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ABSTRACT Recently, the interpolation of correspondences method has been widely used in optical
flow estimation, because it produces an accurate flow field and costs little runtimes. However, most of
the existing matching-based optical flow methods are usually susceptible to non-rigid motion and large
displacements. We propose in this article a large displacement optical flow estimation method based on
robust interpolation of sparse correspondences, named Riscflow. First, we utilize the deep matching model
to achieve an initial matching result of two consecutive frames, and then we exploit a grid-based motion
statistics optimization scheme to remove the outliers from the initial matching field. Second, we propose a
random forest-basedmotion boundary extractionmodel and construct a sparse-to-dense interpolationmethod
by using the boundary information to prevent the dense matching field from edge-blurring. Third, we design
a global optical flow estimation method by using an energy function to optimize the dense matching field.
Finally, we respectively run the proposed method on the MPI-Sintel and UCF101 databases to conduct
a comprehensive comparison with some state-of-the-art optical flow approaches including the variational
methods, the matching-based methods, and the deep learning-based methods. The comparison results
demonstrate that the proposed method has high accuracy and good robustness of optical flow estimation,
and especially gains the benefit of edge-preserving under non-rigid motion and large displacements.

INDEX TERMS Optical flow, edge-preserving interpolation, sparse correspondences, global optimization,
large displacements.

I. INTRODUCTION
Estimating optical flow from consecutive frames is a research
core of image processing and computer vision, because
optical flow includes the image motion and structural
information of the observed objects and scenes. Nowadays,
optical flow computation technology has been widely used in
robot navigation [1], video events detection and analysis [2],
unmanned aerial vehicle [3], human action recognition [4],
and many other areas [5]–[7].

After the pioneering work of Horn and Schunck [8],
a large number of studies have been presented to improve the
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accuracy and robustness of optical flow computation. These
existingmethods can be roughly divided into three categories:
(1) the variational optical flow estimation approach, (2) the
matching-based optical flow estimation approach, and (3) the
deep learning-based optical flow estimation approach.

In the early research, the variational method was the most
popular approach in optical flow estimation, because it pro-
duces an accurate and dense flow field. However, the existing
variational optical flowmethods are incapable of dealing with
non-rigid motion and large displacements. Recently, with
the significant success of convolutional neural networks in
many vision-related tasks, the deep learning-based method
becomes increasingly popular in optical flow estimation.
Although the accuracy an robustness of deep learning-based
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FIGURE 1. Overall flowchart of the proposed method. Given two input frames, we compute matches and boundaries between the reference and next
frames, and then optimize the matches and interpolate the spares matching field by using the boundaries information. Finally, we utilize a global energy
function to achieve an accurate and robustness optical flow field.

optical flow methods have been greatly improved, most of
these methods require supervision and may have difficulty to
be directly applied to real-world data.

Being different with the variational and deep learning-
based methods, the matching-based method determines opti-
cal flow through the correspondences of the pixels between
the consecutive frames, which prompts the matching-based
optical flowmethods to be robust under illumination changes.
In spite of the matching-based optical flow methods are
reliable in real-world scene, these matching-based methods
are usually susceptible to non-rigid motion and large
displacements because either the non-rigid motion or large
displacements may give rise to the outliers in the matching
result. Furthermore, the existing methods are prone to cause
the issue of edge-blurring, due to the interpolation schemes
of the traditional matching- based methods only depend on
the distances of the pixels.

To improve the accuracy and robustness of optical flow
estimation under large displacements and address the issue of
edge-blurring, we propose a large displacement optical flow
estimation method based on robust interpolation of sparse
correspondences, named Riscflow. The experimental results
demonstrate that the proposed method has high accuracy
and good robustness for optical flow computation, especially
gains the capacity of edge-preserving. Fig. 1 illustrates the
overall flowchart of the proposed Riscflow method. Our
contributions are concluded as follows:
• We exploit a robust matching framework by using
grid-based motion statistics to remove the outliers
from the initial deep matching field. The presented
optimization matching scheme is able to improve the
robustness of the matching results.

• We propose a sparse-to-dense interpolation method by
using boundary information to restrain the interpolating
near the image edge and motion boundaries. This
interpolation method prevents the dense matching field
from edge-blurring.

• We design a global energy function to gain the
optical flow by using the dense matching field as
the initialization. The proposed global optimizing
scheme prompts to an accurate dense optical flow
field.

The remainder of this paper is organized as follows:
In section II, we briefly review the past works of optical flow
computation. Section III describes the robust sparse matching
field computing scheme based on deep matching. Section IV
presents the large displacement optical flow estimation
method with sparse-to-dense interpolation. The experimental
results and discussions are presented in Section V. Finally,
Section VI concludes the project.

