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ABSTRACT In this paper, we propose a novel practical robust control algorithm for the Selective Compli-
ance Articulated Robot Arm (SCARA) robot and verify the effectiveness through experiments. The dynamic
model of the SCARA robot is established considering uncertainties, which include the nonlinear friction,
parameter uncertainty, and external disturbance. To restrain the reversal chattering, we apply a modified
Stribeck friction model with Gaussian compensation term as the friction description. The algorithm is
composed of a proportional-derivative (PD) feedback term based on the model and a robust term. The
formation of the robust part comprises the upper bound of the uncertainty. The Lyapunov minimax method is
adopted to prove that the system is uniformly bounded and uniformly ultimately bounded, thus guaranteeing
the practical stability of the system. Moreover, rapid controller prototyping cSPACE, as the experimental
platform, can eliminate the tedious programming work and provide a great convenience for the experiments.
The experimental results indicate that the robust control algorithm has good performance, which provides
accurate trajectory tracking under the influence of uncertainties.

INDEX TERMS SCARA robot, robust control, uncertainty, nonlinear friction.

I. INTRODUCTION
In recent years, the trend of replacing humans with robots is
on the rise with the rapid development of the Computer, Com-
munication, and Consumer Electronic (3C) industry. Selec-
tive Compliance Articulated Robot Arm (SCARA) robot
plays an increasingly important role in 3C assembly, welding,
and handling with its high speed, short cycle, accurate path
control, and reliable flexible operation [1], [2]. Due to the
characteristics of fast action beat in the 3C industry, we need
dynamic control of the SCARA robot to ensure its accuracy.
Nevertheless, SCARA robot is difficult to control with its
time-varying, strong coupling, and other dynamic character-
istics. Therefore, using the traditional control algorithms to
deal with the uncertainties of the complex system cannot get
satisfactory results.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hai Wang .

During the past decades, there have been many typical
algorithms to build up the accurate tracking performance of
robot system, such as proportional-integral-derivative (PID)
control [3]–[5], robust control [6], [7], sliding mode control
[8], [9], adaptive control [10]–[12], fuzzy control [13], [14],
genetic algorithm and particle swarm optimization [15], [16]
and so on. Each algorithm has its advantage and limitation.
PID control is widely used due to its low dependence on
the dynamic model, whereas it is not satisfactory in the
case of nonlinear friction and external interference. Based
on PID control, a dual-loop control with active disturbance
rejection control (ADRC) was proposed in [17] to achieve
stable control of the robot. Sliding mode control is prone
to chattering, which affects the tracking accuracy. [18] pro-
posed a robust recursive sliding mode controller combined
with an adaptive disturbance observer, which eliminates the
system chattering in the reaching control input. Adaptive
control is considered to be more suitable for the uncertainty

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 227409

https://orcid.org/0000-0002-8431-6453
https://orcid.org/0000-0002-0215-3276
https://orcid.org/0000-0001-7479-4251
https://orcid.org/0000-0003-3098-1500
https://orcid.org/0000-0002-9591-1397
https://orcid.org/0000-0003-2789-9530


S. Zhen et al.: Novel Practical Robust Control Inheriting PID for SCARA Robot

of the system but requires high real-time performance. Fuzzy
control and neural network control, which are based on
the data model rather than the mathematical model, make
their precision difficult to meet the high accuracy require-
ments of 3C industry. Moreover, [19] proposed a track-
ing control scheme with radial basis function (RBF) neural
network, which combines the incremental PID control and
sliding mode control. [20] used an adaptive inertia weight
particle swarm optimization. [21] proposed a hybrid coor-
dinated control based on port-controlled Hamiltonian and
backstepping. In engineering, working environment of the
robot is complex, where uncertainties are increasing and
hard to predict. In order to solve engineering problems bet-
ter, a practical and effective control scheme needs to be
proposed.

