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ABSTRACT A hybrid heuristic algorithm based on improved rules and reinforcement learning is proposed
to solve the 2D strip packing problem (2DSPP). Firstly, the scoring rules based on the skyline algorithm
are improved by considering the ‘‘two-step’’ successive items with a set of width relaxation factors. The
improved scoring rules can reduce space waste efficiently. Secondly, as a reinforcement learning approach,
the Deep Q-Network (DQN) is established to get the initial rectangular items sequence and at the same
time as an essential supplement for the placement rules. It can improve space utilization and prevent the
algorithm from falling into the local optimum. Combining the new ‘‘two-step’’ placement rules and DQN,
the heuristic algorithm based on simple random algorithm (SRA) is proposed and finally called reinforcement
learning based simple random algorithm (RSRA). Experiments on eight datasets by five algorithms have
been conducted for comparison. Results show the RSRA has achieved the best performance on eight datasets
(C, N, CX,NT, 2sp, NP, ZDF, BWMV) and has droppedAve. Gap%by 45.86%, 45.16%, 30.89% and 20.56%
than GRASP, SRA, IA, ISH respectively. It can be concluded that the RSRA algorithm would achieve better
performance than the other four algorithms on eight datasets, especially on the larger datasets.

INDEX TERMS 2D strip packing problem (2DSPP), heuristic algorithm, improved rules, deep Q-Network
(DQN), reinforcement learning.

I. INTRODUCTION
As a typical combination optimization problem, the Packing
Problem has been proven to be an NP-hard problem [1].
Packing problems with different constraints and objectives
are widely used in the manufacturing, transportation, and
computer industry. This paper focuses on the 2DSPP.

A. 2DSPP MATHEMATICAL MODEL
2DSPP in this paper are described as follows: Given a set of
the rectangle of size wi × hi, i = 1 · · · n, and a strip with
W width and infinite height. Let the lower-left corner of strip
be the origin of the two-dimensional coordinate system, and
put rectangular objects into the strip. The goal is to use the
minimum height h of the strip, and all rectangles in strip meet
the following conditions:

(1): rectangles cannot be overlapped.
(2): the rectangle edges must be parallel to the X -or Y -axis.
(3): each rectangle width cannot exceed the bounds of the

strip.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

(xi1, yi1) and (xi2, yi2) represent the lower-left corner and
the upper right corner of the rectangle respectively. The
mathematical description [41] of 2DSPP is as follows:
min H

s.t. (1) H = max{yi2, i = 1, 2, . . . , n};

(2) xi2 − xi1 = wi and yi2 − yi1 = yi, i = 1, 2, . . . , n;

(3) max{xi1 − xj2, xj1 − xi2, yi1 − yj2, yj1 − yj2} ≥ 0

i, j = 1, 2, . . . , n, and i 6= j;

(4) 0 ≤ xi2 ≤ (W − wi) and yi1 ≥ 0, i = 1, 2, . . . , n;

The first constraint indicates that the total height of the strip
used is labeled as H , the second constraint indicates that the
rectangles must be placed horizontally, the third constraint
demonstrates that there is no overlap between the rectangles.
The fourth constraint means that each rectangle must be in
the strip.

B. PREVIOUS WORK
Researchers proposed several algorithms for the problem.
Early scholars tried a bunch of exact algorithms. Beasley
[2] proposed a tree-searching algorithm. Martello textitet al.
[3] used the branch-and-bound algorithm. In 2019 Wei et al.
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[4] tried to eliminate the conflict between the two items
by branching first, and then used dynamic programming to
solve the problem of two-constraint backpacks on the leaf
node. Experiments have shown the algorithm was superior
to the existing branch-and-bound method. Bezerra et al. [5]
proposed the use of two mixed integer linear programming
model. The results show that the model can produce more
optimal solutions. However, exact algorithms are only more
suitable for the problem with fewer samples.