II. RELATED WORKS
A. VARIATIONAL OPTICAL FLOW METHODS
Tracing back to the early research, Horn and Schunck [8]
proposed the first variational optical flow estimation model
by combining a data term with a smoothing term. After
that, most of the studies of flow field estimation focused
on how to design an energy function [9]. For the data
term, some studies [10], [11] recommended to incorporate a
gradient constancy assumption into the data term due to the
classical brightness constancy assumption is incapable under
illumination changes. To address the issue of image noises,
the combination of global and local optimizations [12], [13]
was presented to improve the robustness of optical flow
computation. To remove the outliers of the flow field, many
studies [14], [15] advised to replace the classic L2 norm of
the data term by the L1 norm.
For the smoothing term, because the homogeneous diffu-

sion strategy used in the original HS model [8] tends to pro-
duce the issue of edge-blurring, several researches [16], [17]
proposed the image-driven smoothing strategies by using
the image gradient to regularize the flow diffusion. How-
ever, these image-driven regularization models may cause
the problem of over-segmentation in the textured image
areas. To preserve the motion boundaries, some publi-
cations [18], [19] presented the flow-driven smoothing
strategies by utilizing the motion information to regularize
the flow diffusion. Because not every image edge coincides
with a motion boundary, the combination of flow- and image-
driven diffusing strategies was recommended to preserve both
image edges and motion boundaries [20].

With the increasement of the model complexity, many
studies focused on how to optimize the minimization of the
energy function. For instance, some researches [11], [21]

VOLUME 8, 2020 227361



S. Shi et al.: Large Displacement Optical Flow Estimation Based on Robust Interpolation of Sparse Correspondences

exploited the coarse-to-fine computation scheme to cope with
large displacements. Moreover, the non-local constraint [22]
was employed to remove the outliers during the optical
flow computation. Because motion occlusions may suppress
the accuracy of optical flow, several studies [23], [24]
constructed the occlusion detection method to modify the
optical flow model. In recent years, many spatial filtering
strategies [25]–[27] were recommended to deal with image
noise and edge-blurring. Some studies proposed a local
illumination change model [28] to deal with the weakly
textured scenes. Furthermore, an adaptive dual fractional-
order variational optical flow method [29] was presented to
solve the issues of insufficient illumination and illumination
changes. Despite that the accuracy and robustness of
variational optical flow estimation have been significantly
improved, these variational methods usually require a mass
of iterations to minimize the objective function. This compu-
tation process dramatically increases the time consumption,
which may limits the application of variational optical flow
methods.

B. CNN-BASED OPTICAL FLOW METHODS
Recently, inspired by the success of convolutional neural
networks (CNNs) in many tasks of computer vision and
image processing, the CNN-based optical flow estimation
method has become a research hotspot. Dosovitskiy et al. [30]
constructed the first CNN-based optical flow model named
FlowNet. Their study verifies the feasibility of directly
estimating the optical flow through a generally convolutional
architecture. This significant achievement encourages the
following CNN-based optical flow methods, including unsu-
pervised, supervised and semi-supervised models [9].

To improve the performance of the FlowNetmethod in esti-
mating accuracy, a larger model named FlowNet2.0 [31] was
presented by stacking several FlowNetC and FlowNetS [30]
networks. Although the FlowNet2.0 method achieved a good
result on accuracy, it is more prone to overfitting due to its
large network. To improve the computation efficiency, some
publications [32]–[34] constructed the lightweight cascaded
networks to reduce the number of network parameters.
To ensure the robustness of optical flow, a CNN-based
patch matching approach using a novel threshold loss [35]
was presented to cope with motion occlusions. Moreover,
some studies [36]–[40] exploited the feature pyramid-
based networks to improve the performance of optical flow
estimation under large displacements. Recently, a recurrent
all-pairs field transformation [41] has been proven to be an
efficient way to improve the accuracy of supervised optical
flow methods.

Because the supervised methods usually require a mass
of labeled datasets to train the networks, this may limit
these methods to be directly applied to the real-world
scene. To overcome the abovementioned limitation of the
supervised methods, the unsupervised learning methods [42]
were exploited to estimate optical flow without the ground
truth. To improve the performance of the unsupervised optical

flow estimation networks, a typical study [43] firstly modeled
the occlusions, and then proposed a new warping way to
facilitate the learning of large motion. Another method [44]
incorporated the occlusion information into the training loss
function and compensated the occluded regions by using
multi-frames. To balance the estimation accuracy and training
datasets, the semi-supervised learning method [45] was
recommended to predict the flow field by using a small
labeled dataset. For instance, Lai et al. [46] presented a
semi-supervised learning model to estimate optical flow by
utilizing a generative adversarial network, which is able to
learn optical flow with both labeled and unlabeled datasets.
Although the unsupervised and semi-supervised learning
methods are able to train the networks with unlabeled
datasets, their computation accuracy is still far behind the
supervised optical flow methods.

C. MATCHING-BASED OPTICAL FLOW METHODS
Being different with the classical variational methods, the
matching-based methods usually estimate flow filed by using
the feature similarity between the consecutive frames. This
encourages the matching-based methods achieve the better
robustness under illumination changes and motion occlu-
sions. To handle the limitations of variational optical flow
methods in estimating large displacements, Brox et al. [47]
incorporated a descriptor-based matching term into the
traditional variational energy function. The proposed hybrid
model penalizes the differences between the variational flow
field and the matching field, which effectively improves the
accuracy of optical flow in regions of large displacements.
Afterwards, Xu et al. [48] proposed an extended coarse-
to-fine computation framework to fuse the sparse matching
field and the estimated flow at each pyramid layer. Their
method performs a good performance on motion boundaries.
Because the mismatched pixels will decrease the accuracy
of optical flow estimation, Stoll et al. [49] proposed a
computation strategy to reduce the interference of the
mismatched pixels based on the self- adaptive additional
constraints. To improve the matching accuracy in untextured
regions, Weinzaepfel et al. [50] replaced the classical rigid
matching scheme by a non-rigid patch matching framework,
which significantly enhances the matching reliability and
estimation accuracy.