Robust control is widely used for its strong robustness to
system uncertainties and simple implementation. [22] pro-
posed an adaptive recursive terminal sliding-mode controller
to make the tracking error converge to zero in a finite time.
[23] proposed a hierarchical slidingmode control with pertur-
bation estimation technique on a two-wheeled self-balancing
vehicle, which achieved good balancing and velocity tracking
performance even under external disturbances. It is important
to explore a practical and effective robust control algorithm
for the SCARA robot in engineering applications. Since
robust control has characteristic advantages in dealing with
model uncertainties and external disturbance, we aim to
come up with a novel practical robust control scheme in this
paper via a creative description of uncertainties. An adaptive
model-free control (AMC) in [24] can make the tracking
error converge to a region in finite time. AMC scheme is
more complicated in practical applications, because of the
need to design and adjust the adaptive law. Relatively speak-
ing, the advantages of the proposed algorithm are simple
structure, few tuning parameters, and simple tuning process.
The system is divided into a nominal part and an uncertain
part. The uncertainties of SCARA robot system are nonlinear
time-varying but bounded. The proposed algorithm is com-
posed of a PD feedback term based on the model and a robust
term. The formation of the robust term comprises the upper
bound of the uncertainties. The Lyapunov minimax method
is employed to prove that the controller is uniformly bounded
and uniformly ultimately bounded, thus ensuring the practical
stability of the system.

In this paper, the main contributions are three parts.
First, we propose a specific robust controller and apply the
modified Stribeck friction model with Gaussian compensa-
tion term as the friction description to reduce the reversal
chattering caused by nonlinear friction in motion. Second,
the Lyapunov minimax method is adopted to prove the actual
stability of the system. Finally, the numerical simulation and
experimental verification, comparing with other algorithms,
are carried out based on the SCARA robot. The results
indicate that the proposed algorithm has good performance,
which provides accurate trajectory tracking under the influ-
ence of uncertainties.

II. THE ESTABLISHMENT OF DYNAMIC MODEL OF
SCARA ROBOT
We choose a kind of 4-DOF SCARA robot as the research
object. The four degrees of freedom are lifting motion, joint
1 rotation, joint 2 rotation, and terminal rotation. Since there
is no coupling between the lifting motion and other motions,
it can be considered separately. Meanwhile, the robot is
mainly focused on end-position control, so the terminal rota-
tional motion has little influence on the research results and
can be ignored. The two degrees of freedom of the joint 1 and
2 on the plane are coupled to each other, and the positioning
of the robot is mainly guaranteed by the two rotating joints.
Therefore, the robot is simplified to a planar two-degree-of-
freedom manipulator.

The schematic representation of the simplified SCARA
robot model is shown in Fig.1, wherem1 andm2 are masses of
link 1 and link 2, m3 is the mass of the motor of joint 2, m4 is
the mass of the end components (including the end motor),
l1 is the length of the link 1, l2 is the length of the link 2, c1 is
the distance from the center of mass of the link 1 to pointO, c2
is the distance from the center of mass of the link 2 to point A,
l3 is the distance from the motor of the joint 2 to point O.

FIGURE 1. The schematic representation of the simplified SCARA robot
model.

Newton-Euler method and Lagrangian method are the rep-
resentativemethods in the dynamicmodeling of robots.When
solving the dynamics problem, the Lagrangian method only
needs to find out the kinetic energy and potential energy of
the whole system, which is simple and easy to be expressed.
Therefore, we choose the Lagrangian method to establish
the dynamical model. [θ1, θ2]T are two coordinates that are
independent of each other to describe the rotation angles of
joint 1 and joint 2. The total energy includes kinetic energy
and potential energy of all independent parts of the system.
The Lagrange equation of the system is

d
dt
(
∂L
∂ q̇

)−
∂L
∂ q̇
= τ − τf , (1)

where the Lagrangian L = T − V , T is the kinetic energy
and V is the potential energy, q, q̇ are generalized coordinates
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and generalized velocities respectively, τ is the control out-
put, and τf is the friction and external disturbances torque.
We have

