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ABSTRACT Microgrid energy management is a typical discrete non-linear optimization problem that
is usually solved by off-line optimization, day-ahead demand-side management, and long-term dynamic
optimization scheduling strategy. However, due to the intermittent distributed generation and time-varying
load in microgrids, more attention should be paid to the real-time optimal scheduling of the overall operation
of energy to ensure the dynamic balance of supply and demand in microgrids. Combining demand-side
response with real-time power price, this paper applies the strategy to microgrid energy management and
proposes a distributed energy real-time management model of microgrid based on demand-side response
function. A deep adaptive dynamic programming optimization algorithm is also proposed for the model.
The real-time interaction between microgrid operators and users is realized. The closed-loop feedback
control structure of the proposed model ensures the real-time optimization control strategy. Therefore,
the proposed energy management model and control strategy can realize intra-day dispatching in microgrids.
The real-time performance and effectiveness of the proposed energy management model and control strategy
are also verified by numerical simulation. Finally, since the proposed model is approximate, whether the
solution obtained by the algorithm is the optimal or satisfactory solution of the optimization strategy set
is a lack of theoretical support. Therefore, according to the approximation theorem of bounded rationality,
the application conditions of the model in power markets are proposed. It is proved that the proposed model
meets the application conditions, and is a specific application of bounded rationality approaching complete
rationality in the power market. It is also proved that the best solution is involved in the satisfactory solution
set of the model. Thus, the control strategy is a rational and feasible optimal management control strategy,
which provides a theoretical basis for its further implementation.

INDEX TERMS Microgrid, real-time power price, demand-side response, deep adaptive dynamic program-
ming optimization algorithm, energy management, bounded rationality.

I. INTRODUCTION
Power system plays a major role in fossil energy consumption
and is an important source of air pollution. To lower air
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pollution caused by thermal power generation, the power
system is investing in distributed clean energy such as solar
and wind power so that use of traditional fossil energy can
be reduced effectively [1]. Establishing a regional micro-
grid is the best way to manage distributed energy. The
microgrid can facilitate the local consumption of generated
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power, effectively save losses due to long-distance trans-
mission and reduce thermal power generation, contributing
to lowering carbon emissions. Energy management strate-
gies (EMS) for microgrids aim to optimize the opera-
tional performance of microgrids. For example, under the
premise of stable operation and making full use of renew-
able energy, long-term operational costs minimum can be
realized by optimizing dispatch of electric energy in the
grid.

Since microgrid consists of various types of distributed
power supplies and energy storage systems, generally,
the typical discrete nonlinear optimization method is used
to establish the energy management model [2]–[6]. As an
optimization problem, the aim of energy managing for the
microgrid is to realize local energy consumption, the bal-
ance between supply and demand, stable operation and opti-
mal dispatch through establishing objective functions and
constraints. For energy managing of microgrid, the method
of energy managing for distributions networks are usu-
ally employed. Based on predicting the future supply
and demand in the microgrid, the balance between sup-
ply and demand in the microgrid can be reached through
the day-ahead EMS [7]–[10]. Demand-side management
or combining it with dynamic prices is normally used
to obtain the energy management and control strategies
(EMCS) for microgrids, for which the offline or static opti-
mization algorithms adopted mainly include mixed-integer
quadratic optimization, sequence planning or sequential
quadratic programming. Some research, based on dynamic
prices under demand-side management, treated the dispatch
optimizing for microgrid as a hybrid integer quadratic pro-
gramming problem and used costs of generation and dynamic
pricing for achieving optimized dispatch in microgrid [11].
In [12], energy managing for the microgrid is based on the
generation-side and demand-side management and is ful-
filled through representing the energy managing and dis-
patching problem as a linear hybrid integer programming
case with multi-constraints and multi-objectives. In [13],
through sequential optimization of solutions obtained by
discrete algorithms, real-time EMS under a certain time
scale is achieved for the microgrid. Under the background
of the potential demand of day-ahead dispatching and
combining demand-side management with real-time power
price (RTPP), RTPP is adopted to optimize the power demand
of users, to achieve peak shaving and valley filling, supply-
demand balance, and stable operation of the power grid. This
is a hot research direction of energy optimization manage-
ment strategy at present [14]–[17].

Predicting supply and demand in advance is required for
day-ahead dispatching. Changing supply and demand caused
by uncertainties of power generation and distribution (PGD)
in microgrids can make day-ahead dispatching difficult.
Therefore, dynamic EMS has been proposed, using time
dividing [18], [19] or on-line optimization to solve dynamic
dispatching problems caused by changing supply and demand
in microgrid [20]–[23]. In [24], energy storage systems are

managed using approximate dynamic programming, enabling
energy managing for an isolated microgrid. To reduce the cal-
culation time required by the optimization, the literature [25]
uses dynamic programming to perform energy management
for the microgrid. Improved results are obtained but the opti-
mization is still not real-time. In [26], energy managing for
the microgrid is achieved by creating a rule-based aggregate
energy managing model. In [27], an on-line energy manag-
ing system is proposed through switching between charging
and discharging modes of batteries to reach the optimized
operation of the microgrid. The above methods can solve
the optimization problem of managing long-term costs for
microgrid influenced by renewable energy resources subject
to environmental changes, but because of the long calcula-
tion time and optimization objectives not adjusted, apply-
ing these methods to practical control strategies can have
limitations.