To improve both of the accuracy and robustness of optical
flow estimation under large displacements and occlusions,
Lempitsky et al. [51] proposed a discrete- continuous opti-
mization for optical flow, which the proposed method fuses
multiple optical flows to obtain a robust dense flow field.
Inspired by the layered pyramid computation framework,
Hu et al. [52] exploited a coarse-to-fine patch matching
strategy to cope with the large displacements. Their method
performs a competitive result on some public databases.
Moreover, Zu et al. [53] adopted a context-adaptive matching
scheme to improve the accuracy of the matching result under
illumination changes, deformations and occlusions. Further-
more, Zhang et al. [54] constructed a large displacement flow

227362 VOLUME 8, 2020



S. Shi et al.: Large Displacement Optical Flow Estimation Based on Robust Interpolation of Sparse Correspondences

field estimation approach by using similarity transformation
based dense correspondence. Their method improves the
accuracy and robustness of optical flow computation under
large displacements and motion occlusions. Afterwards,
Revaud et al. [55] recommended a pixel-distance-based
sparse-to-dense interpolation scheme to address the issue of
edge-blurring. Moreover, Hu et al. [56] presented a robust
interpolation method to deal with the input matching noises
by using a superpixel segmentation optimization scheme.
To improve the accuracy of dense flow field estimation,
Li et al. [57] proposed a pyramidal gradient matching
approach to achieve the highly accurate and efficient optical
flow estimation. Furthermore, Chen et al. [58] presented a
segmentation-based patch matching framework to cope with
the issue of over-segmentation. Yang et al. [59] proposed
a maximum likelihood function calculation method which
increases the robustness of the matching- based optical flow
estimation methods.

Matching-based optical flow estimation methods have
shown great advantages over the traditional variational
methods. However, most of the existing matching-based
methods are usually susceptible to non-rigid motion and
large displacements. To address the abovementioned issues,
we exploited in this paper a large displacement optical flow
estimation method based on robust interpolation of sparse
correspondences. The proposed method will be described in
detail in the following sections.

III. ROBUST SPARSE MATCHING FIELD
BASED ON DEEP MATCHING
A. DEEP MATCHING
As shown in Fig. 2, in order to improve the accuracy and
robustness of patch matching in regions of non-rigid motion
and large displacements, the deep matching method [60]
firstly divides the traditional sampling window into N
subregions, and then optimizes the position of each subregion
according to the similarities between the various subre-
gions. Thus, the correspondences of the pixels between the
consecutive frames are determined through the subregions
positions.

FIGURE 2. Illustration of the deep matching sampling windows based on
region division. (a) Sample window of the reference frame, (b) Sample
window of the traditional matching method, (c) Sample window of the
deep matching method.

Given the consecutive two frames I0 and I1, we decompose
the frames I0 and I1 into N subregions. Each subregion is
composed of four neighboring pixels. Thus, the matching
relationship of a subregion R in frame I0 with its correspond-

ing subregion R’ in frame I1 is defined as following:

Sim(R,R′) =
1
16

3∑
i=0

3∑
j=0

Ri,jR′i,j (1)

where Sim(R,R′) indicates the matching relationship of the
subregions R and R’. The notations Ri,j and R′i,j represent the
central pixels of the subregions R and R’, respectively.

FIGURE 3. Illustration of the pyramid sampling based deep matching
scheme. (a) Subregion aggregation of the first frame, (b) Corresponding
pixel searching of the second frame.

With the matching relationships of the subregions between
the consecutive two frames, the implementation process of
the deep matching method is concluded as the following two
steps: first, as shown in Fig. 3(a), every four neighboring
subregions are aggregated at the upper layer during the image
pyramid to determine the matching relationships of the larger
subregions. Second, by defining the central pixels of the
matching subregions as the corresponding pixels, the sparse
matching field is achieved by searching the corresponding
pixels from the top layer to the bottom layer during the image
pyramid, as shown in Fig. 3(b). Because the deep matching
model performs well in regions of non-rigid deformation and
large displacements, we utilize the deep matching scheme
to achieve the initial matching field of the consecutive two
frames.

B. NEIGHBORING SUPPORT-BASED MATCHING
OPTIMIZATION
Although the deep matching method improves the accuracy
of pixel correspondences in areas of non-rigid motion and
large displacements, its matching result may include incorrect
matching pixels due to the image noises and illumination
changes. To remove the incorrect matching pixels, we exploit
a neighboring support based matching optimization scheme
to optimize the initial matching result [61]. The proposed
optimization method is able to effectively improve the
accuracy and reliability of the pixel correspondences.

