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ABSTRACT The online time-variant matrix inversion problem has attracted extensive attention and study,
because of its considerable appearance and application in scientific research and industrial production. For
various control optimization problems, the demand for the high-precision and rapid-convergence of matrix
inversion algorithm is increasing. It remains an ongoing challenge due to the rigorous requirements of
precision and convergence of the algorithm. In this paper, on the basis of our previous works, by using
Zhang neural network (ZNN) method, a continuous time-variant matrix inversion model, which is also a
Getz-Marsden dynamic system (i.e., GMDS-ZNN model 3), is proposed. Besides, a general ten-instant
Zhang et al discretization (ZeaD) formula is presented and investigated, with corresponding theoretical
results being provided. Next, by applying this general formula to discretize the continuous time-variant
matrix inversion model, a general ten-instant discrete time-variant matrix inversion (DTVMI) algorithm
with the sixth-order precision is proposed. For comparison, four other DTVMI algorithms, with the second-
, third-, fourth-, and fifth-order precisions, are also proposed and presented, respectively, by using other
ZeaD formulas to discretize the continuous time-variant matrix inversion model. Besides, for the situation
of coefficient matrix derivative being unknown, we provided the formula of estimating it with the fifth-order
precision. With the help of the proposed matrix derivative estimation formula, the actual application field of
GMDS-ZNN model 3 is expanded evidently. Finally, theoretical analyses and simulation experiment results
highlight the effectiveness and accuracy of the proposed GMDS-ZNN model 3 and DTVMI algorithms.

INDEX TERMS Time-variant matrix inversion, Getz-Marsden dynamic system, ten-instant ZeaD formula,
Zhang neural network, discrete algorithm.

I. INTRODUCTION
Solving the linear matrix equations, such as Lyapunov equa-
tion, Sylvester equation, and Stein equation, is considered
to be an important issue widely encountered in a variety of
science and engineering fields. One of the linear matrix equa-
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tion sub-problems is the online matrix inversion problem.
The solution of matrix inversion is one of the fundamental
problems encountered in a variety of optimization problems,
such as image reconstruction [1], nonlinear optimization
[2], [3], and robot kinematics [4]. In general, the matrix
inversion problem can be formulated as AX = I , where
A ∈ Rn×n and identitymatrix I ∈ Rn×n are constant matrices.
X ∈ Rn×n is the unknown matrix to be computed.
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Several methods were proposed and applied to solve this
problem. Nowadays, due to the in-depth research in arti-
ficial intelligence, the neural-dynamic approach based on
recurrent neural networks (RNN) has been considered to
be an effective option for online optimization problem-
solving. Methods based on RNN have manifested their
high-speed parallel-processing nature and convenience of
hardware implementation [5], [6]. They have been motivated
as analog machines to solve optimization problems [7]–[10].
In 2001, aiming at the online solution of various time-variant
problems, a new class of RNN, termed Zhang neural net-
work (ZNN), has been proposed in [11]. The ZNN model
is essentially based on an indefinite function termed Zhang
function (ZF) which is served as error-monitoring. Since
2011, the ZFs have been found to speed up and consol-
idate the development of various ZNN models [12]–[15].
In [16], Getz and Marsden constructed a dynamical system
to approximate the inverse of a time-variant matrix which
was convergent exponentially toward the true time-variant
inverse, and argued that all positive definite fixed matrix
may be dynamically inversed in prescribed time and no ini-
tial guess is needed. In [16], a model named Getz-Marsden
dynamic system (GMDS1) to inverse time-variant matrix
was proposed with many characteristics being worth dis-
cussing and further investigating. Furthermore, based on
the ingenious combination of the model in [16] and gra-
dient neural network, GMDS-ZNN model 2 was pre-
sented in [17]. In accordance with previous works in [16],
[18], we proved that the conventional GMDS1 is actu-
ally one of the explicit ZNN models, which is named as
GMDS-ZNNmodel 1. In [18], we proposed the GMDS-ZNN
model 2 variants based on ZNN design formula and
ZF.