The abovementioned research has made significant contri-
butions to energy management for the microgrid. However,
for a microgrid with intermittent distributed generation (DG)
resources and changing loads, day-ahead dispatching or non-
real-time dispatching strategies can influence the balance
between supply and demand and the backup plan of supplying
power if there is a significant difference between the predic-
tion and the actual amount of supply and demand. Therefore,
to reach a real-time balance between supply and demand,
peak shaving and valley filling, and long-term stable eco-
nomic operating, it is essential to implement real-time EMCS
for the microgrid. Thus, this paper proposed a microgrid
energymanagement and control model based on demand-side
response (DSR) under RTPP, and also proposed an adaptive
dynamic programming optimization algorithm based on deep
learning, which realizes intra-day scheduling and dynamic
supply-demand balance of microgrid energy. The potential of
a microgrid for optimal dispatch between distributed energy
and load is fully exploited. Since the proposed control model
is approximate, to ensure that its control strategy is optimal,
the application conditions of the strategy in the power market
are proposed according to the approximation theorem of
bounded rationality, which proves that the control strategy
is rational and feasible optimal energy management control
strategy.

The paper is organized as follows. In Section II, the dis-
tributed generation cost model and RTPP model are given,
and the microgrid cost objective optimization function
is proposed; in Section III, the RTPP microgrid energy
management and control strategy is based on the deep
adaptive dynamic programming optimization algorithm is
proposed. In Section IV, the effectiveness and feasibility of
the proposed model and algorithm are verified by numer-
ical simulation, and the analysis conclusions are given.
In Section V, the application conditions of bounded ratio-
nality in the power market are proposed, which proves
that the proposed control model meets the application
requirements. Summaries and conclusions are given in
Section VI.
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II. MICROGRID SYSTEM MODEL
The power supply in a microgrid is a variety of distributed
power sources, whose power supply cost is different from
each other. Microgrid operators usually make the lowest cost
of power generation and supply utilizing optimal scheduling,
on the premise of ensuring the quality of power supply and
making full use of renewable energy. Therefore, the cost
model of DG in a microgrid is established firstly, then the
cost model of the power storage device and the RTPP model
are given. Finally, the optimal scheduling cost model of the
microgrid is proposed.

A. INTRODUCTION TO THE MICROGRID SYSTEM
There are various kinds of DG in the microgrid, such as wind,
solar, gas, hydro, etc. The DG resources are represented as
R = {r1, r2, r3 . . . rG}. Since solar power generation andwind
power generation are intermittent, it is usually necessary to
install energy storage devices in the microgrid to store and
convert this part of electric energy, and then supply it to the
users in the grid to ensure the continuous and stable power
supply, which can be expressed as D = {d1, d2, d3 . . . dS}.
The users in a microgrid can be divided into two types: one
is the non-flexible load whose load demand must meet, and
the other is the flexible load that the microgrid operators can
cut / parallel power supply flexibly according to the optimal
scheduling of the system. In the microgrid, operators dispatch
the distributed power supply, power storage device and flex-
ible load in the microgrid operation and energy management
center (MGOEMC) through the two-way traffic network in
real-time. The framework is shown in FIGURE 1.

B. MODEL OF DG
In the microgrid, distributed power generation is mainly
divided into two categories: one is intermittent power supply
represented by wind power generation and solar power gener-
ation, whose power generation will change intermittently due
to the impact of climate. Therefore, the power generation of
this kind of power source can’t be controlled and dispatched
artificially; the other kind is the distributed power source
which can be controlled and dispatched by a human, which is
mainly composed of hydroelectric power generation and gas
power generation.

1) INTERMITTENT DISTRIBUTED ENERGY
For the intermittent distributed power generation mainly
composed of wind power generation and solar power gen-
eration, since the power generation energy comes from the
natural environment and does not need the human energy
conversion before power generation, it can be approximately
considered that they only have the operation and maintenance
cost and the power generation cost can be approximately zero.
To provide a stable power supply for users in the microgrid,
it is usually necessary to store the power generated by inter-
mittent power supplies into energy storage devices, and then
the energy storage devices will supply stable power to users.

FIGURE 1. Structure of the microgrid system.

2) MODEL OF TRADITIONAL ENERGY
The schedulable power supplies in the microgrid are com-
posed of hydroelectric power and gas power, which can be
adjusted according to the change of power demand. The
hydropower is expressed as h ∈ Rh whose operating con-
straints are: ∀t

0 ≤ ph(t) ≤ phmax (1)

|ph(t)− ph(t − 1)| ≤ phmax (2)

where phmax is the maximum output of hydropower. The
generation cost model at the time t is [28]:

Ch(ph(t)) = ahph(t)2 + βhph(t)+ κh (3)

where ah, βh, κh are constants. For a gas distributed power
supply, its generating unit can be expressed as b ∈ Rb, and its
constraints and generation cost model at the time t are: ∀t

0 ≤ pb(t) ≤ pbmax (4)

|pb(t)− pb(t − 1)| ≤ pbmax (5)

Cb(pb(t)) = abpb(t) (6)

where pbmax(t) is the maximum output of gas power and ab is
a constant.

C. MODEL OF ENERGY STORAGE SYSTEM
In this paper, the basic unit of the power storage device of the
microgrid is the battery, and all the storage units constitute the
battery energy storage system (BESS). The microgrid stores
and converts the generation of intermittent distributed power
through BESS. For a storage battery in a microgrid d ∈ D,
if the intermittent power supply charges the BESS at the time
t , the active power pd (t) is positive; on the contrary, if the
BESS is discharged, the active power pd (t) is negative. At this
time, the intermittent distributed power supply and battery
supply power to the microgrid load together. Ed (t) is the
capacity of the storage battery at time t , and its operational
constraints are as follows: ∀t

pf max ≤ pd (t) ≤ pcmax (7)

Ed (t + 1) = Ed (t)+ pd (t)1t (8)
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Ed min ≤ Ed (t) ≤ Ed max (9)

where −pf max is the maximum allowable discharging rate,
pcmax is the maximum allowable charging rate, Ed min is the
minimum capacity that the battery needs to retain, and Ed max
is the maximum capacity that the battery can store.