Assume that the motion between the consecutive two
frames I0 and I1 is continuous and smooth, the motion of the
center pixel xi in a local region should be consistent with that
of its neighboring support pixels. Therefore, the number of
the neighboring support pixels which are consistent with the
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matching center pixel is defined as follows:

Si =
k∑
i=1

∣∣χakbk ∣∣ (2)

where K indicates the number of the neighboring regions
which have the same movement with the matching center
pixel. The notations ak and bk denote the k th matching
regions which have the same geometric relationship with
the matching center pixel between the consecutive frames.
The symbol

∣∣χakbk ∣∣ represents the number of the matching
pixels between the matching regions ak and bk . Because
the correspondences of various pixels are independent,
the number Si of the neighboring support pixels should be
approximately binomial distribution as bellows:

Si ∼

{
B(Kn, pt ) if xi is true
B(Kn, pf ) if xi is false

(3)

where n represents the average number of the matching pixels
in a local region. The natation pt = Dt + β(1 − Dt )m/M
indicates the probability that a pair of pixels is corresponding
between consecutive frames when their located regions are
matched, and the notation pf = β(1 − Dt )m/M denotes
the probability that a pair of pixels is corresponding between
consecutive frames when their located regions are non-
matched. In the above definition, the symbol Dt indicates the
matching accuracy of the deep matching result, the symbol
β is a probability factor, the notation m denotes the number
of matching pixels in a local region, and the notation
M represents the total number of the matching pixels in
the sparse matching field estimated by the deep matching
method.

As shown in Eq. (3), the difference of the numbers of the
neighboring support pixels between the correct and incorrect
matching pixels is usually large. We distinguish whether a
pixel is a correct matching pixel by counting its neighboring
support pixels, thus the identification indicator of a pixel
based on its neighboring support pixels is defined as follows:

p =
Knpt − Knpf

√
Knpt (1− pt )+

√
Knpt (1− pf )

(4)

where P denotes the identification of a pixel based on
its neighboring support pixels. According to the Eq. (4),
the relationship between the value of the identification
indicator P and the other variables can be expressed as
follows: {

P ∝
√
Kn

lim
t→1

P→∞ (5)

As shown in Eq. (5), the identification indicator P trends
to be infinity with the increasing of the number of the
neighboring support pixels. In addition, the performance of
the neighboring support basedmatching optimization scheme
is correlative with the accuracy of the deep matching result,
because a better matching result produces the more accurate
neighboring support pixels.

C. GRID-BASED NEIGHBORING SUPPORT OPTIMIZATION
Despite that the neighboring support optimization scheme
is able to improve the accuracy and robustness of the
sparse matching field, the pixel-level optimizing process
may significantly increase the time consumption. To balance
the accuracy and runtime of the optimization scheme,
we construct a grid-based framework to implement the
neighboring support optimization, which leads to a high-
efficiency optimizing process.

First, we divide the input consecutive two frames into
a set of n × n non-overlapping grids. Then, we define
the grid that includes the most matching pixels between
the consecutive frames as the candidate matching grid.
Afterwards, we calculate the matching confidence coefficient
of the candidate matching grid as follows:

Si,j =
K∑
k=1

∣∣χik ,jk ∣∣ (6)

where Si,j denotes the matching confidence coefficient of the
grid i in the reference frame and its corresponding grid j in
the next frame. The symbol K indicates the number of the
neighboring grids of the grid i. The notation ik and jk indicate
the k th matching grids between the consecutive frames, and
the symbol represents the number of matching pixels in the
matching grids ik and jk .

With the calculated matching confidence coefficients of
the candidate matching grids, we construct a self-adaptive
threshold τi,j to distinguishwhether a candidatematching grid
is a correct matching grid, as shown in the follows:

{i, j} =

{
Correct, if Si,j ≥ τi,j
Incorrect, other,

1 ≤ i, j ≤ N (7)

where N denotes the number of the non-overlapping grids.
τi,j = α

√ni,j is the constructed self-adaptive threshold for
distinguishing the candidate matching grids, in which the
notation ni,j represents the number of the matching pixels in
grids i and j, and the symbol α is a weight factor.

With the achieved matching grids, we aggregate the
matching pixels located in the correct matching grids to be
the valid corresponding pixels, and remove the remainder
matching pixels from the initial matching result to gain
the final robust sparse matching field. For an illustration,
Fig. 4 displays the comparison result between the initial
matching field of the deep matching method and the opti-
mized matching field using our method. As shown in Fig. 4,
the proposed grid-based neighboring support optimization
scheme eliminates most of the incorrect matching pixels and
significantly improves the accuracy and robustness of the
matching field.

IV. DENSE FLOW FIELD ESTIMATION WITH
EDGE-PRESERVING INTERPOLATION
A. EDGE-PRESERVING INTERPOLATION
WITH MOTION BOUNDARY
Given the computed sparse matching field, most of the
existing matching-based methods estimate the dense flow
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FIGURE 4. Illustration of the proposed grid-based neighboring support
optimization in improving the accuracy of matching field, where the blue
mark indicates the correct matching pixel and the red mark denotes the
incorrect matching pixel.

field through the sparse-to-dense interpolation [55], [56].
However, this oversimplified interpolation scheme may blur
the motion boundaries. To deal with the abovementioned
issue, we exploit an edge-preserving spare-to-dense inter-
polation framework with motion boundary predicted by the
random forest scheme [62]. The proposed method is able to
improve the accuracy of the dense flow field and preserve the
motion boundary.