Considering the time performance of the precise algorithm,
heuristic and meta-heuristic algorithms are also introduced
to 2DSPP solving. Meta-heuristic algorithms include genetic
algorithms [6], [7], simulated annealing algorithms [8], [9],
particle swarm optimization [10], [11]. Classic heuristic algo-
rithms include the Bottom Left [12] algorithm, the Bottom
Left [13] algorithm, the Best Fit [14] algorithm, Alvarez-
Valdés [15] et al. proposed the Greedy Random Adaptive
Search Algorithm (GRASP), which proved to be one of the
best algorithms to solve the problem of 2DSPP. The study
found that a single heuristic algorithm has the problem of pre-
mature convergence and falling into local optimum. On this
basis, some scholars have put forward a hybrid heuristic algo-
rithm, which combines the advantages of different heuris-
tic algorithms, and effectively avoids the problems above.
For example, Huang et al. [16] and others proposed the
lowest level of the optimal fitting algorithm with memory
and combined with PSO algorithms. The experiment shows
that the hybrid heuristic algorithm is better than the single
heuristic algorithm. Rakotonirainy [38] et al. proposed a
hybrid approach in which the method of simulated annealing
is combined with a heuristic construction algorithm. They
also proposed the second algorithm involves application of
the method of simulated annealing directly in the space of
completely defined packing layouts, without an encoding
of solutions. Experiments for the 2DSPP prove that these
two algorithms are better than the existing meta-heuristic
algorithms.

In addition, there are some excellent heuristic algorithms;
for example. In 2011, Leung et al. [17] proposed to use a two-
stage intelligent search algorithm(ISA) composed of local
search(LS()) and simulated annealing. LS() just swaps two
positions of items in a given sequence in turn. Then simulated
annealing will be implemented to obtain a better solution in
global. Yang et al. [18] improved Leung algorithm by replac-
ing the simulated annealing algorithm with a SRA without
setting any parameters. In 2016, Wei et al. [39] proposed an
efficient improved algorithm (IA) in 2016, adding a greedy
selection stage based on Leung et al. [17] and Yang et al. [18],
and preferentially selecting a better initial solution to enter
the local search phase. In 2017, Wei et al. [40] proposed an
improved skyline-based heuristic algorithm (ISH). The ISH
with a complexity of O(n · log(n)) has proven to be superior
to most heuristic algorithms. Although the heuristic algo-
rithm can quickly obtain an approximate optimal solution,
the algorithm is less popular and must be specially designed
for different problems.

As an artificial intelligence approach, reinforcement learn-
ing (RL) method can directly extract useful information
from the data, so that it can potentially learn better heuristic
algorithms. RL has been widely used on combination opti-
mization issues such as travelling salesman problem [19],
vehicle routing problem [20], Graph Coloring [21], maxi-
mum independent set [22], and packing problems, etc. Bello
[23] et al. proposed a combination optimization framework
based on reinforcement learning, which has yielded good
results on traveler issues and backpacking issues. In view of
the complexity of the combinatorial optimization problems,
the DQN [24] combining the reinforcement learning function
and the artificial neural network has demonstrated its strong
performance, especially for the Maximum Cut [25], the Max-
imum Common Subgraph [26] and other combinatorial opti-
mization problems. A deep reinforcement learning frame-
work based on dual DQN has been proposed for an online
two-dimensional packing study [27]. Although reinforcement
learning has better performance than heuristic algorithms on
the problem of combinatorial optimization, the performance
is influenced by the amount of training data.

C. OUR WORK
In this paper, a hybrid heuristic algorithm is proposed on
DQN and SRA. The main contributions of this paper are as
follows:

(1) Previous rules have just considered ‘‘single-step’’
item placement. In this paper, the ‘‘two-step’’ successive
items sequence is considered to get better combination by
introducing a set of width relaxation factors.

(2) In order to minimize the waste, a set of relaxation
factors (α, β, 0 < α < 1, 0 < β < 1) is designed to give
different fitness values in multiple width intervals.

