they increase in
the order of 16QAM, MSK, OQPSK and QPSK. During the
training process, five kinds of modulation signals are mixed
training. For the test set, the weight of the DNN is updated
every round, and then when the recognition is performed,
each modulation signal will have a big difference in the
recognition rate due to different convergence speeds. When
the number of training is more than 40 epochs, the correct
recognition of five kinds of modulation signals can almost be
achieved.

Fig. 5 is a graph showing the variation of the MSE
of the five modulation signals with the number of train-
ing epochs in a noise-free environment, indicating the
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FIGURE 5. The convergence curves of five modulation signals in the
absence of noise.

convergence performance of the DNN model during
the training process. It can be seen from the Fig. 5
that the MSE of 16QAM drops rapidly after several
rounds of training, so as to obtain better convergence
performance, followed by MSK, when the number of train-
ing epochs is 10-20, the MSE decreases significantly. The
decreasing trend of the MSE of QPSK and OQPSK is
basically the same. When the number of training epochs is
20-30, the convergence speed of OQPSK is slightly faster
than that of QPSK. In addition, the rapid decrease in the
MSE of the training set corresponds to the rapid increase
in the recognition rate of each modulation signal in the test
set. In Fig. 4(a), in the recognition process, the number of
training required for each signal to reach the convergence
state increases in the order of 16QAM, MSK, OQPSK and
QPSK, and the MSE decreases rapidly in the interval of the
corresponding training epochs.

In the test set identification process, in order to more
clearly see the identification of the WACE vector, the two
relatively similar signals, QPSK and OQPSK, are compared.
In Fig. 6, with the increase of training epochs, the prob-
ability of QPSK signal being mistaken as OQPSK signal
increases gradually, and the false recognition rate reaches
the maximum between 15-20 training epochs. Then, with the
continuous increase of training epochs, QPSK can hardly be
mistaken as OQPSK signal when the training epochs reach
more than 35. Consequently, this also shows the effectiveness
of the proposed method for QPSK and OQPSK modulation
recognition.

B. ACTUAL SITUATION WITH NOISE
In order to explore the recognition of the above five modu-
lation signals by the WACE vector in a noisy environment,
MSK and QPSK are selected to consider their modulation
recognition performance under low SNR, and the added
noise is additive white Gaussian noise (AWGN). The SNR
selected in the simulation are 1dB, 2dB, 5dB and 10dB.
Fig. 7 shows the recognition rates of the test sets of MSK
and QPSK at a given SNR. It can be seen from the Fig. 7
that as the SNR decreases, the training epochs required for

FIGURE 6. The false recognition rate of QPSK misjudged as OQPSK.

the MSK and QPSK to reach the convergence state increases
significantly.

In addition, WACE has a strong ability to extract key fea-
tures of the noise-added modulation signal, and the influence
of noise can be mostly removed by increasing the number of
training. When the SNR is 1 dB, the MSK and QPSK can still
be identified accurately, which is determined by the denoising
characteristics of the WACE vector. At the same time, this
also shows that the method proposed in this paper can achieve
modulation recognition under low SNR by slightly increasing
the training epochs of the DNN at a small cost.

Fig. 8 shows that theMSE ofMSK in the final convergence
state increases with the decrease of SNR. However, this does
not affect the convergence state of the signal at low SNR.
In 1dB environment, the MSE can still reach about 10−7, that
is, the modulation recognition under low SNR can be realized
by using WACE combined with DNN. In addition, as shown
in Fig. 4(a) and Fig. 7, the recognition rate of MSK increases
rapidly in the interval of 10-20 training epochs. Correspond-
ingly, in Fig. 8, it can be seen that the MSE decreases with
the increase of SNR under any same training epochs between
10-20. For other modulation signals, 16QAM, OQPSK and
BPSK have similar rules. To sum up, the results show that
the proposed model is effective for multi signals modulation
recognition under low SNR.

C. ANALYSIS OF INDEX WEIGHT VECTOR SELECTION
At the end of Section III-C , the reason why this paper
chooses 1.5 times unit column vector γapprox is explained.
In this section, we will elaborate on the influence of the
γapprox on the modulation recognition from the perspective
of simulation analysis. Taking the OQPSK as an example,
we will analyze the influence of different γapprox on OQPSK
modulation recognition in an ideal noise-free environment
and a 1dB noise environment.

Fig. 9(a) shows the modulation recognition of the OQPSK
when the exponential weight vector γapprox is α times the
unit column vector in a noise-free ideal environment, where
α is 1.0, 1.5, 2.0, 2.5, and 3.0, respectively. The two cases
of A and B in the Fig. 9 are γapprox= [1, 2, 3, 4, 5, 6]T and
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FIGURE 7. The recognition performance of MSK and QPSK recognition under different SNR.

FIGURE 8. The convergence curves of MSK under different SNR.