The above continuous models must be discretized to
meet the needs of most practical applications. Therefore,
the proposed GMDS-ZNN model 2 was discretized by
different discretization formulas [18]–[20], specifically
including Euler forward formula, Taylor-Zhang discretization
formula and five-instant Zhang et al discretization (ZeaD)
formula. In [21], a three-step general ZeaD formula was
designed to approximate the first-order derivative of the target
point and was used to discretize the continuous-time ZNN
models for time-variant matrix inversion. The maximum
steady-state residual errors of algorithms presented in [21]
substantiate that the three-step general discrete ZNN algo-
rithm is superior to Newton iteration and one-step discrete
ZNN for the time-variant matrix inversion. In our previous
research [18], [22], we conducted extensive numerical exper-
iments, such that GMDS-ZNN model 1 and GMDS-ZNN
model 2 were both presented and compared. Numerical
results show that both models have fixed error pattern
and are confirmed to be proportional to the sampling gap.
In [18], [22], GMDS-ZNN model 2 is proved to have
higher precision. Moreover, based on our best knowledge,
we know that the precision of the discrete algorithm is
strongly dependent on the accuracy of the ZeaD formula.

In short, high-precision ZeaD formulas lead to high-precision
discrete algorithms.

In the published works, multiple-instant discrete algo-
rithms for time-variant matrix inversion were developed and
applied. It should be noted that the highest order of resid-
ual error of those algorithms is only O(τ 5) and no pre-
vious works consider the situation of Ȧ being unknown.
Therefore, it is necessary to explore the numerical difference
formula with higher accuracy and the situation of Ȧ being
unknown. In this paper, a continuous model for time-variant
matrix inversion is proposed. To obtain high-precision dis-
crete GMDS-ZNN model 3, a general ten-instant ZeaD for-
mula is constructed and proposed. Secondly, with the help
of the general ten-instant ZeaD formula, a general ten-instant
DTVMI algorithm for matrix inversion is further proposed.
At last, other multiple-instant algorithms, such as two-instant,
four-instant, six-instant, along with eight-instant algorithms
are also derived and presented by applying other ZeaD for-
mulas.

The rest of this paper is organized into four sections.
Continuous GMDS-ZNN model 3 is proposed in Section II.
Section III presents discrete algorithms of GMDS-ZNN
model 3. Two theorems are presented and proved to consoli-
date the convergence and stability of the proposed algorithm.
In Section IV, two time-variant matrices are provided as the
benchmark examples to verify the effectiveness and accuracy
of the proposed algorithm. Eventually, Section V concludes
this paper with final remarks.

The main contributions of this paper lie in the following
facts.

1) By employing ZNN method, the GMDS-ZNN model
3 for matrix inversion is developed.

2) For digital hardware realization, a novel high-precision
ten-instant DTVMI algorithm, i.e., DTVMI-V algo-
rithm, is proposed and constructed with corresponding
theoretical analyses.

3) For comparison, by exploiting the general ten-instant
ZeaD formula and other multiple-instant ZeaD for-
mulas, five DTVMI algorithms, with O(τ 2), O(τ 3),
O(τ 4), O(τ 5), and O(τ 6) precisions are proposed and
constructed, respectively.

4) The stability and convergence of the DTVMI-V algo-
rithm are proved theoretically.

5) For the situation of Ȧk unknown, the formula of esti-
mating Ȧk with truncation error O(τ 5) is provided.
The formula expands the actual application field of
GMDS-ZNN model 3 evidently.

6) Numerical experiment results indicate that the pro-
posed DTVMI-V algorithm is effective and feasible for
time-variant matrix inversion.

II. PROBLEM FORMATION AND SOLVERS
In this work, we consider the problem of time-variant matrix
inversion in the form of

A(t)X (t) = I or X (t)A(t) = I , (1)
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where A(t) is a smoothly time-variant nonsingular matrix,
I is the identity matrix of dimension n, and X (t) is the
time-variant unknown matrix to be obtained. Numerous
efforts have been made to solve the computational problem of
fast matrix inversion since the mid-1980s, accompanied by a
series of algorithms were designed and applied [23]. The time
complexity of those algorithms is usually convergent toO(n3)
asymptotically. Such poor performancemay not be suitable in
most large-scale online applications. Therefore, a wealth of
parallel-processing computational methods of matrix inver-
sion have been proposed, developed, and applied, to meet
the actual scientific and engineering requirements. The aim
of the paper is to propose a new ten-instant discrete matrix
inversion algorithm to compute X (t) with the truncation error
of O(τ 6). To monitor and accelerate the solving process
of (1), we define the following scalar-valued nonnegative
function [12], [24]:

ε(t) =
1
2
‖X (t)A(t)− I‖2F ∈ R, (2)

where ε(t) is close to zero when X (t) is close to A−1(t) with
t →+∞. Besides, symbol ‖·‖F denotes the Frobenius-norm
of a matrix and I represents the identity matrix as before.
Next, we adopt the gradient neural network (GNN) to obtain
the continuous solution model for the time-variant matrix
inversion (TVMI) problem [11], [25]:

Ẋ (t) = −γ ∂ε(t)/∂X (t) = −γ (X (t)A(t)− I )AT(t), (3)

where γ ∈ R+ is the convergence rate. The larger γ
means the faster convergence rate. The superscript T denote
the transformation operator of matrix. For problem of com-
plex matrix inversion, Zhang et al firstly defined an indef-
inite error-monitoring function E(t) = A(t) − X−1(t) ∈
Rn×n, and then obtained the following Zhang neural network
(ZNN) [24], [26]:

Ẋ (t) = −X (t)Ȧ(t)X (t)− λ(X (t)A(t)X (t)− X (t)), (4)

where λ ∈ R+ denotes the reciprocal of a capacitance param-
eter, which should set as large as the maximum limitation of
the hardware [27].

It is necessary to point out that (4) is the explicit form
of GMDS model. Therefore, (4) is also termed GMDS-ZNN
model 1. Referencing to [24], we combine (3) with (4) to get
a continuous GNN-ZNN type (GZ-type) model by replac-
ing the second term of the right-hand side of (4) with the
right-hand side of (3). The final continuous GZ-type model
is obtained as

Ẋ (t) = −X (t)Ȧ(t)X (t)− γ (X (t)A(t)− I )AT(t), (5)

which is named continuous GMDS-ZNN model 3 (5). The
continuous GMDS-ZNN model 3 (5) is actually the symmet-
ric model of GMDS-ZNN model 2. It is worth noting that the
continuous GMDS-ZNN model 3 (5) takes the advantage of
both GNN (i.e., fast convergence rate) and ZNN (e.g., high
convenience accuracy). Next, we will discuss the discrete
algorithms of the continuous GMDS-ZNN model 3 (5).

III. DISCRETE ALGORITHMS
Since digital hardware requires discrete computational algo-
rithm, we discretize the developed GMDS-ZNN model 3 (5)
for investigating its features. The above-developed model is
discretized by five different discretization formulas, such as
Euler forward formula, Taylor-Zhang discretization formula
(TZDF), six-instant ZeaD formula, eight-instant ZeaD for-
mula, and ten-instant ZeaD formula.

A. EULER FORWARD FORMULA
Euler forward formula is a first-order numerical method for
solving ordinary differential equations with given initial val-
ues. It is one of the most basic explicit methods for solving
numerical ordinary differential equations. This formula has
the first-order truncation error [28]. The formula is described
as follows:

u̇k =
1
τ
(uk+1 − uk )+ O(τ ), (6)

where τ ∈ (0, 1) denotes the sampling gap, and k =
0, 1, 2, · · · denotes the updating index of u. Applying (6)
to (5), we get the following DTVMI-I algorithm, which is
shown as

Xk+1
.
= −τXk ȦkXk − h(XkAk − I )ATk + Xk , (7)

where symbol .= denotes the right-hand side of (7) assigned
to Xk+1 as the estimation, Ȧk denotes Ȧ(tk ), and h = γ τ > 0
denotes the step size.

B. TAYLOR-ZHANG DISCRETIZATION FORMULA
Compared with Euler forward formula, TZDF has second-
order truncation error, whose precision is higher than Euler
forward formula. TZDF is given as follows [29]:

u̇k =
1
2τ

(2uk+1 − 3uk + 2uk−1 − uk−2)+ O(τ 2). (8)

With (5) and (8), the four-instant DTVMI algorithm is named
as DTVMI-II algorithm, which is expressed as follows:

Xk+1
.
= −τXk ȦkXk − h(XkAk − I )ATk

+
3
2
Xk − Xk−1 +

1
2
Xk−2, (9)

where h > 0 denotes the step size again as before.

C. SIX-INSTANT ZeaD FORMULA
According to [30], a six-instant ZeaD formula is shown as
follows:

u̇k =
1
2τ

(
uk+1 −

5
24
uk −

1
2
uk−1 −

1
4
uk−2

−
1
6
uk−3 +

1
8
uk−4

)
+ O(τ 3). (10)

With (5) and (10), the six-instant DTVMI algorithm is named
as DTVMI-III algorithm, which is given as follows:

Xk+1
.
= −2τXk ȦkXk − 2h(XkAk − I )ATk
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TABLE 1. Coefficients of ten-instant ZeaD formulas.