(3) Introduction of another ‘‘Scorer’’ based on reinforce-
ment learning. DQN is used to establish the evaluation func-
tion to get the placement sequence score of rectangular items.
Compared with other simple sequences sorted by the perime-
ter, width, etc., DQN can not only generate initial sequence,
but also improve overall space utilization. Another advantage
is preventing the heuristic algorithm from falling into the
local optimum and reducing the number of iterations.

(4) Algorithm fusion. The RSRA combining DQN and
SRA is proposed without too many parameters in which
the scoring rule is determined by combining the improved
scoring rules (Scorer I) and DQN (Scorer II).

The remainder of this paper is organized as follows. Part II
presents the hybrid heuristic algorithm based on improved
scoring rules of skyline algorithm and the evaluation function
based on DQN combined with SRA. Part III has shown
experiments and analysis. The last part includes a conclusion
and a prospect.

II. HYBRID HEURISTIC ALGORITHM BASED ON
REINFORCEMENT LEARNING
A. SKYLINE ALGORITHM
As shown in Fig.1, the placement space on the lowest and
the leftmost candidate line segment slowy (give priority to
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FIGURE 1. Example of rectangular item placement.

‘‘the lowest’’) is labeled as S (in the blue box in Fig. 1). The
height difference of the horizontal segment adjacent to slowy
the larger is h1 and the smaller is h2. The width of the slowy
is recorded as slowy.w. The height and width of the candidate
rectangles are recorded as r.h and r.w. The smallest rectangle
in the unplaced item sequence is recorded as rmin and its
width is recorded as rmin.w. The space remaining after placing
rectangular items in S is recorded as A (in the dotted box in
the Fig. 1) and the width is labeled A.w.
The skyline algorithm [28] is used as the basic framework

to determine the arrangement rules of rectangular items. The
algorithm steps are as follow: for a given rectangular items
sequence, repeat the following four steps until all rectan-
gles are placed: 1) Find the slowy as the initial position to
place items; 2) Calculate the fitness value for each item in
turn from the original sequence; 3) Place the rectangular
item with the highest fitness value in the S; 4) update the
skyline.

B. NEW SKYLINE SCORING RULES
The disadvantages of Yang’s rules [18] and Gao’s rules [29]
are as follows:

(1) There is no restriction or control over the width of
the item to be placed in Yang’s rules. So items with smaller
widths may be put first, which will waste more space than
putting items with larger widths. It is not reasonable that
putting items with different widths in the same position
getting the same fitness values in Yang’s rules.

(2) Gao [29] argued that space waste on width is
inevitable or even necessary. A relaxation factor α is intro-
duced specially to ensure a wider item to place first to mini-
mize the width waste. However, there might be such a case
that the remaining space after putting the wider item can
also be put into one more item with minimum width. (See
Fig.2(a)–(b)). So the rules should be improved.

(3) For the height controlling, Gao set items with large
height to low fitness values by introducing a relaxation
factor in the height dimension. So shorter item would be
placed prior to the higher one, and it results in small slowy
(See Fig. 3(a)–(b)). However, the actual testing results on
public datasets are not ideal. The main reason is if the fol-
lowing item to place has a bigger height, the final slowy from
the two items may be higher, and that leads to the increase of
the overall height finally (See Fig. 3(c)–(d)).

FIGURE 2. ‘‘Two-step’’ situations of considering rmin.

Actually, previous rules have just considered ‘‘single-step’’
item placement. In this paper, the two successive items are
considered together to get a better combination to place
by introducing a set of width relaxation factors. The main
improvements are as follows:

(1) A.w represents the width of the remaining space after
placing one item. rmin.w is the width of the smallest item from
the remaining unplaced items. rmin.w ≤ A.w means that rmin
can also be placed here to further reduce the space waste.
As Fig. 2(a)–(b) show, placing r1 or r2 will result in the same
score. Fig.2(c)-(d) are showing it’s evitable to cause a waste
on width when rmin.w > A.w. In this case, item r4 with a
larger width will be placed priority over r3 to reduce the width
waste.