Since the life of a battery will be affected by fast charging
and releasing, this behavior of the battery must be controlled.
This function is realized by establishing a cost function
model, that is, for a given storage battery d at the time t ,
we have: [29]:

Cd (pd (t)) = adpd (t)2 + κd (10)

where ad is a fast charging and discharging penalty factor
and κd is a basic cost factor. Both are positive constants. The
cost function Cd (pd (t)) is convex and is non-increasing in
[Pd max(t), 0] and non-decreasing in [0,Pcmax(t)]. Moreover,
the capacity of the BESS is set to meet fully the storing and
scheduling requirements of intermittent DG resources.

D. MODEL OF RTPP
The RTPP is an important measure to adjust the power
demand of the flexible loads when the DG in the microgrid
cannot accommodate the flexible loads largely. The relation-
ship between the RTPP and the DSR based power prices in
the microgrid is:

ρr (t) = e
Kpm(t)

Plmax(t)−Plmin(t) · ρl (11)

where plmin(t) is the non-flexible loads that must be sup-
plied, and plmax(t) is the maximum power demand in the
microgrid. ρr (t) is the RTPP for the flexible loads when
the DG resources in the microgrid are insufficient. pm(t)
is the amount of thermal power that the microgrid opera-
tor buys from distribution networks. K is a constant ratio.
plmax(t)− plmin(t) is the power demand of flexible loads. ρl
is the power price of the distribution networks. Equation (11)
is a function of the DSR based real-time power prices in the
microgrid, where it can be seen that when the power demand
of the flexible loads is much higher than the power output
of the DG in the microgrid, the RTPP will increase quickly
with the increasing power demand, thereby achieving the fast
and real-time energy management for the microgrid. Because
power services are public products, power prices cannot be
completely determined by the free market. Moreover, when
the price of a product increases to higher than 3 – 5 times
its normal prices, there will be several consumers who will
rather not buy or look for alternatives to the product, which is
also a kind of consumer rationality. Therefore, the following
constraints of the RTPP are introduced to account for the
principle:

0 < ρr (t) ≤ ξ · ρl (12)

where ζ is the rational factor. On the one hand, the setting of
the rational factor reflects that, as a social resource, the price
of electric power consumption can’t be completely liberalized
and has certain policy constraints. On the other hand, it can

also well reflect the commodity price consumption psychol-
ogy of flexible load users. For determining the amount of
power to buy pm(t), given that the distributed energy is fully
used, two relevant conditions are to be met:
(1). When plmin ≥ pd (t) + ph(t) + pb(t), i.e., the DG

cannot supply enough power to the non-flexible loads in the
microgrid, the amount of power to buy from the distribution
networks can be divided into two parts. One part is for sup-
plying the non-flexible loads and the RTPP is not applied for
this part, which means supplying at cost. The other part is,
on top of the amount of power bought for the non-flexible
loads, the extra amount of power bought for supplying the
flexible loads, and this extra amount of power is charged with
the RTPP. Therefore, the range pm(t) is

pm ∈ [0, plmax(t)− plmin(t)] (13)

(2). When plmin ≤ pd (t) + ph(t) + pb(t), i.e., the DG can
not only supply the non-flexible loads in the microgrid but
also get some leftover power to supply the flexible loads, but
the leftover power is not enough for the flexible loads in the
microgrid. To supply the flexible loads not covered by the
DG, some power needs to be bought from the distribution
networks and this part of power will be charged with the
RTPP. Therefore, the range of the amount of power to buy
pm(t) is:

pm ∈ [0, plmax(t)− (pd (t)+ ph(t)+ pb(t))] (14)

E. OBJECTIVE OPTIMIZATION FUNCTION
The goal of microgrid operation is to achieve the lowest
operating cost in the whole long-term power supply process,
which includes the cost function and profit function of the
following parts:

(1). Costs of DG and energy storage:

F1(ph(t), pb(t), pd (t)) = (
∑
h∈Gh

Ch(ph(t))

+

∑
b∈Gb

Cb(pb(t))+
∑
b∈D

Cd (pd (t)))

(15)

The microgrid operator is supposed to lower the cost of PGD
as much as possible, i.e.,

minF1(ph(t), pb(t), pd (t)) (16)

where the constraints are (1), (2), (4), (5), (7)-(9).
(2). Costs of buying power from the distribution networks

F2(pm(t)) = ρl · pm(t) (17)

To reduce the cost of PGD, the amount of power to buy is the
smaller the better, i.e.,

minF2(pm(t)) (18)

where the constraints are (13)-(14).
(3). Profits of RTPP

F3(pm(t)) = (ρr (pm(t))− ρl) · pm(t) (19)
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The RTPP in the microgrid is higher than the pricing of
the distribution networks. Therefore, the higher the RTPP,
themore the profits gained by themicrogrid operator, and fur-
thermore buying more power from the distributions networks
means more profits, i.e.,

maxF3(pm(t)) (20)

where the constraint is (12).
According to the cost function and the profit function

above, to minimize the overall generation and supply cost of
microgrid, its objective function can be written as

min(F1(ph(t), pb(t), pd (t)),F2(pm(t)),F3(Pm(t))) (21)

For a convenient solution, weighting is applied to transform
the multi-objective function above to a single objective func-
tion. The obtained objective optimization function for the
minimum cost of PGD in the microgrid is:

min(φh
∑
h∈Gh

Ch(ph(t))+φb
∑
b∈Gb

Cb(pb(t))+φd
∑
d∈D

Cd (pd (t))