+
5
24
Xk +

1
2
Xk−1 +

1
4
Xk−2

+
1
6
Xk−3 −

1
8
Xk−4, (11)

where h > 0 denotes the step size again as before.

D. EIGHT-INSTANT ZeaD FORMULA
According to [30], an eight-instant ZeaD formula is described
as follows:

u̇k =
1
τ

(
50
111

uk+1 −
51
2220

uk −
20
111

uk−1

−
30
111

uk−2 −
10
111

uk−3 +
35
444

uk−4 +
44
555

uk−5

−
5

111
uk−6

)
+ O(τ 4). (12)

With (5) and (12), the eight-instant DTVMI algorithm is
named as DTVMI-IV algorithm, which is given as follows:

Xk+1
.
= −τXk ȦkXk − h(XkAk − I )ATk

+
111
50

(
51

2220
Xk +

20
111

Xk−1 +
30
111

Xk−2

+
10
111

Xk−3 −
35
444

Xk−4 −
44
555

Xk−5

+
5
111

Xk−6

)
. (13)

E. GENERAL TEN-INSTANT ZeaD FORMULA
The general ten-instant ZeaD formula is first investigated and
obtained in [31]. It is proved theoretically that the accuracy of
this formula can reach order 6, and it is verified in solving the
square root problem of time-variant matrix [31]. The general
ten-instant formula is given as follows:

u̇k =
1
τ
(d0uk+1 + d1uk + d2uk−1 + d3uk−2

+d4uk−3 + d5uk−4 + d6uk−5 + d7uk−6
+d8uk−7 + d9uk−8)+ O(τ 5). (14)

According to the theoretical model and derivation of the
literature [31], we calculate and list six groups of the coeffi-
cients of ten-instant ZeaD formulas. These coefficients di are
provided in Table 1.We use the ten-instant ZeaD formula (14)
to discretize (5). The general ten-instant DTVMI algorithm

named as DTVMI-V algorithm, is thus obtained:

Xk+1 =
1
d0

(−τXk ȦkXk − h(XkAk − I )ATk

−d1Xk − d2Xk−1 − d3Xk−2 − d4Xk−3
−d5Xk−4 − d6Xk−5 − d7Xk−6 − d8Xk−7
−d9Xk−8)+ O(τ 6), (15)

where h = τγ . It is worth mentioning that when h is fixed
as a constant, the truncation error is consistent with O(τ 6).
When h is not fixed and γ is a constant, the error is upgraded,
which is consistent with O(τ 5).
Theorem 1: With sampling gap τ ∈ (0, 1), the maximal

steady-state residual error limk→+∞ sup‖Xk+1Ak+1− I‖F of
(15) is O(τ 6).
Proof: According to Theorem 1 and Theorem 2 in [31], we
know that the (15) is 0-stable, consistent, and convergent.
Therefore, it converges with the order of its truncation error.
Assume that Zk+1 is the exact solution of Zk+1Ak+1− I = O.
Based on (15), we have Xk+1 = Zk+1+O(τ 6)with τ ∈ (0, 1),
and further have

= lim
k→+∞

sup‖Xk+1Ak+1 − I‖F

= lim
k→+∞

sup‖(Zk+1 + O(τ 6))Ak+1 − I‖F

= lim
k→+∞

sup‖I + O(τ 6)Ak+1 − I‖F = O(τ 6).

The proof is thus completed. �

F. SITUATION OF Ȧ BEGING UNKNOWN
In (7), (9), (11), (13), and (15), Ȧk is known, but this condition
may not meet in some application scenarios. One practical
approach is to estimate Ȧk through the current and past
sample points (e.g., Ak , Ak−1, Ak−2, · · · ). According to [29],
the general estimation of Ȧk is formulated as

Ȧk =
1
τ

( n∑
i=1

ξn−i+1Ak−i+1

)
+ O(τ q), (16)

where n represents the number of sample points involved in
estimating Ȧk , ξn−i+1 denotes the coefficient, and q repre-
sents the order of truncation error of (16). We aim to find all
the coefficients (e.g., ξn, ξn−1, · · · , ξ1) in (16) to estimate Ȧk
under the given precision order q = 5. The following theorem
gives the estimation formula of Ȧk .
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Theorem 2: For the situation of Ȧk unknown, the estimation
of Ȧk is given as

