
Received October 2, 2020, accepted December 11, 2020, date of publication December 18, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045768

Managing Feature Compatibility in Kubernetes:
Vendor Comparison and Analysis
EDDY TRUYEN 1, NANE KRATZKE2, DIMITRI VAN LANDUYT1,
BERT LAGAISSE1, AND WOUTER JOOSEN1
1imec-DistriNet, Department of Computer Science, KU Leuven, 3001 Leuven, Belgium
2Department for Electrical Engineering and Computer Science, Technische Hochschule Lübeck (Lübeck University of Applied Sciences), 23562 Lübeck,
Germany

Corresponding author: Eddy Truyen (eddy.truyen@cs.kuleuven.be)

This work was supported in part by the Adaptive Distributed Software (ADDIS) Project (Research Fund KU Leuven), and in part by the
CloudTRANSIT Project (German Federal Ministry of Education and Research) under Grant 13FH021PX4.

ABSTRACT Kubernetes (k8s) is a kind of cluster operating system for cloud-native workloads that has
become a de-facto standard for container orchestration. Provided by more than one hundred vendors, it has
the potential to protect the customer from vendor lock-in. However, the open-source k8s distribution consists
of many optional and alternative features that must be explicitly activated and may depend on pre-configured
system components. As a result, incompatibilities still may ensue among Kubernetes vendors. Mostly man-
aged k8s services typically restrict the customizability of Kubernetes. This paper firstly compares the most
relevant k8s vendors and, secondly, analyses the potential of Kubernetes to detect and configure compatible
support for required features across vendors in a uniform manner. Our comparison is performed based
on documented features, by testing, and by inspection of the configuration state of running clusters. Our
analysis focuses on the potential of the end-to-end testing suite of Kubernetes to detect support for a desired
feature in any Kubernetes vendor and the possibility of reconfiguring the studied vendors with missing
features in a uniformmanner. Our findings are threefold: First, incompatibilities arise between default cluster
configurations of the studied vendors for approximately 18% of documented features. Second, matching end-
to-end tests exist only for around 64% of features and for 17% of features these matching tests are not well
developed for all vendors. Third, almost all feature incompatibilities can be resolved using a vendor-agnostic
API. These insights are beneficial to avoid feature incompatibilities already in cloud-native application
engineering processes. Moreover, the end-to-end testing suite can be extended in currently unlighted areas
to provide better feature coverage.

INDEX TERMS Computer systems organization, architectures, distributed architectures, cloud computing.

I. INTRODUCTION
Vendor lock-in avoidance is a common problem for almost
all cloud system and application engineers. The core com-
ponents of their distributed and cloud-based applications like
virtualized server instances and basic networking and storage
can be deployed using commodity services. However, fur-
ther services—that are needed to integrate these virtualized
resources in an elastic, scalable, and pragmatic manner—
are often not considered in standards. These integrating and
‘‘glueing’’ service types, which are crucial for almost every
cloud application, are usually not provided in a standardized
way. It seems that all public cloud service providers try

The associate editor coordinating the review of this manuscript and

approving it for publication was Chintan Amrit .

to stimulate cloud customers to use their non-commodity
convenience service ‘‘interpretations’’ to bind them to their
infrastructures and higher-level service portfolios. As a result,
a transfer to another cloud infrastructure is very often a
time-consuming and expensive one-time exercise due to
non-obvious technological bindings.

According to an analysis performed in 2016 [1], the per-
centage of these commodity service categories that are con-
sidered in standards like CIMI, OCCI, CDMI, OVF, OCI,
TOSCA is even decreasing over the years. This decrease has
mainly to do with the fact that new cloud service categories
are released faster than standardization authorities can stan-
dardize existing service categories. Fig. 1 shows this effect by
the example of Amazon Web Services (AWS) over the years.
For a more detailed discussion, we refer to [2], [3].

228420 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7448-7681
https://orcid.org/0000-0002-6310-3248

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

FIGURE 1. Decrease of standardization by the example of AWS.

Container orchestration platforms like Kubernetes, Mesos,
Swarm, or Nomad emerged in recent years and provide
nowadays what could be considered ‘‘a unifying cloud
infrastructure’’ [4]–[6]. Standardization bodies like the OCI
(Open Container Initiative), CNCF (Cloud Native Computing
Foundation [7]) and the Kubernetes Special Interest Groups
(SIGs) [8] arose around these trends. These industry-wide
initiatives could and should ideally protect the customer from
vendor lock-in.

More specifically, the CNCF has created a certification
program for Kubernetes vendors that builds upon the end-
to-end (e2e) testing suite of Kubernetes that is co-developed
by the k8s SIGs and constitutes an essential part of the
open-source k8s distribution [9], [10]. This program thus
improves interoperability and portability of application and
cluster resources across different Kubernetes vendors.

However, we have found that some resources of the
RESTful API of Kubernetes may not be migrated between
certified k8s vendors if the CNCF conformance program
does not enforce certain functional features required for that
particular k8s resource. The CNCF program cannot enforce
some features because Kubernetes is highly customizable via
various customization interfaces, and thus many features are
considered optional.

Kubernetes vendors can freely decide how to encapsulate
these customization interfaces from the customer: (i) one can
offer the customization interfaces as-is, (ii) provide a pro-
prietary, higher-level configuration interface that internally
maps to one or more k8s customization interfaces or (iii) one
hides the customization interface completely and locks it in a
particular setting.

When the customization interfaces are locked by a vendor,
likely, some features cannot be activated. As a result, it is
not possible to migrate to that vendor any k8s resources that
depend upon that feature. Neither is it possible to replicate
these k8s resources in an interoperable manner across a
federation of cloud providers [11], [12].

These type of vendor lock-in and migration problems
typically appear the most for Kubernetes vendors of the

hosted product type. This type of vendor typically offers
proprietary customization interfaces but also lock-in various
interfaces.

The rationale for selecting vendors of the hosted prod-
uct type is that the customer is offered a higher-level user
interface that substantially eases the maintenance of the k8s
platform and manages the availability and service level of the
platform. In opposition, CNCF-certified Kubernetes vendors
of the distribution or installer type offer more customization
interfaces ‘as is’, but these vendors also expect more expertise
from the customer [13].

In this paper, we assess feature incompatibilities between
default cluster configurations of three leading vendors of
the hosted product type that we consider type-representative:
Azure Kubernetes Service (AKS) [14], AWS’ Elastic Kuber-
netes Service (EKS) [15] and Google Kubernetes Engine
(GKE) [16]. However, the methodologies used for this study
are not limited to AKS, EKS and GKE, but can be applied for
every other Kubernetes vendor of the hosted product type.
These commercially managed services have been chosen
because they form the largest market share of the current
cloud computing industry.

Moreover, we analyze the potential of Kubernetes to
detect and configure compatible support for desired fea-
tures across these vendors in a uniform manner. This
analysis is inspired by the fact that existing state-of-
the-art on model-driven migration of clusters across cloud
providers [17] is very similar to the declarative configuration
management approach of Kubernetes. Declarative configura-
tion management approaches enforce a desired cluster state
by a control loop that detects differences between desired
and actual cluster state. Differences are resolved through
automated reconfiguration [36].

Thus, we make three contributions. Firstly, we compare
differences between vendors concerning cluster architecture
and how the customization interfaces of Kubernetes are
encapsulated by the vendors (as-is, proprietary, locked). This
comparison allows us to distill a systematic overview of the
ensuing feature incompatibilities.

Secondly, we analyze the potential of existing information
assets of Kubernetes that are amendable for automated pro-
cessing to allow for the detection of desired features by a
control loop: (i) leveraging the aforementioned e2e testing
suite of Kubernetes to test if a desired feature is function-
ing well, (ii) inspection of the visible configuration state of
running clusters to determine that the feature is activated
(iii) analysis of vendor documentation about whether the fea-
ture is supported. These three information assets are analyzed
and mapped to an existing taxonomy of documented features
of the open-source k8s distribution [21]. This mapping will
show the potential of using these assets to detect compatible
support for required features across the studied vendors.

Thirdly, we analyze the potential of defining a vendor-
agnostic API for activating desired features across vendors
in a uniform manner employing the control loop. This
analysis also generates cloud migration guidance that helps

VOLUME 8, 2020 228421

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

application managers or cluster administrators to avoid fea-
ture incompatibilities already in cloud-native application
engineering processes.

This paper is structured as follows. Section II introduces
the necessary background on Kubernetes and the above-
mentioned approach for feature compatibility management.
It also presents the methods used for the feature-based
vendor comparison and analysis of the potential of the e2e
testing suite. Then, Section III presents a detailed account
of the findings for the three studied vendors, i.e., what are
their feature incompatibilities, what is the feature coverage
of the testing suite and other information assets and what
reconfiguration actions are supported for activating a missing
feature. Subsequently, Section IV summarizes these find-
ings and further discusses the potential of Kubernetes for
supporting feature compatibility management. Thereafter,
Section V presents related work, and Section VI presents our
conclusions.

II. BACKGROUND AND METHODS
This section is structured as follows. Section A first presents
the minimal amount of introduction to Kubernetes to under-
stand the remainder of this Section. Thereafter, Section B
sketches our previous work for transferring cluster config-
urations across cloud providers. Then Section C proposes
an extension of this approach for automated feature compati-
bility management across Kubernetes vendors and identifies
three concerns related to how to conduct the research. These
three concerns are discussed in the remaining sections.
Section D presents our previous work on a feature taxonomy
for container orchestration platforms and refines it towards
transferring Kubernetes clusters across cloud providers.
Section E presents the information assets that are amendable
for automated processing to detect support for the desired
feature across a set of vendors. Section F presents the method
used for quantifying to which extent the studied vendors can
support a vendor-agnostic API for installing missing features
across vendors in a uniform manner.

A. KUBERNETES
Kubernetes is the de-facto standard for container-based clus-
ter orchestrators. A cluster consists of a master control plane
and worker nodes. It has been a pioneering platform that puts
forward the declarative configuration management approach
for management of container-based distributed applications.
Declarative configuration management entails that a user-
specified, desired system state is enforced upon an actual
system by a control loop that detects differences between
desired and actual state [18]. In Kubernetes, the desired
state is specified and managed using a RESTful API and is
composed of various types of resources such as containers,
nodes and services. Different control loops exist for life cycle
management of different kinds of resources.

The following components run within the master con-
trol plane: an API server for submitting and querying k8s
resources, an etcd database for storing the resources, various

controller managers that each implement the control loop
for particular types of resource and a scheduler for placing
containers on worker nodes.

On every master and worker node runs the kube-proxy and
the kubelet. The former constitutes the core load balancer of
Kubernetes. The latter is a local agent for bootstrapping the
nodes, for running the containers, provisioning their network
endpoints and managing persistent storage volumes.