+φm(ρr (t)− ρl) · pm(t)) (22)

where the following constraints are satisfied:

st



0 ≤ ph(t) ≤ phmax, |ph(t)− ph(t − 1)| ≤ phmax

0 ≤ pb(t) ≤ pbmax, |pb(t)− pb(t − 1)| ≤ pbmax

pf max ≤ pd (t) ≤ pcmax, Ed min ≤ Ed (t) ≤ Ed max

Ed (t + 1) = Ed (t)+ pd (t)1t
0 < ρr (t) ≤ ξ · ρl
pm(t) ∈ [0, plmax(t)− plmin(t)] or
pm(t) ∈ [0, plmax(t)− (pd (t)+ ph(t)+ pb(t))]

(23)

The establishment of the objective function can realize the
real-time interaction between the microgrid operators and the
users through the price response function on the demand side,
which enables the flexible load users to make reasonable
power consumption plans or strategies according to their
own needs. When the capacity of the distributed generation
in the microgrid fails to meet the total power consumption,
the control strategy can use RTPP to keep the supply-demand
balance in the microgrid. This can not only effectively reduce
the thermal power purchased by the microgrid from the distri-
bution network, cutting power generation and operation cost
of the microgrid, but alsomake themicrogrid operate in a safe
and stable environment.

Besides, using the rational consumption behavior of most
of the flexible loads, the RTPP-based energy management
and control strategy will not completely restrain the power
demand of the flexible loads in the network. Some flexible
loads which are indeed in a need of power and are not
sensitive to the power prices can continue to use power. The
amount of power these flexible loads can use is not limited,
but the costs will be increased significantly.

However, concerning the total amount of consumed power,
the share of thermal power will be reduced effectively, lower-
ing the demand for thermal power and the times the microgrid

connects to the power grid while exploiting as many DG
resources as possible. To ensure the real-time performance
and stability of the microgrid RTPP energy management
control strategy, a deep adaptive dynamic programming opti-
mization algorithm which combines the optimization algo-
rithm with the control algorithm is proposed by using the
method of system control theory, and the algorithm is applied
to solve the multi-objective optimization problem of equa-
tion (22), to obtain optimal control strategy for real-time
energy management of dual variable microgrid based on the
RTPP and the flexible load.

III. DEEP ADAPTIVE DYNAMIC PROGRAMMING
OPTIMIZATION ALGORITHM BASED EMCS
A. PRINCIPLES OF DYNAMIC PROGRAMMING AND
ADAPTIVE DYNAMIC PROGRAMMING
Dynamic systems are ubiquitous in nature. An important
branch of the dynamic theory is optimal control. Optimal
control has been widely applied to fields such as system
engineering, economy, management, decision making, etc.
In 1957, Bellman proposed an effective tool to solve optimal
control problems: dynamic programming [30]. The basic idea
of thismethod is Bellman’s principle of optimality which says
that if there is a nonlinear system whose dynamic equation is:

x(k + 1) = F(x(k), u(k), k) (24)

where x(k) is the state of the system and the initial state
x(k) = xk is given. u(k) is the control input of the system
and F is the utility function of the system. The function of
the system performance index can be defined as:

J (x(i), i) =
∞∑
k=1

λk−iF(x(k), u(k), k) (25)

The target of control is to solve the sequence of admission
control (or decision making) u(k), k = 1, 2, 3, . . ., getting
the lowest cost function (25). According to Bellman’s princi-
ple, for time k the lowest cost of any state includes two parts.
One is the lowest cost at time k , and the other is a sum of the
lowest costs from time k + 1 to infinite time, i.e.:

J∗(x(k)) = min
u(k)
{F(x(k), u(k), k)+ λJ∗(x(k + 1))} (26)

At this point, the corresponding control strategy u(k) at time
k can also be optimized, i.e.:

u∗(k) = argmin
u(k)
{F(x(k), u(k), k)+ λJ∗(x(k + 1))} (27)

Therefore, the dynamic programming method is a powerful
tool for solving optimal control problems [31]. However, it is
difficult to apply dynamic programming to practical applica-
tions directly. The reason is that optimal control needs towork
on a system following time evolution and needs to give the
optimal control index of the control sequence. Nevertheless,
the function of the overall performance index is completely
unknown before the sequence is completed, i.e., the problem
of ‘‘Curse of dimensionality’’. Webers in 1977 first proposed
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FIGURE 2. Structure of adaptive dynamic programming.

adaptive dynamic programming (ADP) to solve the problem.
The ADPmethod is essentially using the structure of function
approximation to fit cost functions and control strategies of
dynamic programming, deriving solutions for optimal control
of nonlinear systems [32]. A typical ADP structure is shown
in FIGURE 2.

In FIGURE 2, the functions of the performance index can
be expressed as:

J (x (k)) = l (x (k) , u (x (k)))+ J (x (k + 1)) (28)

where u (x (k)) is the variable of feedback control and the
functions of the performance index J (x (k)) and J (x (k + 1))
are the output of the critic network. If the weight of the critic
network is w, the right side of (28) can be written as:

d (x (k) ,w) = l (x (k) , u (x (k)))+ J (x (k + 1) ,w) (29)

The left side of (28) can be written as J (x (k) ,w).
By changing the weight w of the critic network the mean
square error function can be minimized to obtain the function
of the optimal performance index:

w∗ = argmin
w

{
|J (x (k) ,w)− d (x (k) ,w)|2

}
(30)

According to the principle of optimality, optimal control
is required to meet the necessary condition of the first-order
differential:
∂J∗ (x (k))
∂u (k)

=
∂l (x (k) , u (k))

∂u (k)
+
∂J∗ (x (k + 1))

∂u (k)

=
∂l (x (k) , u (k))

∂u (k)
+
∂J∗ (x (k + 1))
∂u (k + 1)

∂f (x (k) , u (k))
∂u (k)

(31)

Therefore, optimal control is derived as:

u∗ = argmin
u


∣∣∣∣∣∣∣∣
∂J (x (k))
∂u (k)

−
∂l (x (k) , u (k))

∂u (k)
−

∂J∗ (x (k + 1))
∂x (k + 1)

∂f (x (k) , u (k))
∂u (k)

∣∣∣∣∣∣∣∣
 (32)

In recent years, the theory of ADP has been evolving
continuously. Online ADP methods have been proposed to
solve optimal control problems of nonlinear analog sys-
tems, and optimal stabilization and optimal tracking prob-
lems of nonlinear discrete systems [33], [34]. Therefore,

FIGURE 3. Model framework of deep adaptive dynamic programming
optimization algorithm.