FIGURE 5. Estimated motion boundary of the MPI-Sintel datasets. Top is
the reference frame and bottom is the estimated motion boundary.
FIGURE 6. Flow fields of the various ablation models on some MPI-Sintel
training sets. From top to bottom: sequences of alley_2, cave_4 and
market_6.

To acquire the motion boundary, we firstly utilize a
structured random forest model to extract the motion
boundary from the consecutive frames [63]. Fig. 5 shows
the estimated motion boundary of the MPI-Sintel datasets.
Assume pm is a matching pixel in a local region centered
at pixel p, we define an edge-preserving distance D(pm, p)
between the central pixel p and its neighboring pixel pm as
follows [64]:

D(pm, p) = inf
0∈ρpm ,p

∫
0C (ps) dps (8)

where ρpm,p denotes the set of all possible paths between the
pixels pm and p. The symbol C(pm) indicates the cost of one
possible path crossing pixel ps. If the pixel C(pm) → 0.
Hence, the distance of two pixels which belong to the same
motion region will be low, and the distance of two pixels
which belong to the different motion region will be large.
Because each pixel is interpolated by using its neighbors,
the proposed interpolation scheme is able to preserve the
motion boundaries.

Given the edge-preserving distance between the center
and neighboring pixels, the sparse correspondence field is
interpolated by using a locally weighted affine estimator,
as shown in the follows:

WLA(p) = App+ tp (9)

where p represents any pixel in the first frame. The symbols
Ap and tp are the affine transformation parameters of the pixel
p, which the parameters Ap and tp are computed by using an
overdetermined equations as follows:

kD(pm, p)(Appm + tp − p′m) = 0 (10)

where pm and p′m denote a set of the corresponding
pixels between the consecutive two frames. The notation
kD(pm, p) = exp(−αD(pm, p)) represents a Gaussian
kernel function for the edge-preserving distance D with a
parameter α.
Because each pixel is interpolated based on its neighboring

pixels, we limit the matching pixels used in the interpolation
at a pixel p to its K nearest neighbors according to the
edge-preserving distanceD(pm, p). Thus, the pixel belonging
to the samemotion layer is close to the other pixels at the same
motion layer, and it is far away from the pixels outside the
same motion layer. This encourages the interpolation scheme
to preserve the motion boundaries.

B. GLOBAL OPTIMIZATION
After the edge-preserving sparse-to-dense interpolation,
the dense correspondence field is achieved. However, it may
include a few of local optimums. To achieve the global
solution, we utilize an energy function to optimize the dense
correspondence field, as shown in the follows:

E(u, v)=
∫ ∫
�

ϕ
(
(Ixu+ Iyv+ It )2+

(
∇Ixu+∇Iyv+∇It

)2)
+ J (|∇I |) ·

∫ ∫
�

ϕ(|∇u|2 + |∇v|2)dxdy (11)

where Ixu+ Iyv+ It = 0 and ∇Ixu+∇Iyv+∇It = 0 are the
brightness and gradient constancy assumptions, respectively.
The notation ϕ(x) =

√
x2 + ε2 represents the non-squared

penalty function, in which ε = 0.001 is a constant. The
symbol J (|∇I |) = γ ·exp(−α |∇I |β ) is a self-adaptive weight
related to the image gradient. This weight decreases the flow
diffusion near image edges to preserve the image and motion
boundaries and increase the flow diffusion in smooth areas to
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produce the global dense flows. We set the factors γ = α =
β = 1 by referring to [24].

In the global optimization process, we set the dense
correspondence field as the initialize solution, and then
adopt an inner and outer iteration scheme to minimize the
energy function due to the implicit and nonlinear components
contained in Eq. (11). To ensure both computational accuracy
and efficiency, we set the inner iteration is 300 and the outer
iteration is 3. After the global optimization, the final flow
field is achieved.

V. EXPERIMENTAL RESULTS
A. EVALUATION DATASETS AND ERROR METRICS
For a comprehensive evaluation, we respectively run our
method on MPI-Sintel [65] and UCF101 [66] datasets to test
the performance of optical flow estimation.

The MPI-Sintel data includes the training and test datasets,
which offer the non-rigid deformation, large displacements,
occlusions and motion blurring for testing the performance of
various optical flow methods. For a quantitative evaluation,
we use the metrics of average angle error (AAE) and average
endpoint error (AEPE) to indicate the performance of optical
flow on training sets, and use the metrics of AEPE all,
AEPE matched and AEPE unmatched from the MPI-Sintel
online benchmark to evaluate the performance of optical flow
estimation on test datasets. The metrics of AEPE all, AEPE
matched and AEPE unmatched display the results of AEPE
over complete frames, the regions that remain visible in
adjacent frames and regions that are visible only in one of two
adjacent frames, respectively. In addition, we use the metrics
of ‘‘s0-10’’, ‘‘s10-40’’, ‘‘s40+’’, ‘‘d0-10’’, ‘‘d10-60’’, and
‘‘d60+’’ to make the specific evaluation of optical flow on
large displacements and occlusions, in which the metrics of
‘‘s0-10’’, ‘‘s10-40’’ and ‘‘s40+’’ denote the results of AEPE
over the regions with different velocities per frame, and the
metrics of ‘‘d0-10’’, ‘‘d10-60’’ and ‘‘d60+’’ indicate the
results of AEPE over regions close to occlusion boundaries
with different distances, respectively.