B. TRANSFERRING CLUSTER CONFIGURATIONS
Throughout a project called CloudTRANSIT [20], we
searched intensively for solutions to overcome ‘‘cloud lock-
in’’— the overall goal was to transfer cloud-native applica-
tions at runtime without downtime between different cloud
providers. We analyzed commonalities of existing public
and private cloud infrastructures via a review of indus-
trial cloud standards and cloud applications and via a sys-
tematic mapping study of cloud-native application-related
research [5]. It became clear that cloud-native applications
share many common characteristics that can be exploited
for transferability. As such, we compiled a reference model
that plenty of cloud-native applications have in common [1].
As Fig. 2 shows, two basic operation modes of cloud-
native applications are reasonable. One can deploy a highly-
available k8s cluster within the same cloud provider, or one
can deploy multiple k8s clusters across different federated
cloud providers [11], [12] (multi-cloud, according to Fig. 2).

In both cases, the need arises to ensure that a particular
application or cluster resourceworks the same acrossmultiple
cloud providers either when migrating or replicating these
resources to another cloud provider. The existing state-of-
the-art in cloudmigration andmulti-cloud resource orchestra-
tion has thoroughly validated the model-driven approach that
allows for infrastructure-agnostic configuration management
of container orchestration platforms across multiple cloud
providers [17], [6], [101], [102].

In particular, our previous work [6] on a model-driven
approach for transferring clusters across cloud providers is
conceptually very similar to the declarative configuration
management approach of Kubernetes and its control loop
(cfr. Section II.A).

As shown in Fig. 3, the intended state of a Kubernetes plat-
form, specified as a desired cluster configuration is enforced
by the control loop, typically each time when a new cluster
is added to the federation. Differences between intended and
current state can be detected through monitoring the actual
cluster configuration. The control loop then translates these
differences into a set of reconfiguration actions that are sup-
ported by a vendor-agnostic API. This API is implemented
by multiple drivers, one for each cloud provider.

C. TOWARDS MANAGEMENT OF FEATURE COMPATIBILITY
The motivation for this work is the observation above that
many optional or alternative features exist in the open-source
k8s distribution, and many vendors, especially vendors of
the hosted type, hide several of the existing customization

228422 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

FIGURE 2. A reference architecture that many cloud-native applications have in common [1].

FIGURE 3. A vendor-agnostic control loop for enforcing a desired declarative state of the Kubernetes platform.

interfaces for activating these features and installing their
dependent systems components.

Our vision is that the vendor-agnostic control loop (see
Fig. 3)may also be used for ensuring that the same set features
are consistently installed, and activated:
• The desired state of a cluster configuration could be
augmented with a specification of desired features.

• Differences between intended and current state can be
detected by relying on a feature detection module as
part of the monitoring aspect of the control loop. Such
a module can detect if the desired feature is supported
by the default cluster configuration of a target vendor by
extracting and processing information from the target
vendor.

• If the desired feature is not supported according to
this information, the control loop will execute a set
of reconfiguration actions that are implemented by
the vendor-agnostic API that can be supported by all
vendors.

An overview of the design challenges for this extension
to the declarative configuration management approach is
outside the scope of this paper. But even in a more man-
ual setting, application managers and cluster administrators
would become more knowledgeable about what optional or
alternative features of the open-source k8s distribution are
supported by a default cluster configuration of a particular
Kubernetes vendor. Moreover, having available an array of
tactics for reconfiguring vendors with a desired feature in

VOLUME 8, 2020 228423

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

a uniform manner improves productivity and quality of the
cloud-native application engineering process.

These considerations raise three concerns:
1) How to identify the external (or customer-oriented)

features of the open-source k8s distribution?
2) How to map features to information assets that

are amendable for automated processing to semi-
automatically detect if a feature is supported by a k8s
vendor?

3) How to quantify the ease-of-migration of existing
reconfiguration actions for installing a particular fea-
ture in a target cluster and whether these actions can be
supported through a vendor-agnostic API?

D. CONTAINER ORCHESTRATION FEATURE TAXONOMY
For the first concern, we have already conducted a compre-
hensive study of the documentation of existing open-source
container orchestration platforms, including Docker Swarm,
Mesos and Kubernetes [19]. In this study, we have distin-
guished between common features (shared by at least two
orchestration platforms) and 54 unique features. We have
organized these features into nine functional aspects that are
presented in Fig. 4.

FIGURE 4. Nine functional aspects of container orchestration platforms.
The number of common and unique features supported by Docker
Swarm, Kubernetes and Mesos is shown for each functional aspect. When
a common feature is partially supported, it is counted as 0.5 [19].

For Kubernetes v1.11, released in July 2018, we iden-
tified in total 148 features [19]. For Kubernetes v1.13 –
the default k8s release of the major cloud providers at the
time of our research – we identified 162 features in total.
The small number of 14 additional features is in line with
the emerging trend that the number of feature additions has
significantly decreased in all mainstream orchestration plat-
forms [19]. This trend can be explained by the fact that
k8s already appeared as a de-facto standard [21]–[23] and

the open-source development efforts refocused on improv-
ing the security, performance and robustness of existing k8s
features [24]–[26].

The existing feature taxonomy also includes the framework
customization aspect that identified 12 different types of
customization interfaces (cfr. Fig. 4).

We distinguish between three types of customization inter-
faces in Kubernetes:
• feature gates, which are toggles for (de)activating the
alpha and beta features of a particular k8s release

• admission controllers that validate and mutate API
requests to enforce features

• extension APIs that allow extending Kubernetes with
various functionalities such as networking plugins, vol-
ume plugins, IAM plugins, container runtimes and new
REST APIs.

Additionally, we also account the separate instantiations
of feature gates and admission controllers as independent
features in their own right. This point of view enables a
finer-grained level of configurability that Kubernetes vendors
can decide to expose in their customization interfaces.

Kubernetes release v1.13 itself offers 66 features gates
and 28 admission controllers resulting in a total set of k8s
256 features (162 external k8s feature, 66 feature gates and
28 admission controllers).

E. MAPPING FEATURES TO INFORMATION ASSETS
To address the second concern, we will consult three comple-
mentary information assets that are amendable for automated
processing. In particular, we have considered the follow-
ing assets in order of their ease for automated processing:
(1) end-to-end testing of features by running Kubernetes’
end-to-end testing suite, (2) inspection of the configuration
of running k8s clusters, (3) study and analysis of the vendor
documentation.

1) END-TO-END TESTING SUITE
The test modules of the e2e testing suite are organized in
different packages according to the k8s SIGs. Test modules
are also labelled with a String-based descriptor that consists
of multiple labels. It can be selected at run-time, which test
modules to execute, employing a regular expression over
these labels [27]. A test module itself consists of a dozen of
tests. Each is labelled with two other String-based descriptors
that specify what the test checks and how the test performs the
check.

These String-based descriptors make it easy to mine the
source code of the e2e testing suite for relevant tests on
a per-feature basis by using utilities such as grep. For k8s
release 1.13, we were able to map 1730 out of the 1940 tests
of the entire e2e testing suite to a part of the documented
k8 features, feature gates and admission controllers. Note
that, on average, just 1 out of 10 tests of the e2e testing suite
has been labelled as a CNCF conformance test.

Each test is also labelled with a list of the k8s vendors
supported by that test. As such, we could easily find all

228424 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

tests that are supported by a particular subset of k8s vendors.
The e2e testing suite will only run vendor-specific tests if a
specific flag and associated configuration parameters for that
vendor are set [10].

2) CONFIGURATION STATE
Secondly, we also studied the configuration state of run-
ning k8s clusters of specific vendors to establish config-
uration proof for particular features. The total number of
features with configuration proof that can be found in this
way depends on the k8s vendor itself. This analysis can be
somewhat limited for hosted k8s products when these offer
no visibility into the master control plane of the cluster.

3) VENDOR DOCUMENTATION
Thirdly, we relied on vendor-specific documentation to deter-
mine what features are installed by default and which features
could be activated via a customization interface.

4) AUTOMATED PROCESSING OF TEST RESULTS
To demonstrate the feasibility of automated processing of test
results, we have created a thin layer of automation to process
e2e test results. Firstly we aggregated into a CSV file the
mappings from features to zero or more relevant regular e2e
test expressions. Then, given a subset of k8s vendors, each
row of the CSV file contains a tuple of documentation states
for each vendor (the feature is supported, not supported or
optional/alternative) and a tuple of found configuration proof
for each vendor. Secondly, this CSV file is processed by a
parser that generates for each e2e test expression the total
number of tests and the number of failed and succeeded tests
for each vendor. All e2e tests are run once beforehand in
multiple batches where each batch corresponds with the tests
of one k8s SIG packages. This grouping into batches is to
prevent interferences between SIG packages due to residual
effects in the cluster state.

F. QUANTIFYING EASE-OF-MIGRATION
With respect to the third concern, we distinguish between dif-
ferent levels of ease and automation with which a k8s feature
can be consistently activated when transferring a cluster from
a source vendor to a target vendor:
• At the highest level of ease, automated migration
appears for a particular k8s feature when the k8s feature
is already supported by the target vendor or the native
customization interfaces of Kubernetes can be used to
activate the k8s feature.

• At the medium level, uniform reconfiguration of the
target vendor is possible by executing a sequence of
generic reconfiguration primitives that are offered by the
vendor-agnostic API.

• Custom translation of input or output data is needed
when the target vendor does not support activating
the open-source k8 feature. Instead, the vendor offers
an alternative feature implementation that is not
interoperable with the source vendor’s implementation

(e.g. different data formats for logging, monitoring,
auditing).

• Migration is not possible because the target vendor does
not provide support for activating the relevant k8s fea-
ture, and there is no alternative feature implementation.

III. VENDOR COMPARISON AND ANALYSIS
For this article, we have compared the three leading ven-
dors of the hosted type: Azure Kubernetes Service (AKS),
the AWS Elastic Container Service for Kubernetes (EKS)
and Google Kubernetes Engine (GKE). In the following,
we investigate the following five questions:

1) What are the differences between vendors in terms of
cluster architecture?

2) What are the differences between vendors in terms of
their approach towards encapsulating the customiza-
tion interfaces of Kubernetes?

3) Which feature incompatibilities between similar
default cluster configurations of the vendors ensue
from the above differences?

4) What is the completeness of the e2e testing suite and
visible cluster configuration state in terms of feature
coverage? What is the completeness and accuracy of
vendor documentation?

5) What are generic reconfiguration actions for installing
missing system components for a missing feature and
activating it uniformly?

Tables 1 to 3 summarize the main findings for these ques-
tions for k8s release v1.13 – the default supported release by
all studied vendors at the time of our research.

Concerning the 1st question (see Table 1), it is observed that
AKS does not support a highly-available master plane that is
replicated across multiple availability zones. Moreover, GKE
offers the most scalable platform.

Concerning the 2nd question (see Table 2), EKS locks the
fewest customization interfaces and should therefore allow to
activate or deactivate a larger subset of optional and alterna-
tive features than AKS and GKE.

