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ABSTRACT A transmission contingency analysis (TCA) method based on data-driven equivalencing of
radial DN distribution networks is proposed. First, an offline-online-combined data-driven model training
method is proposed. The historical data are exploited during offlinemodel training considering the uncertain-
ties of loads and distributed generations to achieve partially prepared root nodal power injection functions,
where root nodal voltage magnitudes are taken as arguments. After that, the real-time data of loads and
DGs are used to determine all coefficients in these functions. In the proposed TCA, DNs will be equivalent
to simplified models by distribution system operators (DSOs) with the data-driven method and the models
will be sent to the transmission system operator (TSO). Then, TSO can complete the TCA independently.
Numerical experiments show that the proposed TCA approach has similar accuracy and higher efficiency
compared with the traditional global-power-flow-based TCA approach. It not only significantly reduces
communication time between TSO and DSOs, but also saves calculation times, which may benefit real
practice in the coordination operation of transmission-distribution-coupled systems in the future.

INDEX TERMS Data-driven equivalencing, offline-online-combined model training, power flow, transmis-
sion contingency analysis, uncertainties.

I. INTRODUCTION
Transmission contingency analysis (TCA) is a fundamental
tool for transmission power system operations [1]. The TCA
usually consists of contingency selection and contingency
evaluation. Contingency selection aims to choose critical
contingencies to reduce unnecessary contingency evaluation
and enhance the overall efficiency of the TCA. The essence
of contingency evaluation is to analyze topology and calcu-
late power flow under given transmission contingencies and
activate alarms based on analysis results. Thus, the accuracy
of TCA is crucial for system security. Due to the administra-
tive separation, transmission networks (TNs) and distribution
networks (DNs) are usually managed by different system
operators. TCA is usually processed by transmission system
operators (TSOs) independently without interactions with
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distribution system operators (DSOs), where TNs are
modeled in detail while DNs are equivalent as constant
loads [2], [3]. This equivalence will not lead to a large devi-
ation because traditional passive DNs have a small effect
on TNs [2], [4]. However, due to the high penetration of
distributed generations (DGs), the coupling between TNs
and DNs will be significantly enhanced. The variation in the
outputs of DGs and other active elements will make active
DNs have much larger effect on TN power flow compared
with traditional passive DNs [3].

To deal with this challenge, some researchers propose the
concept of global TCA (GTCA) considering the effects of
DNs on TNs in recent years. Ref. [2] proposes a master-
slave-splitting-based (MSS) global power flow method, and
later, [5] proposes a GTCA algorithm based on this global
power flow method. Ref. [6] also implements GTCA con-
sidering the detailed modeling of solar photovoltaics. Con-
sidering that a complete GTCA usually involves a large
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batch of power flow calculations under given contingencies,
the time consumption of solving power flow and the com-
munication delays between TSOs and DSOs significantly
influence the overall efficiency of GTCA. Ref. [5] pro-
poses several strategies to accelerate GTCA, includingGTCA
with DN-concerned contingency selection, DC-model-based
GTCA, GTCA using DN equivalencing, etc. DN-concerned
contingency selection is an important pre-treatment before
analysis, and [7] presents two effective strategies to select
critical contingencies. DC-model-based GTCA will accel-
erate power flow calculation compared, but it may also
lead to imprecision. GTCA using DN equivalencing not
only accelerates global power flow calculation but also
decreases the communication between TSO and DSOs.
However, [5] does not give a specific method for DN
equivalencing.

Network equivalencing or network reduction is a common
approach for static power system applications, such as power
flow calculation [8], [9], reliability evaluation [10], system
planning [11]. In the TCA, a simple and direct method for
reducing a radial DN is to simplify it as a constant load,
of which the power injections are equal to the total loads in
this DN. However, this method neglects the network losses
in DNs and the uncertainties of DGs are not fully consid-
ered. If the sensitivity of the power injections to the voltage
magnitude of DN root nodes of DNs is relatively small, this
equivalent method will not lead to a significant deviation. But
if this sensitivity is large, the accuracy cannot be guaranteed.
With the advancement of active DNs, many PV-typed DGs
exist in DNs, which will significantly enlarge this sensitiv-
ity [3]. Therefore, some novel methods for handling this
circumstance are needed.