(2) Since that space waste is unavoidable to some extent,
so the wider of the item to place, the higher the fitness value
should be. In order to minimize the waste, a set of relaxation
factors (α, β, 0 < α < 1, 0 < β < 1) is designed to
give different fitness values in multiple width intervals. The
optimal values α = 0.2 and β = 0.5 are obtained by a number
of experiments.

(3) Height relaxation factor is abandoned to avoid exces-
sive height value after combination placement (Fig. 3). Con-
sidering two situations of when r .w = slowy.w as Fig. 4(a)–(b)
(r .h = h1vs.r .h = h2), the fitness value of the former is set
higher so that it can make the space more flat which is more
conducive to place the next item. The overlapping rules in
literature [29] are also considered in the new rules.

The details are shown in Table 1 and Figure 4(a)-(f).

C. REINFORCEMENT LEARNING METHODS
Reinforcement learning is based on environmental feedback
mechanisms. Through constant interaction with the environ-
ment, trial and error, reinforcement learning achieves maxi-
mizes the benefits of the overall action.

Q-learning algorithm is one of the value-based algorithms
in reinforcement learning. Q(s, a) is the reward value that
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FIGURE 3. Possible bad effects from controlling height in ‘‘one-step’’.

TABLE 1. Placement rules as Scorer I.

represents the execution of action a in the case of state s.
Q function selects the maximum action execution value in
the case of the state s. As a table function in the Q-learning
algorithm, Q-table is not suitable for 2DSPP. So the DQN
is used instead of Q-table for Q-learning. The principle of
the DQN is to use an artificial the neural network to replace
the action-value function. The neural network is much more
powerful than artificial feature search because it has strong
expression ability and can automatically extract features. The
network structure used in this paper has been shown in Fig. 5.

Data pre-processing approaches are shown in Table 2. For
the input data, hlarge is calculated from the height difference
between r.h and h1. hsmall is calculated from the height differ-
ence between r.h and h2. W is calculated from the difference
between the width of the r.w and the width of the space to
be placed slowy.w. hr is the ratio of r.h to rhmax.h which is
the maximum height of the remaining items. And wr is the
ratio of r.w to the rwmax which is the maximum width of the
remaining items.

FIGURE 4. Fitness values in proposed new rules (Scorer I).

FIGURE 5. Neural network as Scorer II.

The output value of network is the matching degree of
between the rectangle r and the space S. The three attributes
hlarge, hsmall and w have an intermediate value through linear
transformation and activation function. Similarly, the other
two attributes hr and wr can also have the corresponding
intermediate value by the same operations. Then the two
intermediate values first undergo a linear transformation of
2 × 4 and activation function tanh, and then undergo a
linear transformation of 4 × 1 and activation function sig-
moid to obtain the final result. The value range of sigmoid
is (0, 1).

D. DQN-BASED HEURISTIC ALGORITHM (RSRA)
DQN has been used to construct the evaluation function.
The experimental results show that the performance of this
algorithm is better than the sequence of items sorted by
width, length, area, or perimeter under most datasets. Algo-
rithm 1 has shown the details: (1) The first line shows items
sequence will be sorted for preliminary selection by an algo-
rithmwhich is similar to the greedy selection stage in IA [39]:
the skyline algorithm will be implemented respectively after
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TABLE 2. Data preprocessing for DQN.