For the 3rd question (see Table 3), we found significant
differences between at least two vendors for 30 out of 162 k8s
features, 28 out of 66 feature gates, and 7 out of 28 admission
controllers (see 1st and 2nd row of Table 3).

With respect to 4th question (see Table 3), matching e2e
tests exist only for 64.1% of the 162 k8s features (see 3rd
row and 1st column of Table 3). Worse, 17.8% of the features
have matching tests that are difficult to configure or are not
supported for all studied vendors. As such, we were able to
produce valid test results for only 46.3% of the documented
k8s features (see 4th row of Table 3). Available configura-
tion state was even more superficially available because all
studied vendors hide the master control plane configuration
(see 5th row of Table 3). Vendor documentation is the most
comprehensive source of information (see 6th row). Finally,
e2e test results revealed 12 errors in vendors or at least these

VOLUME 8, 2020 228425

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

TABLE 1. differences concerning the cluster architecture.

results were inconsistent with documentation or configura-
tion proof (see 7th row).

Finally, with respect to the 5th question, the following
relevant reconfiguration primitives for a vendor-agnostic API
can be distilled:

• wrap commonly offered (proprietary) customization
interfaces

• install add-ons using kubectl or the vendor CLI,
• bootstrap worker nodes with a custom VM image,
a cloud-init script or a privileged DaemonSet,

• apply the Operator pattern [71] to re-introduce missing
features through CRDs.

In the following, we present a more detailed account of
these five questions.

A. CLUSTER ARCHITECTURE AND SETUP
All three studied vendors adopt the declarative configuration
management approach of Kubernetes that has been intro-
duced in Section II.A. As a reminder, the following compo-
nents run within the master control plane: an API server for
submitting and querying k8s resources, an etcd database for
storing the resources, various controller managers that each
implement the control loop for particular types of resource
and a scheduler for placing containers on worker nodes.

TABLE 2. Differences between vendors with respect to their approach of
encapsulating the customization interfaces of Kubernetes.

TABLE 3. Feature coverage of the e2e tests, configuration state and
vendor documentation.

For extensibility, the REST API is hierarchically divided
into different API groups that can be versioned within the
alpha/beta/stable stages [34].

For all studied vendors, the master control plane is out of
direct control of the user. However, it is possible to query the
API server with the currently activated API groups. It is also

228426 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

possible to inspect the logs of the master control plane in all
vendors.

This analysis shows that all vendors are by default config-
ured with the same API groups but only from the beta and
stable stage. Only GKE includes in its cluster catalogue the
so-called alpha cluster where several API-groups from the
alpha stage are additionally included. However, GKE does
not commit to an SLA for these type of clusters.

Note that configuring the API server with an additional
API group does not guarantee that this API group will work
properly. After all, many API groups require extra bolts and
nuts of Kubernetes to be appropriately configured as well (see
Section III.B).

Worker nodes can be accessed via SSH in all vendors
allowing us to inspect the configuration of the Kubernetes
platform at these worker nodes. All vendors install the k8s
platform similarly: the kubelet agent runs as a regular Linux
process, whereas all other k8s components run as Kubernetes
Pods (see Section III.C). There is also support for running
Kubernetes clusters on Windows Server nodes in all vendors.

Although the basic architectural approach and installation
methods share the common core of Kubernetes, architectural
properties related to scalability and availability do differ
considerably among the studied vendors (see Table 1) [28].
These differences are presumably due to their underlying IaaS
infrastructure.

B. FRAMEWORK CUSTOMIZATION INTERFACES
The ease in migrating Kubernetes resources between clusters
depends on the way these clusters and their underlying k8s
platforms are configured and whether these configurations
can be ported. Kubernetes can be configured using the fol-
lowing customization interfaces [35]–[37]:
• feature gates
• admission controllers
• scheduler plugins
• networking plugins
• plugin-architecture for other container runtimes
• storage volume plugins
• Identity and Access Management (IAM) modules
• annotations
• extending the main k8s API with custom resource defi-
nitions (CRDs)

• aggregation of new APIs
• management of extended node resources such as GPU
• CloudControllerManager plugin
• the KubeletConfiguration API

1) FEATURE GATES
In the open-source k8s distribution, alpha and beta features
are by default deactivated and activated, respectively. This
default setting can be changed by setting specific feature gates
to true or false. Also, alpha features may be promoted to the
beta stage in later releases of the open-source k8s distribution
and beta feature gates may be removed as they promote to
stable features [38].

The available configuration proof for these feature gates
shows that the studied vendors differ slightly concerning the
adjustments of this default setting (see Table 4).

TABLE 4. Adjustments to the default feature gate settings of k8s.

Using the KubeletConfiguration API of EKS, cluster
administrators can make further adjustments to those feature
gates that affect the functionality of worker nodes [40].

In GKE alpha clusters, all alpha features for master and
worker nodes are activated by default, but it is not possible to
further customize on a per feature-basis.

However, alpha features correspond with immature func-
tionality. Eventually, they either promote to the beta stage,
or they are removed in a subsequent Kubernetes release. It is,
therefore, better to select a later Kubernetes release where the
desired alpha feature has become beta and thus is activated by
default. For these reasons, we ignore alpha feature gates in the
remainder of this article.

2) ADMISSION CONTROLLERS
An admission controller is a modular piece of code that inter-
cepts requests to the master API server. Multiple admission
controllers can be run in sequence [41]. After an API request
has been successfully authenticated and authorized, admis-
sion controllers either accept, reject or mutate the request.
They can also update the state of other stored k8s API
objects. Admission controllers are used for implementing
various functionalities such as resource quota management
and enforcement of container security isolation policies (cfr.
Section III.C). Unfortunately, different vendors enable a dif-
ferent set of admission controllers. All vendors also differ
from the default settings of the open-source k8s distribution
(see Table 5). Although cluster administrators cannot change
these settings, there exists a run-time pluggable admission

VOLUME 8, 2020 228427

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

controller, namedWebhook, which can be used in all vendors
to inject custom code into a running cluster [19].

Some e2e test results for the k8s release v1.13 are
inconsistent with the existing documentation of the vendors
(see Table 5). So, parts of the current vendor documenta-
tion [42]–[44] is outdated or recent additions are insuffi-
ciently tested.

TABLE 5. An overview of which admission controllers are enabled by
default in the open-source distribution of k8s and the three studied
vendors.

3) SCHEDULER PLUGINS
The default scheduler of the open-source k8s distribution
can be replaced, or multiple schedulers can run at the same

time [46] by setting the schedulerName field of the Pod REST
resource. All vendors support this feature by default because
the feature is part of the core API group of k8s. No e2e tests
exist that validate a custom scheduler implementation.

4) NETWORKING PLUGINS
Two different types of network plugin architectures – kubenet
and CNI – exist [47]. Although these two plugin architec-
tures have been incepted at the beginning of the open-source
Kubernetes project, they are still labelledwith the alpha stage:

• CNI is a specification for a network plugin architec-
ture that is jointly developed by multiple companies.
It allows for multiple network plugins to be installed
simultaneously and inter-composed together. Some CNI
plugins also allow attaching multiple network interface
to a single Pod [19].

• Kubenet has been developed in-tree within the Kuber-
netes open-source project to support well-performing
container networks on top of cloud providers.

Different vendors employ both types of plugins for differ-
ent cluster configurations (see Table 6). Standard cluster con-
figurations tend to run on kubenet while clusters with more
advanced features rely on CNI. Moreover, the CNI-based
plugin Calico is the leading plugin for network policies.
However, this latter feature does not function appropriately
in AKS (see Section III.C).

TABLE 6. A mapping between cluster configurations of vendors and type
of network plugins.

5) PLUGIN ARCHITECTURE FOR CONTAINER RUNTIMES
Kubernetes supports the Container Runtime Interface (CRI)
for pluggable container runtimes. It also supports the OCI
standard, provided that cri-o is installed [54]. Therefore,
in theory, it should be possible to use a wide range of con-
tainer runtime implementations in any certified k8s vendor.
However, it is only possible in EKS to boot worker nodes
from customized VM images that have been amended with
an installation of cri-o [55].

GKE boots worker nodes by default from a VM image
with a container-optimized OS that supports the contain-
erd engine [56] next to Docker. In EKS, as already noted

228428 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

above, it is possible to boot worker nodes from customized
VM images that support containerd [57].

No e2e tests or configuration proof validates the above.

6) VOLUME PLUGINS
Kubernetes supports a wide range of persistent volume
drivers and an API for dynamically provisioning volumes
using storage classes and persistent volume claims [58].
Kubernetes also supports dynamic installation of new types of
volume plugins using the Container Storage Interface (CSI)
specification [59].

All studied vendors offer a very similar set of standard
Kubernetes volumes. Commonly supported volume drivers
are local volumes and external persistent volumes that rely
on vendor-specific storage services. All vendors also support
dynamic provisioning of volumes. Finally, at least one oper-
ational CSI-based volume driver exists in each vendor [60].

Note that all vendors support many operational manage-
ment features according to the default configured admission
controllers (see Table 5): (i) prevention of deletion of persis-
tent volumes that are still in use by Pods, (ii) dynamic resiz-
ing of existing, unattached volumes [61] and (iii) automated
capacity management of a node in terms of the maximum
number of simultaneously attached volumes [62].

There is one incompatibility, though, namely for the sub-
Path feature [63]. AKS and GKE currently support this fea-
ture for a substantially larger number of ‘‘in-tree’’ developed
volume drivers (e.g. iscsi, rdb, ceph, nfs) than EKS.

Cluster administrators can also install other storage solu-
tions themselves in the cluster if these solutions have a
CSI-based or in-tree developed volume driver. For example,
the e2e tests for installing an NFS server and attaching NFS
volumes to containers all succeeded for all studied vendors.

7) IAM MODULES
Kubernetes offers a wide range of modules for authentication
of human users, worker nodes and non-human Pods. Inspec-
tion of the vendor documentation [64]–[66] and configuration
state demonstrates that all studied vendors all rely on X509
certificates, bearer tokens and service account tokens for
respectively human users, worker nodes and Pods. Cluster
administrators cannot use other existing in-tree developed
authentication modules of the open-source k8s distribution
(see Table 7).

In opposition to service accounts for Pods, there is
no Kubernetes API for representing human users and
bearer tokens. The in-tree developed authentication modules
simply attempt to associate specific attributes, such as
UserName, UID and Groups to every HTTP request to the
Kubernetes API.

Kubernetes allows specifying access control policies
based on these attributes using role-based access control
(RBAC) [67] or attribute-based access control (ABAC) [68].
While all vendors support RBAC, ABAC is only supported
by GKE. The e2e tests further show that node authorization

TABLE 7. Compatibility of vendors with in-tree developed AAA features
of Kubernetes.

(access control of requests to the master API from worker
nodes) does not function correctly in AKS.

Kubernetes also supports authentication and authorization
of requests to the kubelet API [69]. According to the con-
figuration state of the worker nodes, all vendors support it,
although AKS only supports X509 certificates.