To deal with these challenges, data-driven approaches
could be considered. In recent years, data-driven approaches
have attracted broad attention in power system analysis and
optimization. Reference [12] provides a comprehensive sur-
vey covering energy big data analytics and its security. Par-
ticularly, it discusses the data-driven schemes in the operation
of smart grids. Also, some researchers have introduced data-
driven approaches to handle with traditional applications in
power system operations, such as state estimation [13], topol-
ogy or parameter identification [14]–[16], power flow [17],
optimal power flow [18], unit commitment [19], etc. How-
ever, this important technology has not been utilized in
TN-DN coordinated analysis.

Thus, this paper proposes a TCA method based on data-
driven equivalencing of radial DNs. The main contribution of
this paper is that it

i) proposes a data-driven equivalent method for
describing the characteristics of DNs considering the
uncertainties of DGs and loads. This equivalent method
consists of offline training with historical data and
online training with real-time data;

ii) proposes a distributed TCA method based on the
proposed data-driven equivalent method. The data
exchange between TSO and DSO is designed;

FIGURE 1. DN equivalencing in a TN-DN-coupled system.

iii) proposes several perspectives that should be further
addressed when the proposed method is applied to
real-world system operations.

Numerical experiments show that the proposed data-driven
method can achieve high accuracy. In addition, compared
with traditional TCA, the proposed TCAmethod significantly
decreases the communication costs between TSO and DSO,
and thus, it has higher efficiency.

The rest of the paper is organized as follows: Section II
presents the data-driven equivalencing method of radial
DNs. Section III proposes the DN-equivalencing-based TCA
method. Numerical experiments demonstrate the effective-
ness of the proposed method in Section IV. Discussion
and extensions about the proposed method are presented in
Section V. Finally, conclusions are drawn in Section VI.

II. DATA-DRIVEN EQUIVALENCING OF RADIAL DNs
This section introduces a data-driven method to establish
a DN equivalent model. Subsection A presents the general
framework. Subsection B presents some basic assumptions
for the proposed method. Subsection C and Subsection D
respectively present the offline training part and the online
one.

A. GENERAL FRAMEWORK
As mentioned in [5], the influences of DNs are significantly
important to achieve accurate TCA results. Global-power-
flow-based TCA is presented in this reference. However,
a series of global power flow calculation is needed in the
TCA. Thus, a large number of alternating iterations between
TSO and DSO cost much communication time.

Therefore, the basic idea of this paper is to establish
an equivalent model for radial DNs. To be more specific,
as shown in FIGURE 1, the power injections are represented
as functions of root nodal voltage magnitude of DNs, active
and reactive power of loads in DNs, and active and reactive
power of DGs in DNs.

PB = f (UB,PDL ,Q
D
L ,P

D
G,Q

D
G) (1a)

QB = g(UB,PDL ,Q
D
L ,P

D
G,Q

D
G) (1b)

where UB represents the root nodal voltage magnitude. PB

and QB represent active and reactive power injections. PDL
and QDL represent the active and reactive power of DN loads.
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FIGURE 2. General framework of data-driven equivalencing of DNs.

PDG and QDG represent the active and reactive power of DGs
in DNs.

To achieve the functions shown in (1), an offline-
online-combined framework is proposed, as shown
in FIGURE 2. Two steps are included in this framework. The
first step is to train an offline model under a given network
topology with historical data. The uncertainties of loads and
DGs are considered in this step. The second step is to train an
online model under a set of determined loads and generations
of DGs, based on the offline model achieved in the first step.

B. BASIC ASSUMPTIONS
With the advancement of DNs, various loads and generations
are accessed into DNs. In this paper, without losing general-
ity, some assumptions are established.

i) Flexible loads: the active power and reactive power of
DN loads are both modeled as the sum of a forecasted value
and a zero-mean fluctuation (normal distribution).

P̃
D
L = PDL + ωD

PL , Q̃
D
L = QDL + ωD

QL (2)

where ωD
PL ∼ N (0, (σDPL )

2) and ωD
QL ∼ N (0, (σDQL )

2).
ii) DGs: it is assumed that all DGs in DNs are under

PQ-typed or PV-typed control. The active power generations
of DGs are modeled as an interval.

P̃
D
G ∈ [PDG, P̄

D
G] (3)

Here, if the inverters of DGs are under PV-control, the reac-
tive power of DGs will also vary with random variables. If the
inverters of DGs are under PQ-control, it is assumed that the
reactive power of DGs remains constant.

iii) The structure of DNs is radial and there are no other
active elements in DNs except for the flexible loads and DGs.