T =
1
2
J1θ̇21 +

1
2
m2[θ̇21 l

2
1 + c

2
2(θ̇1 + θ̇2)

2

+ 2θ̇1l1c2cosθ2(θ̇1 + θ̇2)]+
1
2
J2(θ̇1 + θ̇2)2

+
1
2
m3(θ̇1l3)2 +

1
2
m4[θ̇1

2l21 + l
2
2 (θ̇1

+ θ̇2cosθ2)]. (2)

Because the SCARA robot is simplified to a planar robot,
the potential energy V = 0. Substituting the kinetic energy
into the Lagrange equation, we have the dynamic equation of
SCARA robot system

M (q)q̈+ C(q, q̇)q̇+ G(q)+ F(q, q̇) = τ, (3)

where M (q) is the inertia matrix, C(q, q̇) is the Corio-
lis/centrifugal forcematrix,G(q) is theGravity vector,F(q, q̇)
is the friction force and external disturbances.

q =
[
θ1
θ2

]
, q̇ =

[
θ̇1
θ̇2

]
, q̈ =

[
θ̈1
θ̈2

]
, τ =

[
τ1
τ2

]
(4)

M (q) =
[
M11 M12
M21 M22

]
(5)

M11 = I1 + I2 + (m2 + m4)l22 + m3l23 + m2c22
+m4l22 + 2(m2l1c2 + m4l1l2)cosθ2 (6)

M12 = M21

= I2 + m2c22 + m4l22
+ (m2l1c2 + m4l1l2)cosθ2 (7)

M22 = I2 + m2c22 + m4l22 (8)

C(q, q̇) =
[
C11 C12
C21 C22

]
(9)

C11 = −2(m2l1c2 + m4l1l2)sinθ2θ̈2 (10)

C12 = −(m2l1c2 + m4l1l2)sinθ2θ̈2 (11)

C21 = (m2l1c2 + m4l1l2)sinθ2θ̈1 (12)

C22 = 0. (13)

Since the two axes of the SCARA robot move in the horizon-
tal plane, the gravity does not influence the system. We have
G(q) = [0, 0]T . For F , we have F = Ffric + Fd , where the
Ffric denotes the nonlinear friction force and the Fd denotes
the external disturbances.
Assumption 1: The inertia matrixM (·) in the SCARA robot

system is uniform positive definite for all θ , which means that
there are scalar constants γ , γ̄ > 0 such that

0 < γ I ≤ M (·) ≤ γ̄ I , (14)

Theorem 1: The matrix Ṁ (·)−2C(·) is skew symmetric for
all θ , θ̇ [25]. That is, for any vector ξ , there is

ξT
{
Ṁ (·)− 2C(·)

}
ξ = 0. (15)

In the process of robot movement, due to unreasonable
structure design, insufficient lubrication, or too tight assem-
bly, the nonlinear friction of joints has a particularly great

impact on the movement of the robot. It affects both the
dynamic and static performance of the system, causing prob-
lems such as system creep and limit cycle oscillation, espe-
cially when the system is moving at a low speed. Therefore,
the establishment of a correct and effective friction model
can greatly improve joint control performance. In many
pieces of research, the friction model is directly treated as
Coulomb-Viscous friction model or Stribeck friction model.
These models are simple and effective, and the parameters are
easy to identify, but they can only describe the static charac-
teristics of friction at a constant speed and cannot deal with
the friction when reversing. In this case, we use a modified
Stribeck friction model with Gaussian compensation term in
commutation [26]. The friction can be described as

Ffric(q̇i(t)) = [fci + (fsi − fci)e−(θ̇i/ωs)
2
]sgn(θ̇i)

+ fviθ̇i − fgi, i = 1, 2, (16)

where fci is the Coulomb Friction coefficient, fsi is the Static
Friction coefficient, fvi is viscous friction coefficient, ωs is
Stribeck velocity and fgi is the Gaussian function. For fgi,
we have

fgi = sie−(θ̇i/vi)
2

si = sgn(
θ̇i

ai
)fsi + fcil

vi = aiωs[d · sgn(a)+ c · sgn(θ̇i)], i = 1, 2

(17)

where ai is the acceleration at the output of the corresponding
motor and l, d, c are all parameters that need to be identified.