Finally, Kubernetes offers stable support for non-
repudiation by means of audit [70] and all vendors support it.

8) ANNOTATIONS AND CUSTOM RESOURCE DEFINITIONS
Annotations allow attaching additional information to exist-
ing API resources, whereas Custom Resource Definitions
(CRDs) allow extending the Kubernetes API with new types
of resources. CRDs are used for adding new functionality to
running Kubernetes clusters and offer higher-level abstrac-
tions formanaging popular Kubernetes applications bymeans
of the Operator pattern [71], which is a user-defined control
loop for managing the life cycle of the CRDs.

Each studied vendor allows customers to extend the API
with their own annotations and CRDs. The e2e test suite
validates support for these two features for all vendors.

9) API AGGREGATION
Kubernetes allows also adding new APIs to orthogonally
extend the Kubernetes API of running clusters with new
functionality. For example, Istio, a popular service man-
agement layer, relies on the API aggregation feature. Each
vendor supports this feature. Matching tests exist for this
feature, but these tests have not been developed for the studied
vendors.

VOLUME 8, 2020 228429

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

10) MANAGEMENT OF EXTENDED NODE RESOURCES
Management of GPU resources is an optional feature in all
studied vendors. To install the feature, worker nodes need to
be booted from prefabricated VM images with GPU support,
and theGPU device plugin needs to be installed on every node
using the DaemonSet API of Kubernetes.

It is therefore also possible to install any type of device
plugin, provided that nodes can be bootstrapped from cus-
tom VM images with the appropriate software installed.
As already noted above, it is only possible in EKS to bootstrap
worker nodes from custom VM images. However, it is also
possible to bootstrap worker nodes with missing software
using a DaemonSet that has privileges for modifying the host
OS [72], [73]. Alternatively, EKS [74] and GKE [75] also
offer support for the cloud-init standard for bootstrapping
the worker nodes with the appropriate software. However,
the use of a single cloud-init script is more trustworthy than
installing software with a privileged DaemonSet; the cluster
security configuration must be temporarily modified to allow
for privileged DaemonSets, but this leaves the cluster more
vulnerable to malicious attacks.

Matching e2e tests exist for the DevicePlugin feature, but
the tests produced false negatives because these tests could
not be correctly configured using the sonobuoy tool.

11) CLOUD CONTROLLER MANAGER PLUGIN
Besides the core controller managers, the cloud controller
manager allows k8s vendors to implement additional control
loops for managing the cloud infrastructure that is utilized
or owned by the vendors. Examples of these cloud-specific
control loops include provisioning of new nodes, creating
a persistent volume and attaching it to a node, configuring
in-bound and out-bound routes such as the cloud-provisioned
load-balancing service and the back-end.

A legacy ‘‘in-tree’’ cloud provider package of the open-
source k8s distribution has been replaced by an ‘‘out-of-tree’’
approach where the code of the cloud-specific controller
managers can evolve independently from the k8s core [76].
However, an inspection of the configuration state of the run-
ning platforms shows that all vendors still use the ‘‘in-tree’’
code for k8s release v1.13.

12) KUBELET CONFIGURATION API
As stated in Section II.A, the kubelet is the local agent of
Kubernetes on every node of the cluster. It is responsible
for integrating the container runtime and networking plug-
ins into a coherent fashion for a particular combination of
activated feature gates. Moreover, it also configures the con-
tainer runtime to enforce resource isolation for CPU,memory,
ephemeral storage, as well as isolation of file system and
network isolation between co-located containers.

The kubelet command in the reference manual of
Kubernetes has gradually evolved from accepting a long list
of parameters to taking a single configuration file that con-
tains a large part of these options [77].

Such a configuration file enables infrastructure-as-code
practices [78] and is therefore recommended in any develop-
ment context where feature compatibility between different
Kubernetes clusters must be managed.

Since Kubernetes release 1.11, this file can also be man-
aged on a per-node basis, using the KubeletConfigura-
tion API that belongs to the core API group. If a vendor
offers (proprietary) access to this API, this can be regarded
as a feature on itself.

EKS allows setting some fields of the KubeletConfigura-
tion API by setting the kubeletExtraConfig field of EC2 node
groups [40]. These parameters include feature gates that only
affect worker nodes, resources reserved for the Kubernetes
platform, and CPU management policies.

For the other vendors, the aforementioned privileged
DaemonSet can update kubelet configuration parameters, but
this requires restarting the kubelet. Unfortunately, dynamic
kubelet reconfiguration is not activated in the initial kubelet
configuration of the vendors and therefore restarting the
kubelet will affect all running containers on the node. As a
result, each node needs to be drained before restarting the
kubelet, which is a costly operation for clusters with a large
number of nodes. We refer to Section III.C.6 for more infor-
mation about dynamic kubelet reconfiguration.

C. FEATURE INCOMPATIBILITIES
We explain the found feature incompatibilities for the other
seven functional aspects of the feature taxonomy. A large part
of the found feature incompatibilities emerge from the cluster
architecture and customization interfaces of the vendor, but
not all of them. For example, some core k8s features do not
work out-of-the-box but require a manual reconfiguration of
the underlying cloud infrastructure.

1) APPLICATION CONFIGURATION AND DEPLOYMENT.
Pods are the unit of application deployment in Kubernetes.
Different API resources exist for configuring and deploy-
ing Pods in different types of workload configurations:
ReplicaSet, StatefulSet and DaemonSet respectively manage
web application tiers, master-slave databases and daemons on
every node of the cluster. All these workload configurations
can be auto-scaled in a generic manner by the Horizontal or
Vertical Pod Autoscaler APIs.

Secondly, Kubernetes also supports the reuse of modular
Pod configuration fragments by means of PodPreset and
ConfigMap resources.

Thirdly, there is support for different types of (rolling)
update strategies for Pods such as rolling upgrades and canary
testing, and (non)-disruptive Pod updates [19].

Most of these features are commonly supported by all three
vendors. There are, however, a few differences. Firstly, the
Horizontal Pod Autoscaler API is only functioning well out-
of-the-box in AKS and GKE but not in EKS due to a miss-
ing kube-system Pod called metrics-server. However, cluster
administrators can install this missing metrics-server them-
selves [79]. Secondly, the Vertical Pod Autoscaler add-on is

228430 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

only supported in GKE [28]. Thirdly, alpha clusters of GKE
support the PodPresets API, which allows injecting a single
piece of configuration across multiple Pods.

2) SERVICES NETWORKING AND LOAD BALANCING
Kubernetes supports various approaches for exposing the ser-
vices of Pods through a stable network address that survives
failures andmigration of Pods [80]. Key-value labels attached
to Pods enable application managers to select the subset of
Pods that must be exposed by means of the same network
address.

Kubernetes supports different types of stable network
addresses. Firstly, it supports exposing replicated Pods
by means of a stable ClusterIP address, NodePort or
cloud-provided external LoadBalancer. The kube-proxy,
a Layer 4 load balancer, runs on every node of the cluster
to serve all ClusterIP and NodePort services.

Secondly, Headless services bypass the kube-proxy and
expose each replicated Pod as a stable DNS name that is
registered in the internal DNS server of the cluster. This con-
figuration is typically required for StatefulSets where each
replicated Podmust be separately addressable (cfr. subsection
Application configuration and deployment).

Thirdly, Ingress resources additionally declare HTTPS
load balancer rules for the services that are exposed via a
Cluster IP. Fourthly, services of type ExternalName declare
a DNS name for a depended service that does not run inside
the k8s cluster.

Generally, all studied vendors support these three types of
services with a few exceptions:
• The e2e tests show that when creating a NodePort ser-
vice, only in AKS the SecurityGroup of the nodes is
automatically adjusted to allow incoming traffic on that
node port [81].

• Moreover, none of the vendors permits cluster adminis-
trators to customize the allowed range of node ports.

• The e2e tests further show that ExternalName services
do not function properly in EKS.

• Configuration state shows that none of the vendors con-
figures the built-in L4 load balancer (i.e. kube-proxy)
with ipvs, a fast Linux kernel feature for load balancing,
but instead uses iptables. As noted in Section III.B.10,
it is possible to bootstrap worker nodes with Linux
kernel libraries for ipvs using a cloud-init script or a
privileged DaemonSet [72]–[75].

• Ingress resources for Layer 7 Load balancing are by
default, supported in AKS [82] and GKE [83]. For EKS,
there exists an optional community-driven HTTPS load
balancer [84].

3) RESOURCE QUOTA AND CONTAINER QOS
MANAGEMENT
All studied vendors support the full feature set of resource
quota management of the open-source k8s distribution.
All the QoS management features of the open-source
k8s distribution are also supported by all studied vendors,

except for the CPU management feature [85]. This feature,
which is disabled in all vendors, allows to exclusively reserve
CPU cores for containers of the highest QoS class.

However, in EKS it is possible to activate this feature
by setting the appropriate CPU-management policy in the
KubeletConfiguration API (cfr. Section III.B.12)

We defer the reader to [19], [86] for an overview of
resource quota management and container QoS management
features of Kubernetes.

4) SECURING CLUSTERS
As already discussed in Section III.B.6, all studied vendors
use a compatible subset of the authentication modules, but
the concrete mechanisms for setting up credentials are tied
into their underlying IAM cloud service.

With respect to cluster network security, all vendors allow
cluster administrators to activate the network policies feature
by relying on the Calico network plugin (see Table 6). A net-
work policy is similar to the notion of a security group in IaaS
to constrain in-bound and out-bound network connections
between Pods [19]. The e2e tests show however that this
feature does not function well in AKS.

All vendors also add some security features such as divid-
ing clusters into private and public networks. Additionally,
GKE supports by default encryption of control messages
between master and worker nodes [87], while EKS offers this
as an additional feature sold on the AWS market place [88].
Encryption of application-level messages is also supported by
default in GKE only [89].

5) SECURING CONTAINERS
All vendors support improved security isolation of containers
using SecurityContexts. Additional verification and enforce-
ment of particular SecurityContexts upon Pods through the
PodSecurityPolicy concept is also supported by all ven-
dors, albeit in different ways: in AKS and GKE the feature
can be optionally activated, while in EKS the feature is
installed by default. However, the e2e tests for PodSecurity-
Policies partially failed for EKS. Further, the SecurityContext
tests showed that EKS and GKE only correctly support the
SELinux access control model, and the runAsGroup primitive
does not function properly on any of the studied vendors.
As mentioned before, it is possible to install these miss-
ing features by bootstrapping worker nodes with missing
appropriate Linux packages using a privileged DaemonSet or
cloud-init script.

6) APPLICATIONS AND CLUSTER MANAGEMENT
This aspect consists of many different sub-aspects (see
Table 8). Concerning management tools, the Kubernetes
dashboard of the open-source distribution is supported by all
vendors, but it is not enabled by default because of security
reasons [90].