C. OFFLINE MODEL TRAINING WITH HISTORICAL DATA
Historical data of loads and generations are used for offline
model training by each DSO, as shown in FIGURE 3.

First, for each set of historical data, the relationship
between power injections at the root node and root nodal
voltage magnitude could be trained. To be more specific,
for the t-th set of historical data, P̃

D
L,t , Q̃

D
L,t , P̃

D
G,t , and Q̃

D
G,t ,

FIGURE 3. Flowchart of offline model training.

setting different root nodal voltage magnitudes UB will bring
out different power injections PB and QB, ft and gt could be
achieved with polynomial fitting as shown in (4).

PB = ft (UB) =
n∑
i=0

at,i(UB)i (4a)

QB = gt (UB) =
m∑
i=0

bt,i(UB)i (4b)

where at,i and bt,i are fitting coefficients. n and m are
the order of polynomials. Usually, the higher the order of
polynomials is, the more accuracy the fitting is. However,
higher order usually requires more data and time to train the
model and may also lead to over-fitting problems. According
to Bayesian information criterion and a batch of numerical
experiments, the setting of n = 3 and m = 2 is enough
to guarantee the accuracy of the fitting, since the correlation
coefficient is larger than 0.99 under this setting while n > 3
or m > 2 will not significantly increase the correlation
coefficient. A simple and direct method is to sample UB

uniformly in [UB, ŪB], where UB and ŪB are the lower and
upper limits of UB. Thus, the sampling points are

UB
+

(ŪB
− UB)s
S − 1

, s = 0, 1, · · · , S − 1 (5)

where S is the number of sampling points.
Different sets of loads and generations will bring out differ-

ent sets of at,i and bt,i. Numerical experiments demonstrate
that there is a potential relationship between at,3 and at,2, at,3
and at,1, as well as bt,2 and bt,1. Thus, as shown in FIGURE 3,
f sub2 , f sub1 , and gsub1 can be obtained by the polynomial fitting.

a2 = f sub2 (a3) = u2,2a23 + u2,1a3 + u2,0 (6)

a1 = f sub1 (a3) = u1,2a23 + u1,1a3 + u1,0 (7)

b1 = gsub1 (b2) = v1,2b22 + v1,1b2 + v1,0 (8)

Here, also as shown in FIGURE 3, the final output of offline
model training includes u2,2, u2,1, u2,0, u1,2, u1,1, u1,0,
v1,2, v1,1, v1,0, while a3, a0, b2, b0 are undetermined coef-
ficients, which will be achieved in the online model training.
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FIGURE 4. Flowchart of online model training.

In summary, the uncertainties of loads and generations are
included in the historical data. The essence of the offline
model training is to achieve ‘partially prepared’ power injec-
tion functions given network topology.

PB = f (UB) = a3(UB)3 + (u2,2a23 + u2,1a3 + u2,0)(U
B)2

+ (u1,2a23 + u1,1a3 + u1,0)U
B
+ a0 (9a)

QB = g(UB) = b2(UB)2 + (v1,2b22 + v1,1b2 + v1,0)b1 + b0
(9b)

They are generally applicable when the uncertainties sat-
isfy the assumptions presented in Subsection B.

D. ONLINE MODEL TRAINING WITH REAL-TIME DATA
The goal of online model training is to determine the
unknown coefficients in (9a) and (9b), i.e. a3, a0, b2, b0
with the real-time loads and generations. Here, a two-point
estimation is applied for online model training. To be more
specific, under real-time P̃

D
L , Q̃

D
L , P̃

D
G, Q̃

D
G, take any two

different values for UB, denoted as UB
x and UB

y ,
where UB

x ,U
B
y ∈ [UB, ŪB]. Calculate DN power flow under

UB
x and UB

y respectively to achieve

PBx = f (UB
x ),P

B
y = f (UB

y ) (10a)

QBx = g(UB
x ),Q

B
y = g(UB

y ) (10b)

Then, a3, a0, b2, b0 could be solved with (10). Note that
there are two roots for a3, a0, b2, b0 since (10a) and (10b)
are quadratic equations. Select the appropriate roots as their
final solutions. Then, calculate (6)-(8) to achieve other coef-
ficients. Thus, the final DN equivalent model is obtained.

III. DN-EQUIVALENCING-BASED TCA METHOD
This section introduces the DN-equivalencing-based TCA
method. Subsection A presents the DN-equivalencing-based
power flow method. Then, the overall steps of this TCA
method are shown in Subsection B.