Ȧk =
1
τ
(ξ7Ak + ξ6Ak−1 + ξ5Ak−2 + ξ4Ak−3

+ ξ3Ak−4 + ξ2Ak−5 + ξ1Ak−6)+ O(τ 5), (17)

where ξ1 = 0, ξ2 = −1/5, ξ3 = 5/4, ξ4 = −10/3, ξ5 =
5, ξ6 = −5, and ξ7 = 137/60.
Proof: The general formula corresponding to (17) is shown
as follows:

ḟk =
1
τ
(ξ7fk + ξ6fk−1 + ξ5fk−2 + ξ4fk−3 + ξ3fk−4

+ξ2fk−5 + ξ1fk−6)+ O(τ 5). (18)

The Taylor expansions of fk−1 through fk−6 are

fk−1 = fk − τ ḟk +
τ 2

2!
f̈k −

τ 3

3!

...
f k +

τ 4

4!
f (4)k −

τ 5

5!
f (5)k

+O(τ 5), (19)

fk−2 = fk − (2τ )ḟk +
(2τ )2

2!
f̈k −

(2τ )3

3!

...
f k +

(2τ )4

4!
f (4)k

−
(2τ )5

5!
f (5)k + O(τ

5), (20)

fk−3 = fk − (3τ )ḟk +
(3τ )2

2!
f̈k −

(3τ )3

3!

...
f k +

(3τ )4

4!
f (4)k

−
(3τ )5

5!
f (5)k + O(τ

5), (21)

fk−4 = fk − (4τ )ḟk +
(4τ )2

2!
f̈k −

(4τ )3

3!

...
f k +

(4τ )4

4!
f (4)k

−
(4τ )5

5!
f (5)k + O(τ

5), (22)

fk−5 = fk − (5τ )ḟk +
(5τ )2

2!
f̈k −

(5τ )3

3!

...
f k +

(5τ )4

4!
f (4)k

−
(5τ )5

5!
f (5)k + O(τ

5), (23)

fk−6 = fk − (6τ )ḟk +
(6τ )2

2!
f̈k −

(6τ )3

3!

...
f k +

(6τ )4

4!
f (4)k

−
(6τ )5

5!
f (5)k + O(τ

5), (24)

where ḟk , f̈k ,
...
f k , f

(4)
k , and f (5)k represent the first-, second-

, third-, fourth-, and fifth-order derivatives at t = kτ ,
respectively. Substitute (19), (20), (21), (22), (23), and (24)
into (18). Then, (18) is reformulated as

η6fk − η5 ḟkτ +
η4

2!
τ 2 f̈k −

η3

3!
τ 3

...
f k +

η2

4!
τ 4f (4)k

−
η1

5!
τ 5f (5)k = O(τ 5), (25)

where η6 = ξ7 + ξ6 + ξ5 + ξ4 + ξ3 + ξ2 + ξ1, η5 = 1+ ξ6 +
2ξ5+3ξ4+4ξ3+5ξ2+6ξ1, η4 = ξ6+22ξ5+32ξ4+42ξ3+
52ξ2 + 62ξ1, η3 = ξ6 + 23ξ5 + 33ξ4 + 43ξ3 + 53ξ2 + 63ξ1,
η2 = ξ6+24ξ5+34ξ4+44ξ3+54ξ2+64ξ1, η1 = ξ6+25ξ5+
35ξ4 + 45ξ3 + 55ξ2 + 65ξ1. To let the left-hand side of (25)

converge to zero, the following linear system should hold:

η6 = ξ7 + ξ6 + ξ5 + ξ4 + ξ3 + ξ2 + ξ1 = 0,
η5 = 1+ ξ6 + 2ξ5 + 3ξ4 + 4ξ3 + 5ξ2 + 6ξ1 = 0,
η4 = ξ6 + 22ξ5 + 32ξ4 + 42ξ3 + 52ξ2 + 62ξ1 = 0,
η3 = ξ6 + 23ξ5 + 33ξ4 + 43ξ3 + 53ξ2 + 63ξ1 = 0,
η2 = ξ6 + 24ξ5 + 34ξ4 + 44ξ3 + 54ξ2 + 64ξ1 = 0,
η1 = ξ6 + 25ξ5 + 35ξ4 + 45ξ3 + 55ξ2 + 65ξ1 = 0.