Considering the manufacturing assembly, external distur-
bance, and other factors, there are uncertainties in the system.
The dynamic model of the system can be described as

M (θ, σ, t)θ̈ (t)+ C(θ, θ̇ , σ, t)θ̇ (t)+ F(θ̇ , σ, t) = τ (t)

(18)

where σ ∈
∑
⊂ Rn is the uncertain parameter, the set∑

⊂ Rn, which means the bound of σ , is assumed to
be known and compact. We assume the uncertainties are
time-varying but bounded.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
A. CONTROLLER DESIGN
Robot dynamic control should make each joint of the robot
have good performance in tracking a given trajectory. The
robust controller for the SCARA robot is designed to suppress
the influence of various uncertainties and make the tracking
error converge to zero gradually.

For the SCARA robot, θd (t), t ∈ [t0, t1] is the given
trajectory, with the desired velocity and acceleration θ̇d (t),
θ̈d (t). Assume θd : [t0,∞)→ Rn, is of class C2 and they are
uniformly bounded. We define the tracking error as:

e(t) = θ (t)− θd (t), (19)

then we can get

ė(t) = θ̇ (t)− θ̇d (t), ë(t) = θ̈ (t)− θ̈d (t). (20)
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The tracking error vector can be writen as

ê(t) = [e(t), ė(t)]T . (21)

Therefore, we are supposed to propose a controller to make
the tracking error vector ê of the SCARA robot system uni-
formly bounded and uniformly ultimately bounded.

Moreover, the equation (18) can be rewritten as

M (θ, σ, t)(θ̈d (t)+ ë(t))+ C(θ, θ̇ , σ, t)(θ̇d (t)

+ ė(t))+ F(θ̇ , σ, t) = τ (t). (22)

The functionsM (·), C(·) and F(·) consist of two parts

M (θ, σ, t) = M̄ (θ, t)+1M (θ, σ, t), (23)

C(θ, θ̇ , σ, t) = C̄(θ, θ̇ , t)+1C(θ, θ̇ , σ, t), (24)

F(θ̇ , σ, t) = F̄(θ̇ , t)+1F(θ̇ , σ, t), (25)

where M̄ (·), C̄(·) and F̄(·) are the nominal portions, whereas
1M (·), 1C(·) and 1F(·) are the uncertain portions which
depend on σ . We now define a vector

8(e, ė, σ, t) := −1M (θ, σ, t)(θ̈d − Sė)

−1C(θ, θ̇ , σ, t)(θ̇d − Se)

−1F(θ̇ , σ, t), (26)

where S = diag[s1, s2], s1, s2 > 0 are constants. Obviously
8 ≡ 0 if all uncertainties disappear. Then, we choose a
scalar ρ based on the assumed bound of model uncertainty
and external disturbances, such that

‖ 8(e, ė, σ, t) ‖≤ ρ(e, ė, σ, t). (27)

In the absence of special stated, ‖ · ‖ is always treated as the
Euclidean norm.

The trajectory following problem of the SCARA robot
to be solved is to design a controller τ (t). The proposed
controller should ensure the e(t) remains within the prede-
termined boundary. [27] proposed an approach of guarantee-
ing prescribed performance bounds. The deterministic robust
control scheme can be expressed as

τ (t) = M̄ (θ̈d − Sė)+ C̄(θ̇d − Se)+ F̄

−Pe− Dė−
β

η + ε
, (28)

where P = diag [kpi]2×2, kpi > 0, D = diag[kdi]2×2, kdi >
0, i = 1, 2 are proportional and differential parameters,
which play a similar role to nominal PD control. ε is a positive
design parameter, and

β = γ 2(ė+ Se)ρ4 ‖ ė+ Se ‖2, (29)

η = γ ‖ ė+ Se ‖2 ρ2, (30)

where the scalars γ and ρ are positive design parameters. The
values of ρ and γ depend on the practical engineering appli-
cation. The controller (28) ensures ê(t) of the system (22)
to be uniformly bounded and uniformly ultimately bounded.
Moreover, we can make the ultimate boundedness ball small
enough by choosing the suitable design parameters.