ADP has become an extremely important method for solving
both scientific and engineering problems of modern complex
systems.

B. DEEP ADAPTIVE DYNAMIC PROGRAMMING
OPTIMIZATION ALGORITHM BASED REAL-TIME EMCS
Based on the basic framework of adaptive dynamic program-
ming, this paper proposes a deep adaptive dynamic program-
ming optimization algorithm to solve the microgrid energy
management problem under the RTPP by combining the deep
learning neural network with the ADP simplified framework.
Due to the real-time optimal control characteristics of the
model of the algorithm, its basic structure only includes
the critic network and execution network, which can reduce
the dependence of the controller on the system model. At the
same time, since the algorithm architecture has the character-
istics of closed-loop feedback control system in the control
theory, it has the function of real-time correction and ensures
the real-time and accuracy of the control strategy. Its basic
structure is shown in FIGURE 3.

In the framework of the deep adaptive dynamic program-
ming optimization algorithm, the inputs of the execution
network are: ¬ X (k) which is the real-time power generated
by each distributed power source in the microgrid measured
by the power sensor, i.e., ph(t); pb(t); pd (t), ­ the total
load demand, and ® non-flexible demand in the grid at the
same time. The output u(k) of the execution network is the
control strategy of the system, i.e., the RTPP and the corre-
sponding purchase amount which are required by the micro-
grid operators trying to meet the objective function of the
optimal operation. The objective of the RTPP based EMCS is
scheduling power services in themicrogrid through the RTPP.
Using the proposed strategy, the microgrid operator can keep
the balance between supply and demand by adjusting the
prices.

For the critic network, its input consists of the state of the
systemic controlled objects and the output of the execution
network, i.e., the control strategy. Its output is a cost function
for adjusting the control strategy of the executive network.
The objective function to be studied in this paper is to make
the operation cost of microgrid generation and power supply
lowest under the RTPP. To make the objective function have

227332 VOLUME 8, 2020



N. Wu et al.: Application Conditions of Bounded Rationality and a Microgrid Energy Management Control Strategy Combining RTPP

FIGURE 4. Topology of deep learning multilayer neural networks.

the optimal real-time approximation value and obtain the
optimal real-time control strategy, it is necessary to control
the output of the execution network with the minimum error.
To achieve the objectives above and meet the rapidity of sys-
tem optimization, the execution network and critic network
in FIGURE 3 both use the neural network framework of
multiple hidden layers, multiple inputs and dual outputs based
on deep learning, as shown in FIGURE 4.

Since the generation capacity of DG in the microgrid
changes intermittently with the climate change, and the load
demand in the microgrid is also time-varying, the microgrid
operators need to optimize the grid energy scheduling in
real-time. To realize the multi-objective optimization of the
system under the RTPP energy management control strategy,
and based on the model structure above, the implementa-
tion process of the microgrid energy management control
optimization strategy is shown in FIGURE 5. The specific
implementation steps are as follows:

(1). Set parameters for the structure of the system, includ-
ing the relevant parameters of the executive network and the
critic network, aswell as the learning rate, the number of input
layers, the number of hidden layers, the number of output
layers and the maximum number of iterations of the neural
network;

(2). The real-time generation capacity of DG and the max-
imum demand in the network are collected by the power
sensor and supplied to the execution network. At the same
time, the parameters needed for the controlled state output
are set and the control objectives of the system are given;

(3). Initializing the execution network and critic network;
(4). According to equation (15), calculate the RTPP and

the corresponding purchased electricity, and then calculate
the objective function to see if it has reached the minimum.
If not, train the network in the next step. If it is the minimum,
keep the current value;

(5). Input the data into the execution network, train the
execution network, update its weights, and finally output
the calculated RTPP and purchase electricity, which are the
control strategies of the system;

(6). Input the collected data and the control strategy
obtained from the execution network to the critic network for
training, update its weight, and then get the corresponding
cost function;

(7). Maintain the current control strategy, and calculate the
modified objective function;

FIGURE 5. Flowchart of microgrid energy management strategy based on
deep adaptive dynamic programming optimization algorithm.

(8). Repeat steps (4) - (7) during the observation time
until the end of the optimization process, and obtain the
corresponding optimization results.

After each training of the execution network, an RTPP
ρr (t) and its corresponding amount of purchasing power
pm(t) can be obtained. If the corresponding constraints are
met and the objective function is optimized, the training of
the system will stop. If not, the execution network and critic
network will continue to be trained until the optimal RTPP
and real-time energy optimal management control strategy
corresponding to the purchased electricity are found.