A. DN-EQUIVALENCING-BASED POWER FLOW METHOD
Power flow calculation is the basis of TCA. When the online
model of DNs is achieved, a DN-equivalencing-based power
flow method is as follows.
Step I: Initialize the voltage magnitude of root nodes

of DNs UB0 . Set iteration count k = 0 and convergence
tolerance ε.
Step II: Calculate boundary power injections PBk and QBk

with and (1a) and (1b).
Step III: Calculate TN power flow with PBk and QBk to

achieve UBk+1.
Step IV: If

∥∥UBk+1 − UBk ∥∥ < ε, the method converges and
stops. Otherwise, let k = k + 1 and go back to Step II.
Based on the convergence analysis in [2], the abovemethod

can converge if ∣∣∣∣ ∂g∂UB

∣∣∣∣
∣∣∣∣∣∂UB

T

∂QBT

∣∣∣∣∣ < 1 (11)

where ∂UB
T /∂Q

B
T represents the sensitivity of the DN root

nodal voltagemagnitude to the reactive power injection at this
root node in TN power flow.

B. OVERALL STEPS OF DN-EQUIVALENCING-BASED
TCA METHOD
The overall steps of the DN-equivalencing-based TCA
method are as follows. Meanwhile, a flowchart of the TCA
method is shown in FIGURE 5.
Step I: TSO generates a contingency set and sends a TCA

request to all DSOs.
Step II: Each DSO trains its online model with its offline

model (corresponding to its current operating mode) as well
as the real-time loads and generations of DGs. Then, send the
achieve online model to TSO.
Step III: Select a contingency. If this contingency does

not lead to a network split, TSO calculates power flow with
alternating iterations between the TN model and equivalent
models of DNs as shown in Subsection A under this contin-
gency.
Step IV: Check the system security under the selected

contingency. If there is a risk (network split, nodal voltage
magnitude violation, line overloading, etc.), activate an alarm
to operators.
Step V: If the selected contingency is the last one in the con-

tingency set, the TCAmethod finishes. Otherwise, go back to
Step III.

FIGURE 5 shows that the only information exchange
occurs at the beginning of the TCA method. To be more
specific, TSO only needs to send a TCA request to DSOs,
while each DSO only needs to send its online model to the
TSO. As shown in Section II, each online model consists of
only 7 constants. Thus, compared with traditional GTCA, the
proposed TCA method can significantly reduce communica-
tion costs between TSO and DSOs. Besides, this feature is
important when the communication condition between TSO
and DSOs is bad. For example, when communication delay is
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FIGURE 5. Flowchart of DN-equivalencing-based TCA.

large or non-instantaneous interruptions occur, the traditional
GTCA cannot proceed to obtain the final solutions within a
proper time.

IV. NUMERICAL EXPERIMENTS
This paper constructs two cases for numerical experiments.
The programs are written in MATLAB R2015a and run
on the Windows 10 of 64 bits. The CPU is Intel Core i7-
7700K, with 4.20GHz master frequency and 32GB memory.
The maximum iteration times of the Newton method and
the tolerance are set to 50 and 1e-4 p.u., respectively. Set
ε = 1e-4 p.u. The historical data are generated with
the Monte-Carlo method based on (2) and (3) (sampling
size: 1000).

A. CASE A: ONE TSO AND ONE DSO
Case A is constructed by combining a TN case-IEEE Case30
(the lower and upper limits of nodal voltage magnitude are
0.925 p.u. and 1.075 p.u., the active power limits of lines
and transformers are set as the values in the ‘case30.m’ in
MATPOWER) with a DN case-modified IEEE Case 69 via
a transformer (r = 0.002 p.u., x = 0.01 p.u., ratio = 1.0)
at Bus 30. In the DN case, three PV-typed DGs (PDG = 0,
P̄
D
G = 2MW) are accessed into the DN at Node 8, 15, and

20. Other parameters are σDQL = 0.05MVar. σDPL = 0.05MW.
UB
= 0.925p.u. ŪB

= 1.075p.u.S = 151. PDL andQDL are set
as the values of loads in IEEE Case69.