B. PROOF OF STABILITY
The stability of the system can be proved by the Lyapunov
minimax method. First, we choose a Lyapunov function
candidate and prove the validity of it [28]. The Lyapunov
function candidate is chosen as

V (ê) =
1
2
(ė+ Se)TM (ė+ Se)+

1
2
eT (P+ SD)e. (31)

Obviously V (ê) is legitimate if we can prove that V (ê)
is (globally) positive definite and decrescent.

From Eq.(14),M is bounded, thus

V (ê) ≥
1
2
γ ‖ ė+ Se ‖2 +

1
2
eT (P+ SD)e

=
1
2
γ

n∑
i=1

(ė2i + 2siėiei + s2i e
2
i )

+
1
2

n∑
i=1

(kpi + sikdi)e2i

=
1
2

n∑
i=1

[ei ėi]9i

[
ei
ėi

]
, (32)

where

9i =

[
γ s2i + kpi + sikdi γ si

γ si γ

]
. (33)

It is easy to prove that9i > 0, ∀i. Thus V is positive definite.

V (ê) ≥
1
2

n∑
i=1

λmin(9i)(e2i + ė
2
i ) ≥ λ||ê||

2, (34)

where λ=min
{
1
2λmin(91), 12λmin(92)

}
, λ > 0. By Assump-

tion 1, there is

V (ê) ≤ ||ė+ Se||2γ̄ + eT (P+ SD)e. (35)

For the first term on the right-hand side,

γ̄ ||ė+ Se||2 = γ̄ (ė+ Se)T (ė+ Se)

= γ̄ [e ė]
[
S2 S
S I

] [
e
ė

]
≤ γ̄ λmax

([
S2 S
S I

])
||ê||2

=: γ̄ s̄||ê||2. (36)

For the second term, by Rayleigh’s principle,

eT (P+ SD)e ≤ λmax(P+ SD)||e||2 (37)

With Inequalities (35) and (36) into Inequality (34), we have

V (ê) ≤ γ̄ s̄||ê||2 + λmax(P+ SD)||e||2 =: λ̄||ê||2, (38)

where λ̄ = γ̄ s̄ + λmax(P + SD). Note that λ̄ in Inequality
(38) is a strictly positive constant, which proves that V (ê) is
decrescent. Therefore, it can be proved that V (ê) is a valid
Lyapunov function candidate from (34) and (38).
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Then, we prove the stability of the system. The time deriva-
tive of V (ê) is given by

V̇ (ê) = (ė+ Se)TM (ë+ Sė)+
1
2
(ė+ Se)T Ṁ (ė+ Se)

+eT (P+ SD)ė, (39)

for ë = q̈− q̈d and Eq.(3), the first two terms become

(ė+ Se)TM (ë+ Sė)+
1
2
(ė+ Se)T Ṁ (ė+ Se)

= (ė+ Se)T (Mq̈−Mq̈d +MSė+
1
2
Ṁ (ė+ Se))

= (ė+ Se)T (τ − C(q̇d − Se)− G− F

−Mq̈d +MSė− C(ė+ Se)+
1
2
Ṁ (ė+ Se))

= (ė+ Se)T (τ − C(q̇− Se)− G− F −Mq̈d

+MSė)+ (ė+ Se)T (
1
2
Ṁ − C)(ė+ Se). (40)

With Theorem 1, Eqs.(22) and (28), we can get

(ė+ Se)TM (ë+ Sė)+
1
2
(ė+ Se)T Ṁ (ė+ Se)