With respect to central monitoring of container resource
usage, Kubernetes distinguishes between the aforementioned
core metrics server for auto-scaling of Pods and a full metrics

VOLUME 8, 2020 228431

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

TABLE 8. An overview of the feature coverage of three information assets
for all aspects of the feature taxonomy.

pipeline backed-up by a time-series database. Kube-state-
metrics [91], which is supported by all vendors, is an alter-
native for metrics-server for monitoring status and health of a
broad range of application-level resources such as persistent
volumes. The default full metrics pipelines are proprietary in
each vendor of the hosted type, but it is possible to install the
CNCF-supported Prometheus pipeline in all vendors [92].

For central monitoring of resource usage of the k8s plat-
form itself, the e2e tests show that is possible to grab metrics
from various control plane components such as the default
ControllerManager, the Scheduler and API server on the
master nodes and the kubelet on each node.

Logging and debugging at the level of containers and
platform is also commonly supported by each vendor, yet
different log aggregation systems are used. It is, however,
possible to customize all worker nodes with a unified Fluentd
DaemonSet [93].

Concerning cluster maintenance, relevant features include
cluster software upgrades, dynamic reconfiguration of the
kubelet without restarting Pods, draining of nodes, garbage
collection of container and images and support for disrup-
tion budgets [94]. The implementation of cluster upgrades is
proprietary to every Kubernetes vendor. Dynamic reconfig-
uration of the kubelet is by default disabled in all vendors
because the –dynamic-config-file parameter is not set, and
it cannot be set using the KubeletConfiguration API [95].
The other features are inherited from the open-source
k8s-distribution and commonly supported by each vendor.

All vendors support configurations for a single
Kubernetes cluster that runs across multiple zones or regions
(see Section III.A). Kubernetes’s federation API that allows
managing clusters into a federation and that offers fed-
erated instantiations of various Kubernetes APIs, such as
Deployments and StatefulSets, is an alpha feature in v1.13.
As such, we must assume that this API is not supported by
any cloud provider except GKE’s alpha clusters. GKE offer
proprietary support for a multi-cluster global HTTP Load
balancer [96]. Still, in the other vendors, it is possible to set up
a similar load balancer using the Istio ingress gateway [97].
Finally, the ServiceCatalog API [98] is supported by all
vendors.

IV. DISCUSSION
This section builds upon Sections II.B-C, which respec-
tively have presented the infrastructure-agnostic approach for
transferring container clusters across cloud providers and
a proposal towards extending this approach with feature
compatibility management.

The latter extension involves (i) semi-automatic detection
of support for desired features by means of the e2e testing
suite of Kubernetes and (ii) uniform support for installing or
removing features by means of generic configuration actions.
We will discuss the potential of Kubernetes to support these
two elements as follows.

228432 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

Section A focuses on the feature coverage of the e2e testing
suite and how to improve this coverage. It also looks at the
accumulated feature coverage of all three information assets
to show that the vendors have been validated against the
whole feature taxonomy. After that, Section B looks at the
question for which features it is possible to install missing
system components uniformly using vendor-agnostic tactics
that only rely on Kubernetes-defined APIs or tools.

A. FEATURE COVERAGE OF THE INFORMATION ASSETS
Table 8 gives a detailed overview of the feature coverage of
the e2e testing suite of Kubernetes. Matching tests with a
valid test result cover only 41% of the 256 features. The fea-
ture coverage differs substantially across different functional
aspects. Valid test results for resource quota management and
container security yield a feature coverage of 100% and 90%,
respectively. The application configuration and deployment
aspect exhibits a feature coverage of 83%. Subsequently,
services networking and container QoS management aspects
have an average coverage of 44%. The other four aspects have
a coverage between 33% and 13%.

The substantial number of matching e2e tests without
valid test results in Table 8 demonstrates the potential for
improving the feature coverage of the e2e testing suite.
If these matching tests would have produced valid test results,
however, the feature coverage for the container security
aspect could be lifted from 90% to 100%, the framework cus-
tomization and the management aspects could be raised from
33% to, respectively, 55% and 70%; services networking and
container QoS management could be lifted from an average
of 43% to 53% and the cluster architecture aspect from 13%
to 25%.

These tests can be improved to produce valid results
in two ways. First, tests for 26 features should be devel-
oped for all studied vendors. Secondly, enhanced ease-of-
configuration of the testing suite could avoid the occurrences
of skipped tests and false negatives for 22 features. These
occurrences were due to unspecified configuration parame-
ters (e.g. an SSH key is needed for accessing worker nodes,
but this was not documented). The e2e testing suite should be
extended with a proper configuration interface for managing
all required configuration parameters.

Thus, to achieve full coverage, the testing suite needs to be
extended, and its ease-of-configuration improved.

Another avenue is to complement the end-to-end testing
suite with the other information assets to improve feature
coverage but also to filter false negatives. Unfortunately,
an inspection of configuration state in combination with valid
test results only adds up towards 68% feature coverage (this
accumulative ratio is shown in the second to last column of
Table 8). For more recent releases of Kubernetes, all studied
vendors have increased the observability of configuration
state of the master control plane by exposing its logging files.
As such, feature coverage for later k8s releases is expected to
be substantially higher.

For k8s release v1.13, however, vendor documentation
needs to be added as a third complementary source. Table 8
shows that vendor documentation is quite accurate. By com-
paring existing vendor documentation with e2e test results,
we could detect inconsistencies for 12 features. For seven
features, vendor documentation was not up-to-date. For the
other five features, vendor documentation and configuration
state asserts the features to be supported, but the e2e tests
show that the features do not function well.

In total, these information assets do not offer conclusive
information for only two k8s features: support for raw vol-
umes in AKS and GKE [99], backup and recovery of cluster
state [100].

B. EASE OF MIGRATION AND UNIFORM
RE-CONFIGURABILITY
As stated in Section II.E, we distinguish between different
levels of ease and automation with which a k8s feature can
be consistently activated when transferring a cluster from
a source vendor to a target vendor: (i) automated migra-
tion, (ii) uniform reconfiguration, (iii), custom translation
of input or output data (e.g. different data formats for log-
ging, monitoring, auditing), (iv) migration is not possible.
Using these levels of ease-of-migration, we can assess for
each (sub)-aspect of the feature taxonomy the ease of which
feature incompatibilities can be bridged between any pair of
Kubernetes vendors.

Table 9 systematically indicates the specific level for the
nine functional aspects and their respective sub-aspects. Since
a (sub)-aspect can involve multiple features. We need to
consider the set of all valid subsets of these features that can
be supported by the source vendor. We therefore further dis-
tinguish between intermediate ease-of-migration levels that
indicate whether all or only some subsets of features of a
sub-aspect can be activated or reconfigured. We refer to the
detailed score legend of Table 9 for more information.

We can draw conclusions by counting the number of
occurrences of a particular score in the grey shaded columns
in Table 9). These columns represent migration scenarios
from the open-source k8s distribution, where all customiza-
tion interfaces of Kubernetes are available as is. The scores
in these columns represent thus an objective measure for
comparing vendors.

Vendors cannot support a common vendor-agnostic API
for all sub-aspects with a score <=2. The lower the number
of those scores, the more customizable the vendor is.

GKE appears as the most customizable vendor according
to the number of scores <=2. This is at odds with the obser-
vation that EKS exposes the largest number of customization
interfaces (see Table 2). More specifically, EKS allows cus-
tomizing feature gates and several other kubelet configuration
options for worker nodes. EKS also allows booting worker
nodes from custom VM images, whereas GKE only allows
choosing from an existing catalogue of VM images and
cluster workload types.

VOLUME 8, 2020 228433

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

This odd observation can be explained by the fact that EKS
for k8s release v1.13 still contains the most errors according
to the failed e2e tests (see the brownish shaded cells of
Table 9). These failed e2e tests indicate errors because the
test results are inconsistent with vendor documentation or
configuration state.

In particular, the most significant errors are the following:
• Volume plugins: EKS fails for a large part of relevant
e2e tests for the subPath feature.

• IAM modules: AKS fails for a large part of relevant e2e
tests concerning NodeAuthorization.

• Services networking: The ExternalName service does
not function properly in EKS according to the e2e tests.

• Cluster security: AKS fails for a large part of relevant
e2e tests with respect to NetworkPolicies.

• Container security: EKS fails tests for PodSecurity
Policies.

If these errors would have been resolved, EKS has the
lowest number of scores <=2 and therefore can be consid-
ered as the most customizable and feature-rich. Note GKE
exhibits the highest number of scores == 5, and therefore
GKE offers the highest amount of features out-of-the-box.

Note there are no occurrences of scores == 1 meaning
that all studied vendors offer Kubernetes-native support for
monitoring, audit and logging.

Finally, the number of scores <=2 in the non-shaded
columns is much lower than the grey-shaded columns indicat-
ing that the studied vendors themselves are quite compatible.
As expected, feature lock-in is the strongest for GKE, then
followed by EKS and AKS.

Still, even with a vendor-agnostic API in place and the
above EKS and AKS errors corrected, some features of
the open-source distribution cannot be consistently imposed
across all vendors:
• Feature gates: Only in EKS specific subsets of feature
gates can be further disabled or enabled by the cluster
administrator.

TABLE 9. Uniform re-configurability analysis and migration analysis.

• Container runtimes: Only in EKS, support for both cri-o
and containerd is possible.

228434 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

• KubeletConfiguration API: Only in EKS, some fields
of the KubeletConfiguration API can be modified
statically.

• Container QoS Management: Only in EKS, CPU man-
agement policies can be set through the KubeletConfig-
uration API.

There are also several differences for essential features that
are not part of the open-source k8s distribution:

• Cluster setup: Only EKS and GKE offer an automated
highly-available master plane.

• Cluster security: Only in GKE, application-level
network encryption in possible. Only GKE and EKS
support encryption of control plane messages.

In summary, the following selection guideline can be
formulated:

• If vanilla Kubernetes cluster configurations are suffi-
cient, GKE is the most complete, scalable and reliable
offer.

• If highly customized Kubernetes clusters are required,
EKS is the preferred choice as it exposes the Kubelet-
Configuration API as-is. As a consequence, not only
alpha feature gates but also performance-critical features
of the Kubelet can only be activated in EKS without
nullifying the goal of vendor-neutrality.

• EKS is also the only vendor that supports the cri-o
container runtime for running OCI-compliant container
images.

• Concerning dependability and network security, AKS is
the weakest offer and GKE the strongest.

V. RELATED WORK
This section first describes existing surveys that have
defined a taxonomy or comparison of container orchestration
platforms and how they are different from our feature tax-
onomy. After that, we review other works in the area
of infrastructure-agnostic management of container clusters
across cloud providers.

A. CONTAINER ORCHESTRATION SURVEYS
Besides our feature comparison studies [5], [19], [20],
Rodriguez et al. [103] present a taxonomy for classifying
container scheduling architectures and multi-tenancy.
However, this work is not a complete feature taxonomy
as it does not cover the framework customization aspect.
Heidari et al. [86] present a survey of seven container orches-
tration frameworks that were identified as most promis-
ing: Apache Mesos, Mesos Marathon, Apache Aurora,
Kubernetes, Docker Swarm and Fleet. This survey concisely
and clearly describes the QoS management architectures of
these frameworks.