First, FIGURE 6 compares the DN equivalent curves,
achieved by the proposed training method, with the scatter
plots, achieved by setting different root nodal voltage mag-
nitudes. The real-time data: P̃

D
G = 0.5MW, P̃

D
L = PDL ,

Q̃
D
L = QDL . It shows that the equivalent curves achieved by the

FIGURE 6. Curves of power injections v.s root nodal voltage
magnitude-Case69.

TABLE 1. Error analysis under uncertainties – modified Case69.

TABLE 2. Accuracy and efficiency comparison – case A.

proposed method are very close to the actual characteristics
of the DN.

Second, TABLE 1 records the root mean square
error (RMSE) and maximum absolute error (MAE) of the
achieved DN equivalent curve under different values of P̃

D
G to

evaluate the generality of the proposed training method under
uncertainties. It shows that, under different P̃

D
G, the RMSE is

less than 0.1MW and 0.2MVar, and the MAE is less than
0.3MW and 0.5MVar. The accuracy is acceptable in TCA.
This demonstrates that the DN equivalent function achieved
by the proposed offline training method has a good generality
under uncertainties.

Third, the accuracy and efficiency of the proposed TCA
method and traditional GTCA are compared in TABLE 2.
Since offline model training is completed in advance, the cost
of this step will not be included in the total time cost
of the proposed TCA. The contingency set consists of all
N-1 branch-typed contingencies which will not lead to a
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FIGURE 7. Curves of power injections v.s root nodal voltage
magnitude-Case141.

network split. The real-time data of DGs: P̃
D
G = 0.5MW. The

communication delay between TSO and DSOs is assumed as
50ms.

TABLE2 shows that the proposedDN-equivalencing-based
TCA can achieve almost the same results compared with the
traditional GTCA. However, the proposed method has higher
efficiency. TheGTCAneeds 57 alternating iterations between
TSO and DSOs. However, the proposed TCA only needs
to communicate once (TSO sends a request to DSOs while
DSOs send their online models to TSO). The calculation time
of the proposed TCA is also less than that of the GTCA,
saving over 1/3 of calculation time.

B. CASE B: ONE TSO AND MULTIPLE DSOs
Case B is constructed by combining a TN case-IEEECase118
(the lower and upper limits of nodal voltage magnitude
are 0.925 p.u. and 1.075 p.u.) with four DN case-modified
Case 141 via a transformer (r = 0.002 p.u., x = 0.01 p.u.,
ratio= 1.0) at Bus 35, 45, 75, and 95, respectively. The basic
Case141 is shown in the ‘case141.m’ in MATPOWER. Seven
PV-typed DGs (PDG = 0, P̄

D
G = 2MW) are accessed into the

DN at Node 8, 15, 20, 47, 68, 45, 61. PDL and QDL are set as
the values of loads in the ‘case141.m’ in MATPOWER.

First, similar to FIGURE 6, FIGURE 7 compares the DN
equivalent curves with the scatter plots. The real-time data of
DGs: P̃

D
G = 0.5MW, P̃

D
L = PDL , Q̃

D
L = QDL . It also shows that

the DN equivalent curves achieved by the proposed training
method are very close to the actual characteristics of the DN.

Second, similar to TABLE 1, TABLE 3 records the RMSE
andMAEof the achievedDN equivalent curve under different
values of P̃

D
G to evaluate the generality of the proposed train-

ing method under uncertainties. It shows that, under different
P̃
D
G, the RMSE is less than 0.2MW and 0.2MVar, and the

MAE is less than 0.4MW and 0.4MVar. The accuracy is
acceptable in TCA.

FIGURE 6, FIGURE 7, TABLE 1, and TABLE 3 demon-
strate that the proposed algorithm can achieve accurate equiv-
alent functions for different DN cases.

Third, similar to TABLE 2, the accuracy and efficiency
of the TCA method and traditional GTCA are compared
in TABLE 4. The real-time data of DGs in four DNs are:
P̃
D1
G = 0.5MW,P̃

D2
G = 1MW, P̃

D3
G = 1.5MW, P̃

D4
G = 2MW.

Besides, it is assumed that all DSOs work in a distributed
manner.

TABLE 3. Error analysis under uncertainties – modified case141.

TABLE 4. Accuracy and efficiency comparison – case B.

Similar to TABLE 2, TABLE 4 also shows that the pro-
posed DN-equivalencing-based TCA can achieve almost the
same results compared with the traditional GTCA. However,
the proposed method has higher efficiency. The GTCA needs
423 alternating iterations between TSO and DSOs. However,
the proposed TCA only needs to communicate once and saves
over 40s of communication time. Even if communication time
is neglected, the calculation time of the proposed TCA is also
less than that of the GTCA, saving around 1/3 of calculation
time.