Algorithm 1 RSRA
Input: Rectangular item sequence R(r1, r2, . . . , rn)
Output: besth

1: R←MinH {skyline(RP), skyline(Ra), skyline(Rh),
skyline(Rw), skyline(RSII )};

2: LS(R)
3: While No longer than the required program run time do
4: for i←1 to n do
5: Randomly select two sequence numbers j and k in

R;
6: Exchange j and k in Order r to obtain the new

sequence R∗;
7: currenth←skyline(R∗, Scorer I, Scorer II );
8: if current < besth then
9: besth←currenth;
10: R← R∗;
11: else
12: p←currenth/(currenth+besth);
13: if p <random(0,1) then
14: R← R∗;
15: end if
16: end if
17: end for
18: end while
19: return besth;

generating the origin sequence fromFIVE indexes: perimeter,
area, width, length (from Scorer I) and the Scorer II. The
solution of the smallest height in the FIVE sequences will
be saved for the next stage. (2) The second line shows a
local search algorithm (LS()) proposed by Leung et al. [17] is
used for a further better solution. The LS() will swap the two
items in a given sequence in turn and implement the skyline
algorithm to get a ‘‘local best’’ solution. (3) For the line 3-line
19, the SRA will be used to improve the solution ultimately.
It should be noted that line 7 combines Scorer I and Scorer
II to make decision: Scorer II will be used first. Scorer II
rule will be used only if the scores from Scorer I are equal.

And if the scores from Scorer II are also equal, the items will
be placed in order.

III. EXPERIMENTAL ANALYSIS
A. NETWORK MODEL TRAINING
For the training of neural network Scorer II, C [30], NT
[31], CX [32], BWMV [13], [33], N [14], ZDF [34] and NP
[35] and 500 groups of data sets are generated based on the
algorithm proposed by Bortfeldt andGehring [37]. Randomly
select 80% of the data as TrainSet and 20% as TestSet. The
training process is as follows:

(1) At the beginning of the training, randomly select n sets
of data from TrainSet to get the TrainSet∗ as the dataset used
in this cycle, and then sequentially pack each set of data in
TrainSet∗, which is a sequence R composed of rectangular
items.

(2) Randomly select a number m from (0, num) in which
num is the number of items in R. Use skyline algorithm under
Scorer II to pack m items from R. Mark the lowest line here
asslowy. Let k be equal to num − m. A very small k value
would result in low credibility of the DQN. Set a threshold t
for k.k < t would skip to the next loop. Otherwise the k items
at this time are processed according to the data pre-processing
method of Table 2 and recorded as xj.

(3) Try to place each xj (j = 1 . . . k) at slowy to execute
the skyline algorithm and get the final height hj. Record the
maximum height hmax and the minimum height hmin.
(4) Use the equation yj =

hmax−hj
hmax−hmin

to calculate yj from
each xj. Save all xj and yj.

(5) Finally, use the saved xj as input and yj as the target
value to train the Scorer II. The training would end when the
set time or the optimal effect has been achieved. The detail is
described as Algorithm 2.

B. EXPERIMENTAL DATA AND EXPERIMENTAL
ENVIRONMENT
Current excellent algorithms including GRASP [15], SRA
[18], IA [39] and ISH [40] have been compared with RSRA in
order to verify the performance. At the same time, according
to the method used by Lenug et al. [17], the problem can be
subdivided into two: the zero-waste problem and non-zero
waste problem. The optimal solution to the zero-waste prob-
lem is already known, while the optimal solution to the
non-zero waste problem is mostly unknownwhich will gener-
ally contain some waste space. The C, N, CX and NT datasets
are used for the zero-waste problem. And the non-zero waste
problem will be tried to be solved on the 2sp [2], [32], [36],
NP, ZDF, and BWMV datasets.

The computer is with Intel(R) Core(TM) i7-10750H CPU
2.60 GHz, RAM 16GB. The results from GRASP, SRA, IA
and ISH are based on the literatures [15], [18], [39] and [40]
respectively.