(26)

The ordinary solution of (26) is

ξ7 = −ξ1 + 137/60,
ξ6 = 6ξ1 − 5,
ξ5 = −15ξ1 + 5,
ξ4 = 20ξ1 − 10/3,
ξ3 = −15ξ1 + 5/4,
ξ2 = 6ξ1 − 1/5,
ξ1 = ξ1.

(27)

The particular solution of (26) is

ξ7 = 137/60,
ξ6 = −5,
ξ5 = 5,
ξ4 = −10/3,
ξ3 = 5/4,
ξ2 = −1/5,
ξ1 = 0.

(28)

Therefore, the formula with consistency is

ḟk =
1

60τ
(137fk − 300fk−1 + 300fk−2 − 200fk−3

+ 75fk−4 − 12fk−5)+ O(τ 5). (29)

Next, the zero-stability of (29) is verified by the characteristic
polynomial of (29) [32], [33]. The characteristic polynomial
is shown as

φ(ζ ) = 137ζ 5 − 300ζ 4 + 300ζ 3−200ζ 2+75ζ − 12=0,

(30)

whose characteristic roots are ζ = 1, 481/2290 ±
2344/3463i, and 640/1663± 107/660i. All the roots satisfy
|ζ | ≤ 1 with ζ = 1 being simple. The results satisfy the
0-stability condition. According to the Dahlquist equivalence
theorem, (29) is also convergent with the order of its trunca-
tion error. The proof is thus completed. �

IV. NUMERICAL EXPERIMENTS AND VERIFICATION
In this section, numerical experiments are carried out to verify
the efficacy of the presented GMDS-ZNN model 3 (5) on
two time-variant matrix inversion examples. Furthermore,
we verify the estimated Ȧk through the formula provided
in (17).
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FIGURE 1. Residual error trajectories synthesized by five DTVMI algorithms for Example 1 (τ = 0.01 s and γ = 5.0).

FIGURE 2. Trajectories synthesized by Zk and the solution of DTVMI-V algorithm (15) for Example 1 (τ = 0.01 s and γ = 5.0).

A. EXAMPLE 1
The first time-variant matrix is a 2 × 2 real matrix which is
shown as follows:

A(tk ) =
(

sin(tk ) cos(tk )
−cos(tk ) sin(tk )

)
∈ R2×2. (31)

To verify the computational results, we show the theoretical
inversion of matrix (16):

Z (tk ) = A−1(tk ) =
(
sin(tk ) −cos(tk )
cos(tk ) sin(tk )

)
∈ R2×2, (32)

which is given for checking the correctness of the dynamic
system solutions. In Fig. 1 (a), it shows the residual errors
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FIGURE 3. Residual error trajectories synthesized by five DTVMI algorithms for Example 2 (τ = 0.01 s and γ = 1.0).

FIGURE 4. Solution trajectories synthesized by Zk and DTVMI-V algorithm (15) for Example 2 (τ = 0.01 s and γ = 1.0).
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FIGURE 5. Coefficient matrix derivative estimation errors ‖Ȧk − Bk‖F.

FIGURE 6. Coefficient matrix derivative trajectories synthesized for Example 1.

‖XkAk − I‖F of the five DTVMI algorithms, i.e., DTVMI-I
algorithm (7), DTVMI-II algorithm (9), DTVMI-III algo-
rithm (11), DTVMI-IV algorithm (13), and DTVMI-V algo-
rithm (15), with τ = 0.01 s and h = 0.05. In Fig. 1 (b),
it illustrates the residual errors ‖Xk − Zk‖F of the same
five DTVMI algorithms as before. The initial values of the
example are arbitrarily set as(

10.5 2.3
1.9 15.8

)
.

The step-size and task duration (i.e., final time) are uniformly
set as h = 0.05 and tf = 30 s. The values of the ten

coefficients, which are applied in all these numerical exper-
iments for DTVMI-V algorithm (15), are shown in the first
row of Table 1. In Fig. 2, it depicts the numerical results of
the DTVMI-V algorithm (15). From the trajectories of all
entries in Fig. 2, the solution of the model coincides with
the theoretical solution perfectly. In addition, we see that the
residual error trajectories synthesized by different DTVMI
algorithms quickly stabilized to the theoretical error level,
after undergoing the initial hundreds of recursions. Moreover,
to observe the variation law of residual errors synthesized
by different DTVMI algorithms with different values of τ ,
with the help of MATLAB, more numerical experiments
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FIGURE 7. Coefficient matrix derivative trajectories synthesized for Example 2.

have been carried out in Example 1. The result is exhibited
in Table 2.