TABLE 2 and TABLE 4 show that, when the number of
contingencies is large, the traditional GTCA will cost much
time on communication, because more contingencies usually
indicate more alternating iterations between TSO and DSOs.
As a result, the time consumption of the GTCA is extremely
sensitive to communication delays On the contrary, in the pro-
posed TCA method, TSO and DSOs only need to exchange
information once. Thus, its time consumption is not sensitive
to communication delays. In short, the proposed TCAmethod
has significant advantages when communication delay is long
or the number of contingencies is large, compared with the
GTCA.

V. DISCUSSIONS AND EXTENSIONS
This section discusses some practical issues when the pro-
posed TCA is adopted in real-world operations.
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A. CONVERGENCE IMPROVEMENT OF
DN-EQUIVALENCING-BASED POWER FLOW METHOD
Similar to the MSS-based power flow method, the proposed
DN-equivalencing-based power flow method may diverge if
the convergence condition (11) is not satisfied. PV-typed DGs
in DNs usually lead to this problem. To deal with this prob-
lem, an effective way is to apply the successive-intersection-
approximation-based power flow method to improve the
convergence of the proposed method. Thus, Step IV in
Section III-A is modified as
Step IV’: If

∥∥UBk+1 − UBk ∥∥ < ε, the method converges and
stops.
Step V’: Let k = k + 1. If k is an even number, update UBk

UB
k ← UB

k−2 −
(UB

k − U
B
k−1)

2

UB
k − 2UB

k−1 + U
B
k−2

(12)

and go back to Step II.
The convergence will be significantly improved since this

method has a local quadratic convergence rate, as demon-
strated in [3], while the MSS-based method only has a
local linear convergence rate. On the other hand, a sufficient
condition for the convergence of the MSS-based method is
relaxed in the proof for the convergence of the successive-
intersection-approximation-based method [3], so the latter
method usually has a broader convergence domain.

B. ACCELERATION OF OFFLINE MODEL TRAINING
Offline model training usually does not have a high real-time
requirement. However, if the scale of historical data or the
scale of TN is large, offline model training will be very time-
consuming. Also, as mentioned above, the proposed offline
model training is processed given a topology structure. That
is to say, if the switching frequency of the topology structure
is relatively high, offlinemodel training should be accelerated
to satisfy this requirement. High-performance computing
techniques could be adopted in real-world operations, such as
GPU-CPU heterogeneous computing, CPU-multithreading
computing, fusion cluster [20], etc.

C. CONTINGENCY SELECTION
To further enhance the efficiency of TCA, selecting crit-
ical contingencies is necessary. References [5] present
some techniques, such as DC-power-flow-based contingency
screening, compensation method, global-power-flow-based
method, etc, which could be also extended to the TCA pro-
posed in this paper.

D. EXTENSIONS IN DNs WITH LOOPS
Sometimes, the loops exist in DNs, which may significantly
influence the global power flow. DNs with loops will make
data-driven equivalencing much more difficult since the volt-
age angle of root nodes should be considered.

Some advanced data-driven techniques may be adopted to
deal with this challenge, such as neural network fitting, which
will be further discussed in our future work.

VI. CONCLUSION
This paper proposes a TCA method based on data-driven
equivalencing of radial DNs. An offline-online-combined
approach is proposed to train DN equivalent models. Also,
the uncertainties of loads and generations are considered.
Through extensive demonstration in many cases, the follow-
ing observations can be obtained:
• The proposed data-driven equivalent method has a high
accuracy, which can satisfy the requirement of the TCA.

• In the proposed data-driven equivalent method,
the offline training part can achieve a general relation-
ship under a given topology structure, which can be fur-
ther trained to obtain accurate DN equivalent functions
under different uncertainties. The RMSE of active and
reactive power injections are usually less than 0.2MW
and 0.2MVar.

• The proposed DN-equivalencing-based TCA method
can achieve almost the same results as the traditional
GTCA. The more important is, it significantly reduces
communication time and saves around 1/3 calculation
time.

Some practical issues mentioned in Section V will be
further studied in the future. Also, future work will extend
data-driven methods to solve other TN-DN coordinated anal-
ysis, such as the coordinated optimization of TN-DN-coupled
systems.
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