= (ė+ Se)T (τ − C(q̇− Se)− G− T −Mq̈d +MSė)

(ė+ Se)T (M̄ (q̈d − Sė)−M (q̈d − Sė)+ C̄(q̇d − Se)

−C(q̇d − Se)+ Ḡ− G+ F̄ − F −
β

η + ε

−Pe− Dė)

= (ė+ Se)T (−1M (q̈d − Sė)−1C(q̇− Se)

−1G−1F −
β

η + ε
− Pe− Dė) (41)

By Eqs.(26) and (27), we have

(ė+ Se)TM (ë+ Sė)+
1
2
(ė+ Se)T Ṁ (ė+ Se)

= (ė+ Se)T [8−
β

η + ε
− Pe− Dė]

≤ ‖ ė+ Se ‖‖ 8 ‖ −(ė+ Se)T (Pe+ Dė)

− (ė+ Se)T
β

η + ε
. (42)

Since

−(ė+ Se)T
β

η + ε

= −
‖ ė+ Se ‖4 γ 2ρ4

η + ε
= −

η2

η + ε
≤ −

η2 − ε2

η + ε

= −
(η + ε)(η − ε)

η + ε
= −γ ‖ ė+ Se ‖2 ρ2 + ε, (43)

and

−(ė+ Se)T (Pe+ Dė) = −eTPSe− ėTDė

−eT (P+ SD)ė. (44)

Substitute (43) and (44) into (42) and combine (39)

V̇ (ê) ≤ ρ ‖ ė+ Se ‖ −γρ2 ‖ ė+ Se ‖2 +ε − eTPSe

− ėTDė− eT (P+ SD)ė+ eT (P+ SD)ė

≤
1
4γ
+ ε − eTPSe− ėTDė

≤
1
4γ
− λ||ê||2 + ε, (45)

where λ = min{λmin(PS), λmin(D)}. It shows that V̇ is nega-
tive definite for all ||ê|| such that

1
4γ
− λ||ê||2 + ε < 0. (46)

Both γ , λ, ε are crisp. Thus, V̇ (ê) is negative for sufficiently
large ||ê||.
Thus, the controller (28) can ensure the uniform bound-

edness and uniform ultimate boundedness of the SCARA
robot system (18). The uniform boundedness is guaranteed
with the following performance. That is, for any y > 0 with
||ê(t0)|| > 0, we have

d(y) =


y

√
λ̄

λ
, y > Y ,

Y

√
λ̄

λ
, y ≤ Y ,

(47)

Y =

√
1

4γ y
, (48)

such that ||ê(t)|| ≤ d(y) for all t ≥ t0. Uniform ultimate
boundedness also follows. That is, for any d̄ with

d̄ > Y

√
λ̄

λ
, (49)

we have ||ê(t)|| ≤ d̄ , ∀t ≥ t0 + T (d̄, y), with

T (d̄, y) =


0, y ≤ Ȳ ,
λ̄y2 − λȲ 2

λȲ 2 − 1
4γ

, otherwise,
(50)

Ȳ = d̄

√
λ

λ̄
. (51)

The stability of system is guaranteed and tracking error vector
‖ê‖ can be made small enough by choosing larger λ and γ .

IV. SIMULATION AND EXPERIMENTAL ANALYSIS
A. PARAMETERS SELECTION AND SIMULATION RESULTS
In the simulation, we choose step signal and sinusoidal signal
respectively as the reference signal to verify the three control
algorithms: PID control, Model-Based PD (MPD) control
without robust component, and the proposed novel robust
control (NRC). To distinguish easier in the figures, we call
the Model-Based PD control MPD control and the proposed
novel robust control algorithm NRC control. The step signal
can be described as

qd =

θd1
θd2

 =

π

18
π

18

 , (52)
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TABLE 1. Parameters of the SCARA robot.

and the sinusoidal signal can be described as

qd =

θd1
θd2

 =
π6 sint
π

6
sint

 . (53)