γapprox= [6, 5, 4, 3, 2, 1]T. It can be seen from the figure that
as α increases, the training epochs required for modulation
signal recognition to reach a steady state gradually decreases,
but the speed of decrease becomes slower and slower. This
is because in the ideal environment without noise, with the
increase of α, the WACE features of each scale of the modu-
lation signal are exponentially amplified, the discrimination
between the modulated signals becomes larger, and the train-
ing epochs required for recognition are reduced. But when the
exponential weight is increased to a certain extent, the reduc-
tion of training epochs is not obvious. In case A, the weight
of large-scale signal is large, and the weight of small-scale
is small. Some key information in large-scale original signal
is lost and the amplification degree is large, resulting in the
signal recognition speed slowing down obviously. On the
contrary, in case B, the large-scale weight is small, and the
small-scale weight is large. In the ideal environment without
noise, the original signal features are maximized, and the
training epochs required for recognition are the least.

Fig. 9(b) shows the recognition of OQPSK in a noise
environment with a SNR of 1dB. It can be seen that with
the increase of α, part of the original noise is exponentially

amplified, and the degree of recognition fluctuation gradually
increases. Until α = 3.0, the recognition of OQPSK deteri-
orates rapidly. Similarly, in case A, some key information in
large scale is lost, and the recognition rate increases slowly.
In case B, the original signal noise is amplified too much, and
the modulation recognition of each signal is invalid. To sum
up, α = 1.5 and α = 2.0 can achieve a higher recognition
rate at low SNR. Considering the recognition stability and
computational complexity, this paper chooses α = 1.5 to
realize the modulation pattern recognition of multi signals.

D. COMPARISON OF WACE AND TRADITIONAL WAVELET
ENTROPY
In this part, we will compare the modulation recognition
effects of the three wavelet entropies given in the paper
without using the intelligent recognition network model. The
modulation signal patterns include the existing 5 patterns
and the newly-added binary frequency shift keying (2FSK),
and the parameters of the modulation signal are the same
as above. In the simulation, 500 repeated experiments were
performed to analyze the recognition rate of three kinds of
wavelet entropy, and the classification and recognition were
carried out according to the range of the characteristic param-
eters corresponding to different modulation signals. Take
a = [8, 16, 32, 16, 8, 4] and the recognition rate is shown
in Fig. 10.

The recognition of low SNR is mainly considered.
(1) Compared with the adaptive wavelet entropy method,
the WACE method increases the recognition rate by about
15% on average under low SNR, and when the SNR is
higher than 2dB, the rate of correct recognition of all six
modulated signals is above 90%. Besides, when SNR is 4dB,
the recognition rate reaches 95%, and when it is higher than
5dB, the recognition rate is stable above 98%. (2) Compared
with the wavelet energy entropy method, except for the SNR
near -5dB, the correct recognition rate of the WACE method
under the other SNR is much higher than that of the wavelet
energy entropy method. Therefore, the simulation shows that
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FIGURE 9. The recognition performance of OQPSK under different situation.

TABLE 1. Comparison with other paper schemes.

FIGURE 10. The comparison of recognition performance of three kinds of
wavelet entropy under different SNR.

compared with the existing method, the WACE method has
better effect on the feature extraction of the modulated sig-
nal, stronger anti-interference ability, and the computational
complexity is almost the same as that of the original method.
But at the same time, the recognition rate of WACE is not
high enough, and the weighting process is still complicated,
so this paper introduces intelligent recognition model to solve
this problem.

E. PERFORMANCE COMPARISON WITH OTHER
ALGORITHMS
The algorithm proposed in this paper can realize the
modulation pattern recognition of many common signals,

especially for QPSK and OQPSK, it has good recognition
effect. OQPSK is not included in the modulation recogni-
tion algorithm of [24]-[26], while 16QAM is not considered
in [27]. Besides, most of the modulation recognition algo-
rithms proposed in other papers are intra-class recognition of
a certain kind of modulated signals, such as MQAM, MFSK,
etc. [28]-[30]. Tab. 1 shows the comparison of recognition
rate and related parameters of DNN between this paper and
other related papers under low SNR.

Each paper in Tab. 1 uses different feature parameter
extraction methods, and the number of feature parameters
obtained is different, but they all use DNN as classifier to
recognizemodulation patterns of multi signals: (1) Compared
with [24], the proposed algorithm reduces the number of lay-
ers of DNN to three, which effectively reduces the complexity
of the algorithm, and has better performance at low SNR.
(2) Compared with [31], this paper significantly reduces the
number of signal characteristic parameters and the algorithm
complexity when the performance is similar to [31] at low
SNR. (3) Compared with [32], the recognition performance
of this paper is better at low SNR when the complexity of
DNN is similar. To sum up, it shows that the proposedmethod
can effectively realize modulation pattern recognition at low
SNR and reduce the computational complexity, which ismore
applicable in engineering.

VI. CONCLUSION
Based on the traditional wavelet energy entropy and the
adaptive wavelet entropy, a new improved wavelet entropy,
the WACE, is proposed. It can extract the relevant features
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from the modulated signal better and has better anti-noise
performance. Then, in order to reduce the computational
complexity of DNN and improve the output performance
of modulation recognition at low SNR, the system model
of modulation recognition is established and five typical
modulation patterns of communication signals are selected.
Finally, the proposed method is simulated under the ideal
environment without noise and different SNR, and the simu-
lation results show that the intelligent modulation recognition
method based onWACE and DNN not only reduces the com-
plexity of DNN, but also improves its modulation recognition
performance at low SNR. In the complex electromagnetic
environment with low SNR, a higher recognition rate can be
achieved by slightly increasing the training epochs of DNN,
which proves the effectiveness of the modulation recognition
method.
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