IV. SIMULATION AND ANALYSIS
To analyze the effectiveness and feasibility of the proposed
control strategy, and according to the standards of the China
Southern Power Grid Co. Ltd, a standard 15-minutes sam-
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FIGURE 6. Amount of power from hydro, gas and storage equipment.

pling of the DG was implemented in a microgrid. The total
sampling time is 480 minutes, and the proposed control strat-
egy is verified by simulation. The power output of the DG in
the microgrid including wind, solar, hydro, and gas resources
is plotted against time in FIGURE 6 where the horizontal
axis is the time of data acquisition and the vertical axis is the
amount of power from the DG. The parameters in the model
of hydropower and gas power generation are: αh = 5, βh =
12, κh = 0, the cost coefficient of gas power αb = 0.2. The
rational factor of RTPP ξ = 3.5, the proportional coefficient
of the RTPP k = 2.5, the power price of distribution network
ρ = 0.4 CNY/KW.H, and the coefficients in the minimum
target function of generation and supply cost of the microgrid
is set as φh = φb = φd = φm = 1. The parameters
in the storage battery model are set as: αd = 1, κd = 0,
Ed max(t) = 1600 MW, Ed min(t) = 350 MW, original battery
capacity Ed (0) = 800 MW.

The examples in this paper were all calculated using a PC
with a CPU of 3.4 GHz, RAM of 8 GB, an operating system
of Win10, and a MATLAB release of R2018b V9.5.0.

The generation capacity of hydropower, gas power, and
intermittent distributed energy as well as the establishedmod-
els and parameters are brought into the algorithm proposed in

FIGURE 7. Training process of deep learning.

this paper. In the deep learning neural network, three hidden
layers are used, and each layer has 40 neurons to carry out
optimized iterative training for the execution network and
critic network. The training process and relevant data are
shown in FIGURE 7. It can be seen from FIGURE 7 that
the output after training closely approaches the target value.
After 45 iterations, the best approximation means square
deviation value is 5.1606×10−23, and thewhole process takes
41 seconds. It can be seen that the real-time and accuracy of
the proposed energy management control strategy can meet
the real-time scheduling requirements of the microgrid.

By running the deep adaptive dynamic programming opti-
mal control algorithm proposed in the frame of FIGURE 3,
the optimized RTPP, and the corresponding amount of power
to buy can be obtained. FIGURE 8 shows that under the
RTPP based EMCS the real-time amount of power to buy
considering the total power demand in the microgrid, and the
corresponding RTPP subject to the current price of power.
FIGURE 8 suggests that the supply and demand for power
can be balanced using the RTPP when the DG resources in
the microgrid cannot provide enough power. FIGURE 8 also
indicates that when the DG resources are insufficient, it can
take costs higher than the normal power price of the distribu-
tion networks for the flexible loads to consume more power,
which helps implement the rational adjustment of energy
management for the microgrid.

FIGURE 9 shows the cost of the minimum target function
of RTPP corresponding to the purchasing power after the
control strategy is implemented in the system.
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FIGURE 8. RTPP of the microgrid and the corresponding amount of power
to buy.

FIGURE 9. The lowest cost of PGD in the microgrid with the RTPP.

Following the RTPP based control strategy discussed in
this section and considering that the DG in the microgrid
cannot satisfy all the users’ demand, FIGURE 10(a) shows
relationships between the amount of supplied power, themax-
imum power demand and the non-flexible loads, and FIG-
URE 10(b) shows relationships between the power output of
the DG in the microgrid, the amount of power to buy and the
total power demand in themicrogrid. It can be seen from FIG-
URE 10, that the RTPP based control strategy can achieve the
balance between the power supply and demand of microgrid
through economic leverage, and can guide the flexible load
to reasonably adjust the power demand, to achieve the peak
shaving and valley filling of the microgrid.

FIGURE 10. Relationships between the amount of power and the supply
and demand in the microgrid with the RTPP.

FIGURE10 suggests that when there is a large gap between
the distributed energy and the total demand in the microgrid,
under the optimized strategy there are still some adjustments
for the balance between supply and demand in a small num-
ber of intervals. During these intervals, the users’ power
consumption is not completely limited. It is just that the
amount of power bought by the microgrid operator for the
optimal operating cost is certain. If some users indeed have
extra power demand, the microgrid operator can increase the
amount of supplied power and the increased RTPP (up to
the defined highest rational RTPP) can apply to the extra
power supplied, which can keep the balance between supply
and demand. In terms of rationality, we assume that most of
the flexible loads in the microgrid are rational or relatively
rational so when the power prices increase to 50% higher
than the normal prices, the rational flexible loads will reduce
their power demand or adjust their plans of using power.
In this case, the microgrid operator will buy some power
from the distribution networks when the DG resources in the
microgrid cannot provide enough power, and higher RTPP
will apply to these customers. Therefore, the RTPP based
EMCSwill not suppress power consumption.Moreover, FIG-
URE 8(b) shows that the RTPP is not always much higher.
Sometimes the RTPP is only slightly higher than the normal
prices and it can increase with the widening gap between the
total power demand and distributed energy in the microgrid.
FIGURE 8(b) also indicates that the RTPP fluctuates within
a reasonable range which is completely acceptable to part of
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the flexible loads. It should be noticed that it is not when
the distributed energy cannot satisfy all the loads in the
microgrid, immediately, the flexible loads will be charged a
very high RTPP, making the power demand of most flexible
loads not satisfied. Therefore, it also shows that the microgrid
energy management and control strategy based on RTPP is
more rational and feasible.