Being very different with the MPI-Sintel data, the UCF101
data is composed of 101 action classes, which offers more
than 13000 videos for evaluating various vision tasks. It is
too large to run our method on all UCF101 datasets,
we utilize eight datasets in the Sports classification to make
a straightforward evaluation. The experimental datasets offer
over 1100 frames for testing the performance of optical flow
estimation under large or small displacements, motion occlu-
sions and non-rigid motions. Due to the UCF101 datasets
do not provide the ground truth of optical flow, we predict
the next frame using the reference and the estimated optical
flow, and then use the metrics of the peak signal to noise
ratio (PSNR) and Sharpness (SN) to evaluate the performance
of next frame prediction. Because the next frame is directly
computed by using the estimated optical flow, a better
performance on next frame prediction indicates a better result
on optical flow estimation.

B. COMPARISON METHODS
To make a convincing comparison, we compare the flow
result of our method with that of several state-of-the-art meth-
ods including Classic+NL [22], Deepflow [50], LDOF [47],
JOF [27], STDC-Flow [54], PWC-Net [36], FlowNet2.0 [31]
and IRR-PWC [39], in which the Classic+NL and JOF
methods belonging to the variational optical flow approach,
the Deepflow, LDOF and STDC- Flow methods belonging to
the matching-based optical flow approach, and the PWC-Net,
FlowNet2.0 and IRR-PWC methods are CNN-based optical
flow approach.

In the comparison methods, the Classic+NL [22] method
incorporates a non-local constraint term into a classical
energy function, and thenminimizes the objective function by
applying a weighted median filtering to remove the outliers
during the computation process. The JOF [27] method plans a
joint filtering framework by combining the median filter and
mutual structure guide filter, which performs a good result
in term of robustness and edge-preserving. In this paper,
the number of pyramid layers is fixed at 6, and the down-
sampling factor is set as 0.5 in both of Classic+NL and JOF
methods.

The DeepFlow [50] method is a representative matching-
based optical flow approach, which utilizes a pyramid
layering strategy to improve the accuracy of featurematching.
In this paper, the pyramid down-sampling factor is set as
0.95. The LDOF [47] method incorporates a descriptor-based
matching term into a variational energy function, which sig-
nificantly improve the performance of optical flow estimation
under large displacements. The STDC-Flow method [54]
uses similarity transformation based dense correspondence to
improve the accuracy and robustness of optical flow under
large displacements and motion occlusions. In this paper, the
down-sampling factor is set as 0.5 and the patch size is fixed
to be 4× 4.
The FlowNet2.0 [31] is constructed by stacking several

FlowNetC and FlowNetS networks [30], which significantly
improves the accuracy of optical flow estimation. We firstly
train the FlowNet2.0 model on FlyingChairs datasets, and
fine-tune it on FlyingThings3D, MPI-Sintel and KITTI
training sets, respectively. The PWC-Net method [36] uses a
feature pyramid-based network to predict flow field, which
performs good performance on several public databases.
In this paper, we apply a 7-level pyramid to the PWC-Net
model and set a search range of 4 pixels to compute the
cost volume at each level. We train the PWC-Net model
on FlyingChairs datasets by using a long learning rate and
use a batch size of 8 to fine-tune it on MPI-Sintel and
KITTI training sets. Finally, the IRR-PWC method [39]
incorporates an iterative residual refinement scheme into
the PWC-Net framework, which improves the robustness
of optical flow in regions of occlusions. In this paper,
we use the same network parameters and training strategy
with that of PWC-Net method to test the performance
of IRR-PWC.
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C. ABLATION EXPERIMENT
To reveal the impact of the various components of our method
in improving the performance of optical flow estimation,
we use the final sets of theMPI-Sintel training data to conduct
an ablation experiment.

TABLE 1. Ablation experiment results.

Table 1 lists the results of AAE and AEPE of the proposed
method with different modeling choices, in which the Full
model represents the proposed Riscflow method, the No
match optimization represents that removing the grid-based
neighboring support optimization from the Riscflow method,
the No edge optimization represents that replacing the
edge-preserving interpolation framework by a classical
interpolation scheme, the No global optimization represents
that removing the global optimization strategy from the
presented method. As can be seen in Table 1, the comparison
results between different ablation models indicate that
removing the grid-based neighboring support optimization,
the edge-preserving interpolation or global optimization
leads to a significant degradation in estimation accuracy
of optical flow. Those comparison results demonstrate the
benefit of the matching optimization, edge-preserving inter-
polation and global optimization for optical flow estimation.

For a visual comparison, Fig. 6 displays the estimated
flow fields of the various ablation models on some
MPI-Sintel training sets including alley_2, cave_4 and
market_6, in which the alley_2 and cave_4 sequences contain
the non-rigid deformation, and the market_6 sequence
includes the large displacements. As shown in Fig. 6,
removing the matching optimization produces the obvious
errors in the estimated flow field because the initial
correspondence field may include a mass of incorrect
matching results. Moreover, removing the edge-preserving
interpolation or global optimization leads to the issues of
edge-blurring or over-segmentation, because the proposed
edge-preserving interpolation scheme and global optimiza-
tion strategy is able to improve the accuracy of optical flow
near motion boundaries. The visual comparison demonstrates
that the proposed grid-based neighboring support optimiza-
tion, edge-preserving interpolation and global optimization
are able to cope with the challenge of non-rigid deformation
and large displacements.