The inherent system parameters of the SCARA robot,
as the simulation parameters, which are exported from the
software CAD and shown in Table 1. Furthermore, the fric-
tion force F of (16) is

Fi(q̇i(t)) = [fci + (fsi − fci)e−(θ̇i/ωs)
2
]sgn(θ̇i)

+ fviθ̇i − fgi, i = 1, 2, (54)
fgi = sie−(θ̇i/vi)

2

si = sgn(
θ̇i

ai
)fsi + fcil

vi = aiωs[d · sgn(a)+ c · sgn(θ̇i)], i = 1, 2

(55)

with fsi = [0.4,0.6]T , fci = [0.32,0.44]T , fvi = [0.04,0.03]T ,
and ωs = 0.04, d = 1.16, c = 2.08, l = 0.18.
Testing the three control algorithms repeatedly, we select

one of the results with a good performance from each algo-
rithm for comparison. The optimal PID parameter are as
follows, P = [120, 95]T , I = [0.1, 0.1]T , D = [20, 22]T ,
whereas the MPD control and the NRC control are finally
determined S = diag[1; 1], P = diag[260; 195] and
D = diag[37; 25]. We choose ρ = 2, γ = 1.55, ε = 1.5
as robust term parameters. The uncertainties are assumed as

m1 = m̄1 +1m1, (56)

m2 = m̄2 +1m2, (57)

m4 = m̄4 +1m4, (58)

where

1m1 = 1m2 = 0.05sint, (59)

1m4 = 0.3sint. (60)

The initial time ts = 0 and the initial condition ê(0) =
[0.1, 0.1, 0, 0]T . The simulation results of step response and
sinusoid signal tracking are as follows:

FIGURE 2. Step response curves of joint 1.

FIGURE 3. Step response curves of joint 2.

FIGURE 4. The position tracking curves of joint 1.

1) STEP RESPONSE
The results of two joints tracking the reference step signals
10◦ with three control algorithms are shown in Fig.2 and
Fig.3. The step response time with NRC is shorter and the
steady-state tracking error is smaller than the others of both
joints. Specifically, the response time of the NRC is close to
0.6s, whereas the others are more than 0.8s. The steady-state
error with the NRC is−0.002 to 0.004 ◦, whereas the MPD’s
is −0.008 ◦ to 0.009 ◦ and the PID’s is −0.01 ◦ to 0.02 ◦.

2) SINUSOID SIGNAL TRACKING
Fig.4-Fig.9 show the sinusoid signal tracking result compar-
ison among three algorithms. From Fig.4 and Fig.5, it can be
found that although almost all controllers can quickly track
the reference signal at the initial time, the steady-state error
with the NRC algorithm is smaller than the others.

B. EXPERIMENTAL PLATFORM AND EXPERIMENTAL
RESULTS
Just simulation may not fully indicate the superiority of
the proposed control algorithm. In order to ulteriorly verify
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FIGURE 5. The position tracking curves of joint 2.

FIGURE 6. The error curves of joint 1.

FIGURE 7. The error curves of joint 2.

FIGURE 8. The control of joint 1.

that our proposed algorithm is effective, we complete the
corresponding dynamics experiments on the SCARA robot
platform. Fig.10 shows the experimental equipment, which
consists of the SCARA robot, cSPACE control system,
computer and cSPACE upper-computer software, motor
driver, and so on. The cSPACE control platform is a
kind of rapid control prototype system, which adopts the
method of real-time simulation and control the hardware
in loop to design. It uses the C2000 Support Package

FIGURE 9. The control of joint 2.

FIGURE 10. Experimental platform of SCARA robot.

provided by the TI company to directly generate the code on
MATLAB/Simulink, from which we can realize the combi-
nation of computer simulation and real-time control.

The experimental process can be summarized as the
following three steps:

Step1: The absolute value encoder collects the motor
position signal and feeds it back to the driver.