From Table 2, it is shown that the three values of r /τ
for DTVMI-I algorithm (7) are approximately equal, which
means the residual errors of (7) are almost directly pro-
portional to O(τ 2) where r represents the residual error
‖XkAk − I‖F. Similarly, from the values of r /τ 3, r /τ 4, r /τ 5,
and r /τ 6 for (9), (11), (13), and (15), we can conclude that
the residual errors of DTVMI-II algorithm (9), DTVMI-III
algorithm (11), DTVMI-IV algorithm (13), and DTVMI-V
algorithm (15), are almost directly proportional to O(τ 3),
O(τ 4), O(τ 5) and O(τ 6), respectively. Thus, the correctness
of Theorem 1 is further substantiated. Note that, in practical
applications, we can obtain higher computational accuracy
by simply setting the value of τ a little smaller. As shown
in Table 2, when τ becomes smaller, such as τ = 0.008 s, the
accuracy of the calculation results of all DTVMI algorithms
is improved, especially the magnitude of residual errors syn-
thesized by DTVMI-V algorithm (15) is around 10−12.

B. EXAMPLE 2
The second time-variant matrix is a 3 × 3 real matrix which
is shown as follows:

A(tk ) =

3+ sin(2tk ) 0.5cos(2tk ) cos(2tk )
0.5cos(2tk ) 3+ sin(2tk ) 0.5cos(2tk )
cos(2tk ) 0.5cos(2tk ) 3+ sin(2tk )

 ,
where A(tk ) ∈ R3×3. To verify the computational result, we
propose the theoretical inversion of A(tk ), which is named as
Z (tk ) = (zij(tk )). Because the Z (tk ) is too complicated, it is
omitted in this paper. The initial values of the example are
arbitrarily set as  9.5 0.7 0.6

−1.1 12 1.3
−1.6 0.2 9.0

 .
The step-size and task duration (i.e., final time) are uni-
formly set as h = 0.01 and tf = 30 s. The results of
the numerical experiments for DTVMI-V algorithm (15), are

228196 VOLUME 8, 2020



D. Wu et al.: GMDS-ZNN Model 3 and Its Ten-Instant Discrete Algorithm

TABLE 2. Residual errors and ratios of DTVMI algorithms for Example 1 with different values of τ .

shown in Fig. 3 and Fig. 4. The experimental results are as
satisfactory as expected.

C. SITUATION OF Ȧ BEING UNKNOWN
In both Example 1 and Example 2, we apply (17) to verify the
numerical accuracy of Theorem 2. Assume the ground-truth
derivative of Ȧ(t) is B(t) = (bij(t)), whose discretized form is
Bk = (bij(tk )) when tk = kτ . Firstly, the ground-true deriva-
tive is calculated, so as to get Bk . Secondly, Ȧk is calculated
by the formula provided in (17). Thirdly, the comparisons
are made in two aspects. The first aspect is to observe the
‖Ȧk −Bk‖F, which is depicted in Fig. 5. The second aspect is
to compare every counterpart entry of Bk with Ȧk . The results
are shown in Fig. 6 and Fig. 7. According to these numerical
results, the effectiveness and correctness of Theorem 2 are
verified convincingly.

V. CONCLUSION
In this work, we present and investigate a general ten-instant
ZeaD formula. In addition, the DTVMI-V algorithm (15)
has been obtained by using the general ten-instant ZeaD for-
mula to discretize GMDS-ZNN model 3 (5). The theoretical
results are guaranteed the stability and convergence of the
DTVMI-V algorithm (15) for time-variant matrix inversion.
Furthermore, the simulation results have shown that all solu-
tions of the DTVMI-V algorithm (15) are convergent to the
theoretical solutions with the truncation error ofO(τ 6), which
is superior to the four other DTVMI algorithms. For the
situation of Ȧk unknown, (17) has been provided and proved,
which is capable of estimating Ȧk with the truncation error
of O(τ 5). The cost is that five more temporary storage units
for matrix Ak−1 through Ak−5 are needed to calculate the Ȧk .
The results of numerical simulation in both examples show
that the convergence of ‖Ȧk − Bk‖F is satisfactory, reaching
below 10−10 rapidly. At last, our future research direction
may focus on the investigation of applying the ten-instant
discrete algorithm to other time-variant problems solving.
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