D. COMPARISON RESULTS FROM MPI-SINTEL
TEST DATASETS
In this subsection, we run the proposed Riscflow method
on the MPI-Sintel test datasets to conduct a comprehensive

TABLE 2. Comparison results of various methods on MPI-Sintel test
datasets.

comparison with some state-of-the-art methods. Table 2 lists
the comparison results of various methods evaluated on the
MPI-Sintel test datasets.

As can be seen in Table 2, the Classic+NL and JOF
methods perform the inferior performance compared with
the other methods, because the non-rigid deformation, large
displacements and occlusions contained in the MPI-Sintel
datasets are the significant challenge for the variational opti-
cal flow approaches. The Deepflow, LDOF and STDC-Flow
methods achieve the mediocre performance among the
evaluation methods, due to the traditional matching-based
methods are susceptible to non-rigid motion and large
displacements. Although the PWC-Net, FlowNet2.0 and
IRR-PWC methods perform the best results on metrics of
AEPE all and AEPE unmatched, these CNN-based methods
require numerous labeled datasets to train the networks. This
specific limitation may prevent the CNN-based optical flow
methods from applying in real-world scene. Despite that the
proposed Riscflow method results in a slightly backward
performance on metrics of AEPE all and AEPE unmatched
compared with the CNN-based methods, it achieves the best
result on the metric of AEPE matched and outperforms the
other variational and matching-based methods on the total
metrics. Because themetrics of AEPE all, AEPEmatched and
AEPE unmatched indicate the performance of optical flow
over complete frames, the non-occluded regions and occluded
regions, respectively. The comparison results in Table 2
demonstrates that the proposed method performs the better
performance in the entire regions compared with the other
variational and matching-based methods, and it achieves a
better performance in the non-occluded regions compared
with the evaluated CNN-based methods.

To make a specific comparison on large displacements and
edge-preserving, Table 3 summarizes the comparison results
of the various evaluation methods on some specific metrics of
MPI-Sintel test datasets. In Table 3, the metrics of ‘‘s0-10’’,
‘‘s10-40’’, ‘‘s40+’’, ‘‘d0-10’’, ‘‘d10-60’’, and ‘‘d60+’’ are
employed to make the straightforward evaluation of optical
flow on large displacements and motion boundaries, in which
the metrics of ‘‘s0-10’’, ‘‘s10-40’’ and ‘‘s40+’’ denote the
results of AEPE over the regions with different velocities per
frame, and the metrics of ‘‘d0-10’’, ‘‘d10-60’’ and ‘‘d60+’’
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FIGURE 6. Flow fields of the various ablation models on some MPI-Sintel training sets. From top to bottom: sequences of alley_2, cave_4 and market_6.

TABLE 3. Comparison results of the various methods on some specific
metrics of MPI-Sintel test datasets.

indicate the results of AEPE over regions close to boundaries
with different distances, respectively.

As seen in Table 3, the Classic+NL and JOF methods
achieve the best and second-best results on metric of s0-10.
This indicates that these two variational methods perform
a good performance on small displacements. However,
they result in the poor performance on the other metrics,
which indicate that the Classic+NL and JOF methods are
incapable of dealing with large displacements and non-rigid
deformation. Despite that the Deepflow, STDC-Flow and
LDOF methods perform a slightly better performance than
the Classic+NL method on metric of s0-10, they still
result in a poor performance on large displacements. The
FlowNet2.0 and IRR-PWC methods achieve the best and
second-best results on metric of s40+, which demonstrate
the CNN-based methods are able to cope with large
displacements and non-rigid deformation. The proposed
Riscflow method performs the best result on metrics of
d10-60 and d60-140, the second-best results on metrics of
d0-10 and s0-10, and the competitive results on metrics
of s10-40 and s40+, respectively. This indicates that
the proposed method performs the good performance in
regions of large displacements and motion boundaries, which
demonstrates that the proposed method has the significant
benefit of edge-preserving under non-rigid motion and large
displacements.

For a visual comparison, Fig. 7 displays the estimated
flowfields of the proposed Riscflow and other state-of-the-art

methods tested on some MPI-Sintel test dataset. As shown
in the figure, the Classic+NL and JOF methods produce
good results on the datasets including small displacements,
such as Market_3 sequence. However, they generate obvious
over- segmentation on some datasets containing large dis-
placements and occlusions, such as Cave_3, Market_1 and
Market_4 sequences. The Deepflow, LDOF and STDC-flow
methods produce edge-blurring on Shaman_1 and Mar-
ket_4 sequences which including complex edges and motion
occlusions. The FlowNet2.0, PWC-Net and IRR-PWC
methods result in good performance on most of the test
datasets. However, their flow fields include some errors near
the image and motion boundaries. The proposed Riscflow
method achieves a competitive performance compared with
the FlowNet2.0 and PWC-Net methods, and especially gains
the better results in regions of large displacements andmotion
boundaries.