V. APPLICATIONS OF BOUNDED RATIONALITY TO THE
REAL-TIME EMCS FOR MICROGRID
Decision making in human economic behavior is usually
reflected in the process of seeking the optimum for objective
function variables. In this process, optimal function vari-
ables are approximated in a feasible region until a balance is
reached. This kind of decision making can be characterized
as using bounded rationality to approximate perfect ratio-
nality. Because solving the objective optimization function
can hardly find a solution that agrees with the defined target,
with bounded rationality approximate solutions of objective
function variables are usually obtained, which can satisfy
the decision making of the optimization target [35]. Just like
Simon’s definition of bounded rationality, he thought that
bounded rationality behavior is a kind of behavior which is
expecting reasonableness subjectively but is limited to objec-
tively [36]. The theory of bounded rationality put forward by
Simon is based on a satisfaction principle, i.e., the principle
of satisfying decision-makers. Simon thought problems are
similar and solutions are also similar. If an approximate
solution gives a decision that can satisfy decision-makers,
the decision given by the approximate solution is a good
enough solution. For the decision-making model of realis-
tic optimization, in many cases, it is difficult to obtain an
accurate optimal solution. Therefore, compromise is made by
using experimental data from optimization control to check
and correct the systematic error in solving the given model,
thereby finding a satisfactory solution for the mathematic
model of the optimization problem and moreover fitting the
approximate solution to the accurate optimal solution of the
model. Generally, if an approximate solution does not have
an appreciable influence or impact on the target of decision
making, then the results obtained based on the assumption
of perfect rationality are still reasonable and acceptable in
most cases. Therefore, according to the approximation the-
orem for optimization problems with bounded rationality, for
mathematic models of objective functions, solutions satisfy-
ing bounded rationality are in fact approximating to perfect
rationality under the bounded rationality condition [37]. The
results of Yu are theoretically and practically important.

Theorem 1 R is the space of real numbers, X is a bounded
closed interval inR. f : X → R is a semi-continuous function.
Assume:

(1) {fn} is a real-valued function defined in X , satisfying
that
Sup
x∈X
|fn(x)− f (x)| → 0 (n→∞);

(2) A is a nonempty bounded closed set in X .

(3) ∀n = 1, 2, 3 · ··, xn ∈ X , satisfying d(xn,A)→ 0 (n→
∞), and

fn(xn) ≤ min
x∈A

fn(x)+ εn

where εn ≥ 0, εn→ 0 (n→∞). There are
(1) Sequence {xn} must have a convergent subsequence{
xnk
}
, making xnk → x∗ ∈ A

(2) f (x∗) = min
x∈A

f (x)

(3) If f (x) at x ∈ A has a minimum point set {x∗} and it is
a single point set, there must be xn→ x∗.

Whether the RTPP based EMCS for the microgrid men-
tioned in the previous section is a bounded rationality approx-
imation of perfect rationality, moreover proving that the
obtained EMCS is optimal. Yu’smodel of bounded rationality
is used to discuss this question as below. For the convenience
of solving, the simulations in the previous section are com-
pleted based on transforming multiple objective functions to
single-objective functions as follows,

min(φh
∑
h∈Gh

Ch(ph(t))+φb
∑
b∈Gb

Cb(pb(t))+φd
∑
d∈D

Cd (pd (t))

+φm(ρr (t)− ρl) · pm(t))

Costs of hydropower, gas power and battery charging and
discharging rely on the amount of generated or stored power.
When smart meters in the microgrid record the amount of
power from the DG and have the data transmitted to the center
of energy managing and scheduling, the specific cost will be
obtained. Therefore, the costs can be treated as an overall cost
function of time, and the above objective cost function can be
written as

min(φCC(t)+ φm(ρr (t)− ρl) · pm(t)) (33)

where ρr (t) is an exponential function about the amount of
power to buy and it is also the demand side price response
function in the energy management control model, and its
expression is as follows:

ρr (t) = e
Kpm(t)

Plmax(t)−Plmin(t) · ρl

Since exponential functions are continuous, ρr (t) is a con-
tinuous function. If the amount of power to buy is repre-
sented using x, and the objective function is expressed as an
objective function of x, i.e., f (x(t)), then equation (22) can be
written as

f (x(t)) = min(φCC(t)+ φm(ρr (x(t))− ρl) · x(t)) (34)

Because the amount of power to buy can only be a limited
range of real numbers, we can assume that within the range
of two constraints the maximum amount of power to buy
is Mx . Therefore, the range of x is x ∈ [0,Mx] ⊂ R,
and equation (34) and the above discussion can confirm that
f (x(t)) is continuous, thereby satisfying one of the application
criteria on variables and objective functions required by the
above approximation theorem. Because x ∈ [0,Mx] ⊂ R, x
can be found in a bounded closed set and the bounded closed
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set can be written as A = [0,Mx]. For solving the above
objective function, the deep adaptive dynamic programming
optimization algorithm is used. Being adaptive is a process
of gradually approximating. In searching for the optimum
using the deep adaptive dynamic programming optimiza-
tion algorithm will give a group of optimized approximate
solution sequence interval An first, where a solution in the
approximate solution sequence is xn. xn is an approximate
value of εn and is obtained by evaluating fn(x(t)) in an
extremely small range [0, δ], and xn ∈ An. Substituting each
xn in the approximate solution sequence interval An into the
objective function will get an approximate solution sequence
fn(xn(t)) of the objective function. If the difference between
the obtained approximate solution of the objective function
and the required minimum of the objective function is smaller
than a minimal MSE, then the objective function value to
be found is the one obtained using the approximate solution.
This can be expressed as

|fn(xn(t))− f (xn(t))| < εn (35)

where εn represents the MSE. The minimal MSE found in the
case study of the previous section is 5.1606 × 10−23 which
is a very small number. Therefore, the minimal MSE can be
considered as sufficiently close to zero, and equation (35) can
be written as:

|fn(xn(t))− f (xn(t))| → εn (36)

Since the minimal MSE is small enough, εn in equation (36)
meets the condition of εn ≥ 0, εn → 0. The following
summaries can be drawn according to the theorem, where x∗

is the optimal value satisfying the solution of the objective
function:

(1) Sequence {xn} must have a convergent subsequence{
xnk
}
, making xnk → x∗ ∈ A