Costache et al. [104] present a classification of
resource management techniques in Platform-as-a-Service
(PaaS) platforms, including Mesos [105] and Borg [106],
the predecessor of Kubernetes. Costache et al. also present
a list of opportunities for further research, which includes

the use of container orchestration frameworks to support
generic resource management for any type of workload and
provisioning of resources across multiple IaaS clouds.

B. INFRASTRUCTURE-AGNOSTIC MANAGEMENT OF
CONTAINER CLUSTERS
We already referred to our own work on an infrastructure-
agnostic middleware platform to transfer container clusters
from one cloud provider to another cloud provider [6], [17].
As the requirements of this middleware platform favor prag-
matism over expressiveness [20], the middleware platform
supports commonly supported features that are supported by
Kubernetes, Docker Swarm and Mesos and therefore ignore
many unique features of Kubernetes. Pahl et al. [107] anal-
yses required container orchestration functions for facilitat-
ing deployment and management of distributed applications
across multiple clouds and how these functions can be inte-
grated into existing PaaS platforms and relevant standards for
portable orchestration of cloud applications such as TOSCA.
Kim et al. [102] propose an integration between TOSCA and
Kubernetes to deploy a container-based application across
multiple federated Kubernetes clusters in different conti-
nents. These works indicate the relevance of achieving feature
compatibility between different Kubernetes clusters that are
potentially installed by different vendors or cloud providers.

VI. CONCLUSION
We have studied the differences in cluster architecture and
framework customization for three leading Kubernetes ven-
dors of the hosted product type and synthesized the feature
incompatibilities that ensue from these differences.

In total, we identified incompatibilities for 18% of
documented k8s features when comparing default cluster
configurations of the studied vendors.

Thereafter we have evaluated the feature coverage of three
information assets of Kubernetes that are amendable for auto-
mated processing to detect whether a feature is (correctly)
implemented by a vendor: (i) tests results from the e2e testing
suite of Kubernetes that underlies the CNCF certification
programme, (ii) configuration state of running Kubernetes
clusters and (iii) vendor documentation. Our analysis has
focused on the e2e testing suite, which is the most logical
approach for automated feature detection. Our findings show
that there is quite some room for improving feature cover-
age: matching e2e tests only exist for 64% of documented
features, and for 17% of features, these matching tests are
not developed for all studied vendors or are challenging to
configure correctly.

Finally, we have presented an analysis of the ease-
of-migration between vendors and the potential of defining a
vendor-agnostic API for uniform feature management. This
shows that for most beta features of the open-source k8s
distribution, the possibility exists to define a standard API for
managing feature compatibility among these three vendors.
The exceptional features are (i) the cri-o container runtime,
(ii) customizations to feature gates for worker nodes, (iii) the

VOLUME 8, 2020 228435

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

KubeletConfiguration API, and (iv) CPU management poli-
cies. The latter three incompatibilities can be resolved if the
CNCF conformance program enforces that vendors activate
the KubeletConfiguration API.

These insights are beneficial to avoid feature incompati-
bilities already in cloud-native application engineering pro-
cesses. Developers, operators and site reliability engineers
can use the feature taxonomy to determine what k8s features
should be installed or deactivated. Moreover, they can use the
presented methodology to identify k8 vendors that offer stan-
dardized or infrastructure-agnostic interfaces for configuring
these features. Finally, they can efficiently use the end-to-end
testing suite of Kubernetes by only running those tests that
have been identified by our feature mapping as applicable to
the features of their interest.

Cloud k8s vendors can also increase their cross-compatibility
with other k8s vendor solutions by applying the presented
methodology. Moreover, the k8s SIGS can increase their end-
to-end tests in currently unlighted areas to provide better
feature coverage.

All can equally contribute to reducing vendor lock-in. The
feature taxonomy is, to some degree, comparable to POSIX
that harmonized Unix-oid single machine operating systems
in the past.

SUPPLEMENTARY MATERIAL
The end-to-end test results, the code for automated processing
of tests results and various excel sheets for quantitative
analysis are available at Code Ocean (https://codeocean.
com/capsule/2358221) or GitHub (https://github.com/
k8-scalar/MigratingKubernetes).

REFERENCES
[1] N. Kratzke and R. Peinl, ‘‘ClouNS–a cloud-native application reference

model for enterprise architects,’’ in Proc. IEEE 20th Int. Enterprise
Distrib. Object Comput. Workshop (EDOCW), Sep. 2016, pp. 1–10.

[2] J. Opara-Martins, R. Sahandi, and F. Tian, ‘‘Critical analysis of vendor
lock-in and its impact on cloud computing migration: A business per-
spective,’’ J. Cloud Comput., vol. 5, no. 1, p. 4, Dec. 2016.

[3] D. Petcu, G. Macariu, S. Panica, and C. Craciun, ‘‘Portable cloud
applications—From theory to practice,’’ Future Gener. Comput. Syst.,
vol. 29, no. 6, pp. 1417–1430, Aug. 2013.

[4] N. Kratzke, ‘‘A brief history of cloud application architectures,’’ Appl.
Sci., vol. 8, no. 8, p. 1368, Aug. 2018.

[5] N. Kratzke and P.-C. Quint, ‘‘Understanding cloud-native applications
after 10 years of cloud computing—A systematic mapping study,’’ J. Syst.
Softw., vol. 126, pp. 1–16, Apr. 2017.

[6] N. Kratzke, ‘‘About the complexity to transfer cloud applications at
runtime and how container platforms can contribute?’’ in Proc. Int. Conf.
Cloud Comput. Services Sci. (CLOSER), 2017, pp. 19–45.

[7] The Cloud Native Computing Foundation. (2017). Cloud Native Com-
puting Foundation Launches Certified Kubernetes Program with 32 Con-
formant Distributions and Platforms. Accessed: Mar. 27, 2018. [Online].
Available: https://www.cncf.io/announcement/2017/11/13/cloud-native-
computing-foundation-launches-certified-kubernetes-program-32-
conformant-distributions-platforms/

[8] Cloud Native Computing Foundation. Community/Sig-List.Md At Master
· Kubernetes/Community. Accessed: Sep. 13, 2019. [Online]. Available:
https://github.com/kubernetes/community/blob/master/sig-list.md

[9] S. Sloka and J. Schnake. Certifying Kubernetes With Sonobuoy—Cloud
Native Apps Blog. Accessed: Nov. 28, 2019. [Online]. Available: https://
blogs.vmware.com/cloudnative/2019/02/21/certifying-kubernetes-with-
sonobuoy/

[10] J. Schnake. Simple Approaches to Customizing the Kubernetes E2E
Tests. Accessed: Oct. 17, 2019. [Online]. Available: https://sonobuoy.io/
custom-e2e-image/

[11] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘InterCloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,’’ in Proc. 10th Int. Conf. Algorithms Archit. Parallel Process.
(ICA3PP), Part I, in Lecture Notes in Computer Science, vol. 6081.
Busan, South Korea: Springer, May 2010, pp. 13–31.

[12] B. Wadhwa, A. Jaitly, and B. Suri, ‘‘Cloud service brokers: An emerging
trend in cloud adoption and migration,’’ in Proc. 20th Asia–Pacific Softw.
Eng. Conf. (APSEC), Dec. 2013, pp. 140–145.

[13] Cloud Native Computing Foundation. Kubernetes Distributions &
Platforms—Google Sheets. Accessed:Mar. 15, 2019. [Online]. Available:
https://docs.google.com/spreadsheets/d/1LxSqBzjOxfGx3cmtZ4EbB_
BGCxT_wlxW_xgHVVa23es/edit#gid=0

[14] Microsoft Azure. Azure Kubernetes Service (AKS) Documentation-
Tutorials, API Reference | Microsoft Docs. Accessed: Jan. 24, 2020.
[Online]. Available: https://docs.microsoft.com/en-us/azure/aks/

[15] AWS. Amazon Elastic Kubernetes Service Documentation. Accessed:
Jan. 24, 2020. [Online]. Available: https://docs.aws.amazon.com/eks/
?id=docs_gateway

[16] Google. Google Kubernetes Engine Documentation. Accessed:
Jan. 24, 2020. [Online]. Available: https://cloud.google.com/kubernetes-
engine/docs/?hl=nl

[17] N. Kratzke, ‘‘Smuggling multi-cloud support into cloud-native applica-
tions using elastic container platforms,’’ in Proc. 7th Int. Conf. Cloud
Comput. Services Sci. (CLOSER). Lagos, Portugal: SCITEPRESS—
Science and Technology Publications, 2017, pp. 29–42.

[18] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, ‘‘Usable declarative
configuration specification and validation for applications, systems, and
cloud,’’ in Proc. 18th ACM/IFIP/USENIX Middleware Conf. Ind. Track,
2017, pp. 29–35.

[19] E. Truyen, D. V. Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen,
‘‘A comprehensive feature comparison study of open-source container
orchestration frameworks,’’ Appl. Sci., vol. 9, no. 5, p. 931, Mar. 2019.

[20] N. Kratzke and P.-C. Quint, ‘‘Project CloudTRANSIT transfer cloud-
native applications at runtime,’’ Lübeck, Germany, Tech. Rep., 2018.

[21] Amazon Web Services. (2017). Introducing Amazon Elastic
Container Service for Kubernetes (Preview). [Online]. Available:
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-
amazon-elastic-container-service-for-kubernetes/

[22] Docker Inc. Docker Enterprise | Docker Documentation. Accessed:
Nov. 16, 2018. [Online]. Available: https://docs.docker.com/ee/
#kubernetes-support

[23] Mesosphere. Mesosphere/Dcos-Kubernetes-Quickstart: Quickstart
Guide for Kubernetes on DC/OS. Accessed: Nov. 16, 2018. [Online].
Available: https://github.com/mesosphere/dcos-kubernetes-quickstart#
install

[24] P. Beth. (2018). Kubernetes Security Vulnerability Reveals Fractured
Market. TechTarget. Accessed: Dec. 11, 2018. [Online]. Available:
https://searchitoperations.techtarget.com/news/252453827/Kubernetes-
security-vulnerability-reveals-fractured-market.

[25] J. Steven Vaughan-Nichols. (2018). Kubernetes’ First Major Security
Hole Discovered | ZDNet. Accessed: Dec. 11, 2018. [Online]. Available:
https://www.zdnet.com/article/kubernetes-first-major-security-hole-
discovered/

[26] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate, ‘‘Techniques
to secure data on cloud: Docker swarm or kubernetes?’’ in Proc. 2nd
Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), Apr. 2018,
pp. 7–12.