C. EXPERIMENTAL RESULT
All instances of the eight datasets and the best solutions from
the RSRA can be found in the website (https://github.com/
Gitlixiangdong/BestSolutios). Tables 3-10 in the Appendix
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Algorithm 2 Network Model Training
Input: TrainSet
Output: Scorer II

1: Random initialization neural network Scorer II
2: While No longer than the required program run time or

the desired results do
3: Randomly select n sets of data from TrainSet as

TrainSet∗
4: for i←1 to n do
5: R← TrainSet∗[i]
6: num ← number of items in R
7: m← randomint(0,num)
8: Scorer II is used as a scoring rule to pack

m rectangular items in R by skyline algorithm
9: k ←num-m
10: if k< t then
11: Continue
12: end if
13: for j← 1 to k do
14: Put the j-th item in the sequence of k items into

slowy
15: Let the input of item j and the current position

data be preprocessed as xj
16: Continue with the skyline algorithm until all

rectangular items are packed and get hj
17: end for
18: hmin← min(hj), hmax← max(hj)
19: for j← 1 to k do
20: yj =

hmax−hj
hmax−hmin

21: Save xj and yj to x, y
22: end for
23: Train the Scorer II based on the obtained x as input

and y as output
24: end while
25: return Scorer II

FIGURE 6. Ave. Gap% comparison of five algorithms.

are showing the experimental results from RSRA, GRASP,
SRA, IA and ISH on the eight datasets respectively. The
meanings of the symbols in the tables are as follow: n repre-
sents the number of rectangular items.W represents the width
of the rectangular plate. LB represents the lower bound value
of the problem instance. Gap% is defined the same as Leung
et al. [17], namely Gap% = 100× (BestH − LB)/LB, where

FIGURE 7. Best. Gap% comparison of five algorithms.

FIGURE 8. Count numbers of optimal solutions from Ave. Gap%.

FIGURE 9. Count numbers of optimal solutions from the Best. Gap%.

BestH is the best height found in one run. Ave. Gap% and
Best. Gap% denote the average Gap and the best (smallest)
Gap during 10 runs for each instance respectively [18].

Figures 6 & 7 have shown the average values of Ave.
Gap% andBest. Gap%on eight datasets fromfive algorithms.
For the Ave. Gap% as shown in Fig.6, the RSRA algorithm
has achieved the best results on all the 8 datasets comparing
to other four algorithms. The average Ave. Gap% value of
RSRA algorithm is 45.86%, 45.16%, 30.89% and 20.56%
lower than that of GRASP, SRA, IA, and ISH respectively.
For the Best. Gap% as shown in Fig.7, the RSRA algorithm
has obtained the best (smallest) values on 6 data sets (on
dataset of C, N, CX, NT, NP, BWMV) out of 8 ones. And
the average Best. Gap% value of RSRA algorithm is 48.86%,
35.21%, 18.76% and 9.57% lower than that of GRASP, SRA,
IA, and ISH respectively.

Furthermore, the values showing the optimal solutions
between all the five algorithms for each instance are labeled
in bold in Tables 4-11. And figures 8 & 9 have shown the
count numbers of optimal solutions with the Ave. Gap% and
Best. Gap% values obtained on all the data sets of the five
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TABLE 3. Dataset C calculation results.

TABLE 4. Dataset N calculation results.

TABLE 5. Dataset CX calculation results.

algorithms. For the Ave. Gap%, the RSRA algorithm has the
largest number of optimal solutions on 6 datasets (C, CX, NT,
2sp, NP, BWMV) out of 8 ones, and has the largest number

of optimal solutions in SUM. For the Best. Gap%, the RSRA
algorithm has the largest number of optimal solutions on
5 datasets (C, N, NP, ZDF, BWMV) out of 8 ones, and has
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TABLE 6. Dataset NT calculation results.

the largest SUM number of optimal solutions in all the five
algorithms.

The results can be analyzed further according to the size
of the dataset. As shown in Fig.6, even though the results
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TABLE 6. (Continued) Dataset NT calculation results.

TABLE 7. Dataset 2sp calculation results.

of RSRA are much better than that of the other four algo-
rithms, they are very close to that of GRASP and ISH. This
is probably because the dataset of 2sp is so small (most of
the instances are with n ≤ 50). The CX and ZDF datasets
have contained of instances with n ≥ 10, 000. And the

performance of the RSRA seems much better than the other
four algorithms. The count numbers of problem instances in
other five datasets (C, N, NT, NP, BWMV) are mostly with
50 ≤ n ≤ 200. RSRA algorithm is also effective on datasets
with medium problem size. Therefore, it can be concluded
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TABLE 8. Dataset Np calculation results.