(2) f (x∗) = min
x∈A

f (x)

(3) If f (x) at x ∈ A has a minimum point set {x∗} and it is
a single point set, there must be xn→ x∗.
Therefore, the solution sequence obtained after optimizing

iterations must have {xn} which is approximating the optimal
solution x∗, making f (x(t)) reach the cost of the minimum
objective function f (x∗(t)) corresponding to the amount of
power to buy. This is the other criterion for applying the
approximation theorem of bounded rationality, which can
reach the objective of the lowest cost of PGD in themicrogrid.
Therefore, the satisfactory solution of the control strategy
obtained by the deep adaptive dynamic programming opti-
mization algorithm is the optimal solution, and the strategy
itself is the optimal strategy based on the objective function
cost model. The calculation and simulation of the control
strategy is a practical application of the finite rationality to
complete rationality approximation theory.

In fact, according to the discussion above, there remains
the following normal framework and summaries in terms of
topology:

Assume (X , d) is a metric space,

Y =

{
y= (f ,A) : f is continuous atX , sup

x∈X
|f (x)| < +∞,

A is a nonempty compact set of X

}
∀y1 = (f1,A1), y2 = (f2,A2) ∈ Y , define :

ρ (y1, y2) = sup
x∈X
|f (x1)− f (x2)| + h (A1,A2)

where h is the Hausdorff distance at X . It is easy to prove that
(Y , ρ) is a complete metric space.
∀y = (f ,A) ∈ Y , select the function sequence {f n},

making sup
x∈X
|f n(x)− f (x)| → 0 (n→ ∞) choose the subset

sequence {An} from X , and satisfying h (An,A) → 0 (n →
∞). Select xn ∈ X , making d (xn,An)→ 0 (n→∞), and

f n (xn) ≤ inf
u∈An

f n(u)+ εn

where εn ≥ 0, εn→ 0 (n→∞)
Theorem 2 There exists a dense residual setQ of Y , making
∀y = (f ,A) ∈ Q, there must be xn→ x, and f (x) = min

u∈A
f (u).

The objective function of the microgrid is approximate.
The set of feasible solutions is approximate. The parameters
are approximate. The accuracy of solving is also approximate.
Therefore, an approximating sequence {xn} is obtained, and
there must be a convergent subset

{
xnk
}
of {xn}, i.e., xnk →

x ∈ A and x must be the solution of the optimization prob-
lem, which reflects bounded rationality approximating per-
fect rationality. Since Q belongs to the second class, it can be
considered from the topological sense that most satisfactory
solutions of the RTPP based control strategy are convergent,
rational, and acceptable. They can all converge to the optimal
solution, and the counter example of their non-convergence
belongs to the first class. In other words, in most cases the
satisfactory solution under bounded rationality can replace
the accurate solution under perfect rationality, and the counter
cases belonging to the first class are extremely few. Explana-
tions to some of the above concepts are as follows:
(1) Assume A is a nonempty subset of the metric space X ,

if A = X , then A is a dense set of X . Assume A is a
nonempty subset of the metric space X , if int(Ā) = φ,
thenA is a nowhere dense set ofX . A union of countable
numbers of nowhere dense sets is called the first class,
otherwise, it is called the second class.

(2) AssumeX is ametric space, ifQ, a subset ofX , contains
an intersection of dense open sets of X , thenQ is called
a residual set of X . Assume X is a complete metric
space, ifQ is a residual set of X , thenQmust be a dense
set of the second class.

(3) Assume X is a complete metric space, then a residual
setQ ofX must be dense and belong to the second class.
If ∀x ∈ Q and property P dependent on x holds, then
P is called a generic property of X or property P holds
generically for X . In terms of the Baire classification,
nonlinear analysis or topology, the first class is consid-
ered as a ‘‘small set’’. Therefore, it can be said that for
most x ∈ X the property P dependent on x holds.
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VI. CONCLUSION
In this paper, the distributed energy management model of
the microgrid under the RTPP of DSR is proposed by using
the method of system control theory, and a deep adaptive
dynamic programming optimization algorithm is proposed
for the framework, forming the real-time optimal control
strategy of microgrid energy management. The real-time
two-way interaction between power consumers in the micro-
grid and the microgrid operator is realized, based on which
the mechanism of the DSR and RTPP based energy manage-
ment for themicrogrid is created. The RTPP based EMCS can
not only get the dynamic balance between supply and demand
but also through economic leverage motivate the flexible
loads to consume power rationally, fulfilling peak shaving
and valley filling for the intraday loads in the microgrid.
This makes the control strategy more reasonable and ensures
the stable and safe operation of the microgrid. Because the
EMCS is real-time, the microgrid operator can combine the
RTPP based EMCS with relevant rules of management and
operation to perform intraday scheduling. At the same time,
the simulation results show that the proposed control strategy
is feasible and effective. Finally, according to the theory of
bounded rational approximation, the application conditions
of the control strategy in the power market are proposed.
It is proved that the control strategy meets the application
conditions, which is a specific application of the theory of
bounded rational approximation in the power market. Since
the simulation of the control strategy satisfies the applica-
tion condition that the price response function is continu-
ous and the approximation iteration process is continuous,
the control strategy can be accepted. Because the set Q of
the bounded rational solution contains the completely rational
optimal solution, the multi-objective control strategy derived
from the deep adaptive dynamic programming optimiza-
tion algorithm is a rational, feasible, and acceptable optimal
control strategy. This strategy can help microgrid operators
make real-time online multi-objective decisions, optimize
operating costs, improve the utilization rate of renewable
energy, and effectively reduce the carbon emissions and
environmental pollution caused by the massive use of fossil
energy.
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