[27] Cloud Native Computing Foundation. Kubernetes End-to-End Test-
ing for Everyone-Kubernetes. Accessed: Sep. 13, 2019. [Online].
Available: https://kubernetes.io/blog/2019/03/22/kubernetes-end-to-end-
testing-for-everyone/

[28] Kubernetes Cloud—Google Sheets. Accessed: Mar. 27, 2019.
[Online]. Available: https://docs.google.com/spreadsheets/d/1U0x4-
NQegEPGM7eVTKJemhkPy18LWuHW5vX8uZzqzYo/edit#gid=0

[29] Config File Schema-Eksctl. Accessed: May 4, 2020. [Online]. Available:
https://eksctl.io/usage/schema/

[30] Limits for Resources, SKUs, Regions—Azure Kubernetes Service
| Microsoft Docs. Accessed: May 26, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/aks/quotas-skus-regions

[31] Amazon EKS Service Quotas-Amazon EKS. Accessed:
May 26, 2020. [Online]. Available: https://docs.aws.amazon.com/eks/
latest/userguide/service-quotas.html

228436 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

[32] Quotas and Limits | Kubernetes Engine API | Google Cloud. Accessed:
May 26, 2020. [Online]. Available: https://cloud.google.com/kubernetes-
engine/quotas?hl=en

[33] Azure Quickstart Templates. Accessed: May 13, 2020. [Online]. Avail-
able: https://azure.microsoft.com/en-us/resources/templates/?term=aks

[34] The Kubernetes API-Kubernetes. Accessed: May 26, 2020. [Online].
Available: https://kubernetes.io/docs/concepts/overview/kubernetes-
api/#api-groups

[35] Cloud Native Computing Foundation. Feature Gates-Kubernetes.
Accessed: Dec. 5, 2019. [Online]. Available: https://kubernetes.io/docs/
reference/command-line-tools-reference/feature-gates/

[36] Cloud Native Computing Foundation. Extending Your Kubernetes
Cluster-Kubernetes. Accessed: Dec. 3, 2019. [Online]. Available:
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/

[37] Cloud Native Computing Foundation. Kubernetes Cloud Controller
Manager-Kubernetes. Accessed: Dec. 5, 2019. [Online]. Available:
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-
controller/

[38] Cloud Native Computing Foundation. Website/Feature-Gates.md
at Release-1.13 · Kubernetes/Website. Accessed: Nov. 16, 2018.
[Online]. Available: https://github.com/kubernetes/website/blob/release-
1.13/content/en/docs/reference/command-line-tools-reference/feature-
gates.md

[39] Cloud Native Computing Foundation. Website/Kubelet.md at Release-
1.13 · Kubernetes/Website. Accessed: Apr. 29, 2020. [Online]. Available:
https://github.com/kubernetes/website/blob/release-1.13/content/
en/docs/reference/command-line-tools-reference/kubelet.md

[40] Cloud Native Computing Foundation. Customizing Kubelet
Configuration—Eksctl. Accessed: Apr. 29, 2020. [Online]. Available:
https://eksctl.io/usage/customizing-the-kubelet/

[41] Cloud Native Computing Foundation.Website/Admission-Controllers.md
at Release-1.13 · Kubernetes/Website. Accessed: Nov. 12, 2018.
[Online]. Available: https://github.com/kubernetes/website/blob/release-
1.13/content/en/docs/reference/access-authn-authz/admission-
controllers.md

[42] Microsoft. Frequently Asked Questions for Azure Kubernetes Service
(AKS) | Microsoft Docs. Accessed: Mar. 28, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/aks/faq#what-kubernetes-
admission-controllers-does-aks-support-can-admission-controllers-be-
added-or-removed

[43] Amazon Web Services. Platform Versions—Amazon EKS. Accessed:
Mar. 28, 2019. [Online]. Available: https://docs.aws.amazon.com/
eks/latest/userguide/platform-versions.html

[44] A. A. Balkan and Y. Tamura. Multi-Tenancy Best Practices for Google
Kubernetes Engine-Speaker Deck. Accessed: Mar. 28, 2019. [Online].
Available: https://speakerdeck.com/alp/multi-tenancy-best-practices-for-
google-kubernetes-engine?slide=38

[45] Cloud Native Computing Foundation. Using Admission Controllers-
Kubernetes. Accessed: Mar. 28, 2019. [Online]. Available: https://github.
com/kubernetes/website/blob/release-1.13/content/en/docs/reference/
access-authn-authz/admission-controllers.md/#which-plugins-are-
enabled-by-default

[46] Cloud Native Computing Foundation. Configure Multiple Schedulers-
Kubernetes. Accessed: Mar. 11, 2020. [Online]. Available: https://
kubernetes.io/docs/tasks/administer-cluster/configure-multiple-
schedulers/

[47] Cloud Native Computing Foundation. Network Plugins-Kubernetes.
Accessed: Mar. 29, 2019. [Online]. Available: https://kubernetes.
io/docs/concepts/extend-kubernetes/compute-storage-net/network-
plugins/

[48] Amazon Web Services. Aws/Amazon-Vpc-Cni-K8s: Networking Plu-
gin Repository for Pod Networking in Kubernetes Using Elastic Net-
work Interfaces on AWS. Accessed: Mar. 29, 2019. [Online]. Available:
https://github.com/aws/amazon-vpc-cni-k8s

[49] Microsoft Azure. Azure-Container-Networking/Cni.md at Master ·
Azure/Azure-Container-Networking. Accessed: Mar. 29, 2019. [Online].
Available: https://github.com/Azure/azure-container-networking/blob/
master/docs/cni.md

[50] Microsoft Azure. Secure Pods With Network Policies in Azure Kubernetes
Service (AKS) |Microsoft Docs. Accessed:Mar. 29, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/aks/use-network-policies

[51] Amazon Web Services. Installing Calico on Amazon EKS—Amazon
EKS. Accessed: Mar. 29, 2019. [Online]. Available: https://docs.aws.
amazon.com/eks/latest/userguide/calico.html

[52] Google. Creating a Cluster Network Policy | Kubernetes Engine
| Google Cloud. Accessed: Mar. 29, 2019. [Online]. Available:
https://cloud.google.com/kubernetes-engine/docs/how-to/network-
policy#creating_a_network_policy

[53] Google. GoogleCloudPlatform/Netd: Netd: GKE Networking Daemon-
set. Accessed: Mar. 29, 2019. [Online]. Available: https://github.com/
GoogleCloudPlatform/netd

[54] Cloud Native Computing Foundation. Open Container Initiative-based
implementation of Kubernetes Container Runtime Interface. Accessed:
Nov. 4, 2019. [Online]. Available: https://github.com/cri-o/cri-o

[55] D. Radetic. (2018). CentOS 7 With CRI-o on EKS. Medium.
Accessed: Mar. 29, 2019. [Online]. Available: https://medium.com/
errnothxbye/centos-7-with-cri-o-on-eks-ae9684aff764

[56] Google. Using Container-Optimized OS with containerd | Kubernetes
Engine | Google Cloud. Accessed: Mar. 28, 2019. [Online]. Available:
https://cloud.google.com/kubernetes-engine/docs/concepts/using-
containerd

[57] [EKS] [CRI]: Support for Containerd CRI · Issue #313 ·
Aws/Containers-Roadmap. Accessed: May 13, 2020. [Online]. Available:
https://github.com/aws/containers-roadmap/issues/313

[58] Cloud Native Computing Foundation. Persistent Volumes—Kubernetes.
Accessed: Nov. 4, 2019. [Online]. Available: https://kubernetes.io/docs/
concepts/storage/persistent-volumes/

[59] Kubernetes. Introduction-Kubernetes CSI Developer Documentation.
Accessed: Nov. 4, 2019. [Online]. Available: https://kubernetes-csi.
github.io/docs/

[60] Drivers-Kubernetes CSI Developer Documentation. Accessed:
Apr. 1, 2019. [Online]. Available: https://kubernetes-csi.github.io/docs/
drivers.html

[61] H. Kumar. Resizing Persistent Volume Using, Kubernetes-Kubernetes.
Accessed: Apr. 1, 2020. [Online]. Available: https://kubernetes.
io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

[62] Cloud Native Computing Foundation. Node-specific Volume
Limits–Kubernetes. Accessed: Apr. 1, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/storage/storage-limits/#dynamic-
volume-limits

[63] Cloud Native Computing Foundation. Volumes-Using Subpath.
Accessed: Nov. 8, 2019. [Online]. Available: https://kubernetes.io/
docs/concepts/storage/volumes/#using-subpath

[64] Microsoft Azure. Service Principals for Azure Kubernetes Services
(AKS) | Microsoft Docs. Accessed: Jan. 28, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal

[65] AWS. Identity and Access Management for Amazon EKS—
Amazon EKS. Accessed: Jan. 28, 2020. [Online]. Available:
https://docs.aws.amazon.com/eks/latest/userguide/security-iam.html

[66] Google. Creating Cloud IAM Policies | Kubernetes Engine Docu-
mentation. Accessed: Jan. 28, 2020. [Online]. Available: https://cloud.
google.com/kubernetes-engine/docs/how-to/iam

[67] Cloud Native Computing Foundation. Accessing the API-
Kubernetes. Accessed: Nov. 4, 2019. [Online]. Available: https://
kubernetes.io/docs/reference/access-authn-authz/

[68] Cloud Native Computing Foundation. Using ABAC Authorization-
Kubernetes. Accessed: May 25, 2020. [Online]. Available: https://
kubernetes.io/docs/reference/access-authn-authz/abac/

[69] Cloud Native Computing Foundation. Kubelet
Authentication/Authorization-Kubernetes. Accessed: Nov. 4, 2019.
[Online]. Available: https://kubernetes.io/docs/reference/command-
line-tools-reference/kubelet-authentication-authorization/#kubelet-
authentication

[70] Cloud Native Computing Foundation. Auditing-Kubernetes.
Accessed: Nov. 19, 2019. [Online]. Available: https://kubernetes.
io/docs/tasks/debug-application-cluster/audit/

[71] Cloud Native Computing Foundation. Operator Pattern—Kubernetes.
Accessed: Apr. 3, 2020. [Online]. Available: https://kubernetes.io/docs/
concepts/extend-kubernetes/operator/

[72] S. Patnaik. Initialize Your AKS Nodes With DaemonSets.
Accessed: Mar. 26, 2020. [Online]. Available: https://medium.com/
@patnaikshekhar/initialize-your-aks-nodes-with-daemonsets-
679fa81fd20e

[73] Google. Automatically Bootstrapping GKE Nodes With DaemonSets
| Solutions. Accessed: Mar. 26, 2020. [Online]. Available:
https://cloud.google.com/solutions/automatically-bootstrapping-gke-
nodes-with-daemonsets

VOLUME 8, 2020 228437

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

[74] J. Cowan. The Problem With Kube-Proxy: Enabling IPVS on EKS.
Accessed: Mar. 26, 2020. [Online]. Available: https://medium.com/
@jeremy.i.cowan/the-problem-with-kube-proxy-enabling-ipvs-on-eks-
169ac22e237e

[75] Google. Creating and Configuring Instances | Container-Optimized OS.
Accessed: Apr. 2, 2020. [Online]. Available: https://cloud.google.com/
container-optimized-os/docs/how-to/create-configure-instance#using_
cloud-init

[76] Cloud Native Computing Foundation. Community/Cloud-Provider-
Refactoring.md at Master · Kubernetes/Community. Accessed:
Jan. 28, 2020. [Online]. Available: https://github.com/kubernetes/
community/blob/master/contributors/design-proposals/cloud-
provider/cloud-provider-refactoring.md

[77] Cloud Native Computing Foundation. Set Kubelet Parameters Via a
Config File—Kubernetes. Accessed: May 13, 2020. [Online]. Available:
https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/

[78] L. Zhu, L. Bass, and G. Champlin-Scharff, ‘‘DevOps and its practices,’’
IEEE Softw., vol. 33, no. 3, pp. 32–34, May/Jun. 2016.