TABLE 9. Dataset ZDF calculation results.

that the RSRA algorithm would achieve better performance
than the other four algorithms on eight datasets, especially on
the relatively large datasets.

The RSRA algorithm has also been compared with the
SPSAL and IAm algorithms proposed by Rakotonirainy et al.
[38] in 2020. All the instances used in experiments are from
the benchmark clusters proposed by Van Vuuren and Rako-
tonirainy [42]. Cluster1 consists of instances with predom-
inantly narrow items of elongated rectangular shape, which
are widely varying in size. Cluster2 mainly contains a number
of items with large size and are predominantly homogeneous.
Cluster3 mainly consists of approximately square items with
different sizes. These items are much smaller than the width
of the strip. Cluster4 mainly contains approximately square
items with the same size.

Table 11 in the Appendix has shown the results from
the RSRA compared with the SPSAL, IAm, GRASP, SRA,
IA and ISH algorithms. Since Rakotonirainy et al. [38] did
not provide the algorithm source code, so we apply RSRA

algorithm on the data set from literature [38]. Mean perfor-
mance ratios achieved by the various algorithms together with
their ranks at a 5% level of significance have been shown
in parentheses in the table. A rank of 1 indicates that the
algorithm achieved the smallest mean packing height over the
instances in a cluster of benchmark data. The other algorithm
experiment results come from literature [38], the result data
ranking is shown in parentheses. Table 11 has shown that the
RSRA has achieved best results on all the four data clusters.
Even on the ‘‘complex’’ Cluster1, RSRA has achieved very
good result. And the performance of RSRA has no statistical
difference from IAm on the other three clusters at the signif-
icance level of 5%.

Compared to IAm, the advantages of RSRA can be con-
cluded as follow: (1) The scoring rules (Scorer I) used
by the RSRA are more refined and reasonable than IAm.
This makes it more effective to generate the best rectan-
gular items sequence for placement. (2) DQN was used in
RSRA to obtain the evaluation function as Scorer II. So the
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TABLE 10. Dataset BWMV calculation results.

TABLE 11. Dataset cluster calculation results comparing to ref [38].

perimeter, area, width, height and the score from Scorer II
are used to implement the skyline algorithm respectively.

And the solution with the smallest height will be saved
for the next stage. This ensures that the heuristic algorithm
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can obtain a better initial solution to improve the overall
performance.

IV. CONCLUSION
This paper has proposed a hybrid heuristic algorithm for
2DSPP problem. Firstly, scoring rules based on skyline have
been improved to reduce the space waste called Scorer I.
Secondly, the reinforcement learning method has been used
to enhance the local search ability and reduce the number
of iterations called Scorer II. The Scorer I and II have been
combined with a SRA to be the RSRA. Experiments show
that compared with the other four excellent heuristic algo-
rithms (GRASP, SRA, IA, ISH), the RSRA has achieved the
best performance on eight datasets (C, N, CX, NT, 2sp, NP,
ZDF, BWMV) and has dropped the Ave. Gap% by 45.86%,
45.16%, 30.89% and 20.56% than GRASP, SRA, IA, ISH
respectively. It can be roughly concluded that the RSRA
would achieve better performance than the other four algo-
rithms on eight datasets, especially on the relatively large
datasets.

Researchers have found reinforcement learning can
achieve excellent performance for combinatorial optimiza-
tion problems [24], even though it also has some limitations.
For the running time, RL seems to be more time consuming.
Another problem is how to improve the generalization ability.
That is, train on a dataset and generalize it to other similar
datasets. It’s also found that the performance of RL mainly
depends on the structure of the neural network. So in the
future, we will focus on the neural network structure and
training algorithm to enhance the learning ability of RL, and
improve the generalization of the algorithm.

APPENDIX
See Tables 3–11.
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