E. COMPARISON RESULTS FROM UCF101 DATASETS
To evaluate the performance of the proposed Riscflow and
the other state-of-the-art methods on the real-world data,
we utilize the UCF101 datasets to conduct a comprehensive
experiment. Fig. 8 illustrates the estimated flow fields of the
proposed Riscflow and other state-of-the-art methods tested
on some UCF101 datasets.

As shown in Fig. 8, although the FlowNet2.0, PWC-Net
and IRR-PWC methods perform the excellent performance
on MPI-Sintel datasets, they generate obvious errors in
the estimated flow field of the UCF101 datasets because
the UCF101 data does not offer the optical flow ground
truth for training their networks. The Classic+NL, JOF,
LDOF, STDC-Flow and Deepflow methods perform well
on the UCF101 datasets. However their flow fields appear
the issues of over-segmentation or edge-blurring. The pro-
posed Riscflow method achieves the good results on the
UCF101 datasets, because the motion boundaries in the
estimated flow field are well preserved.

Due to the UCF101 datasets do not provide the ground
truth of optical flow, we predict the next frame using the
reference and the estimated optical flow, and then use
the metrics of the peak signal to noise ratio (PSNR) and
Sharpness (SN) to evaluate the performance of next frame
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FIGURE 7. Estimated flow fields of the proposed Riscflow and other state-of-the-art methods tested on some MPI-Sintel test dataset.

prediction. Specifically, the PSNR evaluates the level of
similarity, and the SNmeasures the loss of sharpness between
the truth frame and the predicted frame. Because the next
frame is directly computed by using the estimated optical
flow, a better performance on next frame prediction indicates
a better result on optical flow estimation. Table 4 summarizes
the comparison results of the next frame prediction between
the Riscflow and other evaluation methods. As shown
in Table 4, the proposed Riscflow method performs the
best and second-best results on metrics of SN and PSNR,
respectively. These comparison results indicate that the
proposed method achieves the good performance in terms
of accuracy and robustness, especially owns the benefit of
edge-preserving.

F. RUNTIMES
To make a comprehensive comparison between the proposed
Riscflow and the other state-of-the-art methods, Table 5
lists the comparison results of the average runtimes of
various methods tested on MPI-Sintel and UCF101 datasets,
respectively. Specifically, the proposed method and the other
variational and matching-based approaches are implemented

by MATLAB2010 using a Lenovo computer equipped with
an Intel Core I7-6700KCPU. The CNN-based approaches are
implemented by a Lenovo computer equipped with an Intel
Core I7-6700K CPU and an NVIDIA GTX 1080Ti GPU.

As seen in Table 5, the Classic+NL, STDC-Flow and JOF
methods cost the largest time consumption. This is because
these methods utilize a coarse-to-fine iteration scheme to
improve the accuracy of optical flow, whichmay significantly
increase the time cost. Despite that the Deepflow and LDOF
methods cost less runtimes compared with the variational
methods, these two matching-based methods perform the
poor performance on estimation accuracy. The PWC-Net,
FlowNet2.0 and IRR-PWC methods achieve the best results
in runtimes because the CNN-based methods have the
significant benefit of real-time computation. However, these
CNN-based methods require supervised training process and
cannot be applied to real-world data where the ground
truth is not easily accessible. The proposed Riscflow
method costs more time than the other matching-based
methods because of the additional optimization schemes
including the grid-based neighboring support optimiza-
tion, edge-preserving interpolation and global optimization.
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FIGURE 8. The estimated flow fields of the proposed Riscflow and other state-of-the-art methods tested on some UCF101 datasets.

TABLE 4. Comparison results of various methods tested on UCF101 datasets.

TABLE 5. Comparison results of time consumption (Unit: Second).

Despite that these additional optimizations slightly increase
the time consumption, they prompt the proposed method to
achieve the good performance on accuracy and robustness of
optical flow estimation.

VI. CONCLUSION
In this paper, we proposed a robust-interpolation-based
optical flow estimation method to cope with the issue
of large displacements and non-rigid deformation. First,
we utilized the deep matching model to gain an initial
sparse correspondence field between the consecutive two
frames, and then exploited a grid-based neighboring support
optimization scheme to optimize the sparse correspondence
field. Second, we constructed an edge-preserving spare-
to- dense interpolation framework to preserve the motion
boundaries. Third, we adopted a global energy function
to optimize the dense correspondence field to achieve
the dense flow field. Fianlly, we respectively ran our
method on MPI-Sintel and UCF101 datasets to conduct
a comprehensive comparison with several state-of-the-art
methods. The experimental results demonstrated that the
proposed method has high accuracy and good robustness
of optical flow estimation, and especially owns the benefit
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of edge-preserving under large displacements and non-rigid
deformation.

The proposed Riscflow method costs more time than
some comparison methods, especially the deep-learning
approaches. One reason is that we utilize a post-processing
global optimization scheme to improve the accuracy of
optical flow estimation, which may significantly increase the
operation time. Another reason is that we simply use a serial
framework to implement the proposed method on a CPU
processor. In the future work, we will modify the method by
using a parallel framework and try to use a GPU to accelerate
the computation process. This may promote the proposed
method to achieve the real-time implementation.
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