[79] B. Chavis. Introducing Horizontal Pod Autoscaling for Amazon EKS |
AWS Open Source Blog. Accessed: Apr. 4, 2019. [Online]. Available:
https://aws.amazon.com/blogs/opensource/horizontal-pod-autoscaling-
eks/

[80] Cloud Native Computing Foundation. Service—Kubernetes. Accessed:
Nov. 22, 2019. [Online]. Available: https://kubernetes.io/docs/concepts/
services-networking/service/

[81] Microsoft. Concepts—Networking in Azure Kubernetes Services (AKS)
| Microsoft Docs. Accessed: Nov. 22, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/aks/concepts-network#services

[82] CloudNative Computing Foundation.Kubernetes/Ingress-Nginx: NGINX
Ingress Controller for Kubernetes. Accessed: Apr. 4, 2019. [Online].
Available: https://github.com/kubernetes/ingress-nginx

[83] Google. Setting up HTTP Load Balancing With Ingress|Kubernetes
Engine Tutorials|Google Cloud. Accessed: Nov. 22, 2019.
[Online]. Available: https://cloud.google.com/kubernetes-engine/docs/
tutorials/http-balancer

[84] Cloud Native Computing Foundation. Kubernetes-Sigs/Aws-Alb-Ingress-
Controller: AWS ALB Ingress Controller for Kubernetes. Accessed:
Apr. 4, 2019. [Online]. Available: https://github.com/kubernetes-
sigs/aws-alb-ingress-controller/

[85] Control CPU Management Policies on the Node–Kubernetes. Accessed:
May 13, 2020. [Online]. Available: https://kubernetes.io/docs/tasks/
administer-cluster/cpu-management-policies/

[86] P. Heidari, Y. Lemieux, and A. Shami, ‘‘QoS assurance with light
virtualization—A survey,’’ in Proc. IEEE Int. Conf. Cloud Comput. Tech-
nol. Sci. (CloudCom), Dec. 2016, pp. 558–563.

[87] Google. Control Plane Security | Kubernetes Engine | Google Cloud.
Accessed: Apr. 5, 2019. [Online]. Available: https://cloud.google.com/
kubernetes-engine/docs/concepts/control-plane-security

[88] C. Puccio. Turnkey Network Security and Continuous Compliance
for Your Amazon EKS Cluster | AWS Partner Network (APN) Blog.
Accessed: Apr. 5, 2019. [Online]. Available: https://aws.amazon.com/
blogs/apn/turnkey-network-security-and-continuous-compliance-for-
your-amazon-eks-cluster/

[89] Google. Application Layer Transport Security | Documentation | Google
Cloud. Accessed: Apr. 5, 2019. [Online]. Available: https://cloud.google.
com/security/encryption-in-transit/application-layer-transport-security/

[90] Google. Hardening Your Cluster’s Security | Kubernetes Engine
Documentation | Google Cloud. Accessed: Apr. 5, 2019.
[Online]. Available: https://cloud.google.com/kubernetes-engine/
docs/how-to/hardening-your-cluster

[91] Kubernetes/Kube-State-Metrics: Add-on Agent to Generate and Expose
Cluster-Level Metrics. Accessed: Apr. 1, 2020. [Online]. Available:
https://github.com/kubernetes/kube-state-metrics

[92] Cloud Native Computing Foundation. Prometheus—CNCF Cloud Native
Interactive Landscape. Accessed: Apr. 2, 2020. [Online]. Available:
https://landscape.cncf.io/selected=prometheus

[93] Cloud Native Computing Foundation. Kubernetes Fluentd-Fluentd.
Accessed: Apr. 2, 2020. [Online]. Available: https://docs.fluentd.org/v/
0.12/articles/kubernetes-fluentd

[94] Cloud Native Computing Foundation. Disruptions—Kubernetes.
Accessed: Dec. 5, 2019. [Online]. Available: https://kubernetes.io/docs/
concepts/workloads/pods/disruptions/

[95] Reconfigure a Node’s Kubelet in a Live Cluster-Kubernetes. Accessed:
Jun. 8, 2020. [Online]. Available: https://kubernetes.io/docs/tasks/
administer-cluster/reconfigure-kubelet/

[96] Google. Setting up a Multi-Cluster Ingress | Kubernetes Engine
Documentation | Google Cloud. Accessed: Jan. 16, 2020.
[Online]. Available: https://cloud.google.com/kubernetes-engine/
docs/how-to/multi-cluster-ingress

[97] G. Agarwal. (2020). Istio Multi Cluster Service Mesh on Kuber-
netes | Better Programming. Accessed: Jul. 20, 2020. [Online].
Available: https://medium.com/better-programming/istio-service-mesh-
on-multi-cluster-kubernetes-environment-518094cdcdc4

[98] Cloud Native Computing Foundation. Service Catalog—Kubernetes.
Accessed: Feb. 10, 2020. [Online]. Available: https://kubernetes.
io/docs/concepts/extend-kubernetes/service-catalog/

[99] Cloud Native Computing Foundation. Persistent Volumes—Kubernetes.
Accessed: Nov. 22, 2019. [Online]. Available: https://kubernetes.io/docs/
concepts/storage/persistent-volumes/#raw-block-volume-support

[100] Cloud Native Computing Foundation. Operating Etcd Clusters for
Kubernetes—Kubernetes. Accessed: Apr. 1, 2020. [Online]. Available:
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-
etcd/

[101] P.-C. Quint and N. Kratzke, ‘‘Towards a lightweight multi-cloud DSL for
elastic and transferable cloud-native applications,’’ in Proc. 8th Int. Conf.
Cloud Comput. Services Sci., 2018, pp. 400–408.

[102] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, ‘‘TOSCA-based
and federation-aware cloud orchestration for Kubernetes container plat-
form,’’ Appl. Sci., vol. 9, no. 1, p. 191, Jan. 2019.

[103] M. A. Rodriguez and R. Buyya, ‘‘Container-based cluster orchestra-
tion systems: A taxonomy and future directions,’’ Softw., Pract. Exper.,
vol. 49, no. 5, pp. 698–719, May 2019.

[104] S. Costache, D. Dib, N. Parlavantzas, and C. Morin, ‘‘Resource manage-
ment in cloud platform as a service systems: Analysis and opportunities,’’
J. Syst. Softw., vol. 132, pp. 98–118, Oct. 2017.

[105] B. Hindman, A. Konwinski, A. Platform, F.-G. Resource, andM. Zaharia,
‘‘Mesos: A platform for fine-grained resource sharing in the data center,’’
in Proc. 8th USENIX Conf. Netw. Syst. Design Implement. (NSDI), 2011,
p. 22.

[106] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, ‘‘Large-scale cluster management at Google with Borg,’’ in
Proc. 10th Eur. Conf. Comput. Syst. (EuroSys), 2015, pp. 1–17.

[107] C. Pahl, ‘‘Containerization and the PaaS cloud,’’ IEEE Cloud Comput.,
vol. 2, no. 3, pp. 24–31, May 2015.

EDDY TRUYEN received the Ph.D. degree from
KU Leuven, in 2004.

From 2004 to 2009, he was a Postdoctoral
Researcher with the Department of Computer Sci-
ence, KU Leuven, and a member of research group
DistriNet. Since 2009, he has been a Research
Expert with Middleware. His research interests
include adaptive middleware, dynamic reconfigu-
ration, and engineering of customizable software
services. He has been involved in national and

international projects on adaptive middleware and cloud computing.

NANE KRATZKE received the Ph.D. degree
from the University of Potsdam (and Oldenburg),
in 2006.

He is currently a (Coding) Computer Scien-
tist and a Professor of computer science with the
Lübeck University of Applied Sciences. Before
that, he consulted the GermanMinistry of Defense
in questions of network-centric warfare as a Con-
sulting Software Architect. His research interests
include cloud-native application and cloud-native

service-related software engineering methodologies and corresponding
application architectural styles, such as microservices or serverless architec-
tures. Additionally, he is interested in data science, distributed systems, and
web-scale elastic systems.

228438 VOLUME 8, 2020

E. Truyen et al.: Managing Feature Compatibility in Kubernetes: Vendor Comparison and Analysis

DIMITRI VAN LANDUYT received the Ph.D.
degree from KU Leuven, Belgium, in 2011, with
a dissertation on robust and reusable interfaces for
modular software architectures.

He is currently a Research Manager of software
engineering with imec-DistriNet (Distributed Sys-
tems research group), Department of Computer
Science, KULeuven. His current research interests
include applying and validating established soft-
ware engineering principles to cloud computing,

which among many other initiatives includes research on software engi-
neering support for multi-tenant and multi-cloud storage architectures and
self-adaptive systems.

BERT LAGAISSE received the Ph.D. degree from
KU Leuven, Belgium, in 2009, with a dissertation
on customization of enterprise middleware plat-
forms using aspect-oriented and component-based
software development techniques.

He is currently employed as an Industrial
Research and a Valorization Manager with the
imec-DistriNet research group in which he man-
ages a portfolio of applied research projects on
cloud technologies and security middleware in

close collaboration with industrial partners. He has a strong interest in
distributed systems, enterprise middleware, cloud platforms, and security
services. He is experienced with industrial valorization of research as well as
the cross-fertilization between academic know-how and industrial expertise
in multi-partner industrial projects.

WOUTER JOOSEN received the Ph.D. degree
from KU Leuven, Belgium, in 1996, with a dis-
sertation on load balancing of high performance
computing applications.

He is currently a Full Professor of distributed
software systems with the Department of Com-
puter Science, KU Leuven. His current research
interests include distributed systems and cloud
computing, focusing on software architecture and
adaptive middleware, as well as in security aspects

of software. He has also co-founded spin-off companies of KU Leuven:
Luciad, a company specializing in software components for Geographical
Information Systems, and Ubizen (now part of Verizon Business Solutions),
where he had been the CTO from 1996 till 2000, and the COO from
2000 till 2002.

VOLUME 8, 2020 228439