Step2: The digital signal processor (DSP TMS320F28335)
in the cSPACE receives the drive signal and computes it in
combination with the control algorithm.

Step3: The calculated control signal is output throughCAN
communication and then amplified to drive the motor, to real-
ize the motion control of the robot.

1) TRANSIENT PERFORMANCE
Consistent with the simulation, both joints are required to
refer to the step signals of 10◦. The step response curves of
the system with three algorithms are shown in Fig.11 and
Fig.12. It can be found that the step response time of NRC
is not significantly different from the other two algorithms,
since the proposed algorithm is mainly concerned with the
steady-state performance of the uncertain system. Specifi-
cally, we can get the steady-state errors of the NRC algorithm
e1 = −0.005◦ to 0, e2 = 0 to 0.003◦, whereas the MBD
control e1 = −0.02◦ to 0, e2 = −0.01◦ to 0 and the PID
control e1 = −0.06◦ to 0, e2 = −0.018◦ to 0.

2) STEADY-STATE PERFORMANCE
Fig.13 to Fig.18 show the experimental comparison results of
the three different algorithms with no load. To keep consistent
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FIGURE 11. Step response curves of joint 1.

FIGURE 12. Step response curves of joint 2.

FIGURE 13. The position tracking curves of joint 1.

FIGURE 14. The position tracking curves of joint 2.

with the simulation, the amplitude of sinusoidal signals at
both joints are 30◦. It can be found that the steady-state
performance of the NRC algorithm is better than the other
two, and one could get more details in the e1 and e2 of
Fig.15 and Fig.16. The maximum tracking error with the
NRC algorithm is minimal.

From Fig.15 and Fig.16, we notice that the maximum
of tracking errors always occur when the θ̇ is around zero
with all controllers. The reasons may be the gear backlash

FIGURE 15. The tracking error curves of joint 1.

FIGURE 16. The tracking error curves of joint 2.

FIGURE 17. The current curves of joint 1.

FIGURE 18. The current curves of joint 2.

and Coulomb friction. Fig.19 and Fig.20 show the compari-
son of tracking error curves with the NRC algorithm which
adds a modified Stribeck friction model with Gaussian com-
pensation term, Coulomb-Viscous friction, and no friction
respectively. The error curve with Gaussian compensation is
smoother and the maximum tracking error is lower than the
other two, which reveals the friction model (17) we select in
the research has a certain effect on restraining the reversal
chattering.
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FIGURE 19. The comparison curves of tracking error with different friction
models (joint 1).

FIGURE 20. The comparison curves of tracking error with different friction
models (joint 2).

TABLE 2. Comparisons of steady-state performance without payload.

TABLE 3. Comparisons of steady-state performance with different
friction models.

To quantify the steady-state performance of the three
algorithms, Table 2 shows the maximum displacement
error (MAXE) and the root mean square of displacement
error (RMSE) of the three algorithms, which are defined as:

MAXE = max(|ei|), (61)

RMSE =

√√√√1
n

n∑
i=1

e2i , (62)

where ei denotes the i-th sampled tracking error and n
is the number of samples. The improvement refers to the
performance improvement of NRC relative to PID and
MPD, respectively. Table 2 clearly shows the performance
of the three algorithms. The NRC algorithm possesses a
smaller RMSE and MAXE than the others. Table 3 shows
the performance comparison of RMSE and MAXE.

FIGURE 21. The tracking error curves of joint 1 with 0kg payload.

FIGURE 22. The tracking error curves of joint 2 with 0kg payload.

FIGURE 23. The tracking error curves of joint 1 with 0.5kg payload.

FIGURE 24. The tracking error curves of joint 2 with 0.5kg payload.

The improvement refers to the performance improvement
of the modified Stribeck friction model relative to the
Coulomb-Viscous friction model and without friction model,
respectively. The results also prove the effectiveness of the
modified Stribeck friction model.

3) ROBUSTNESS OF LOAD CHANGE
Load variation is one of the main uncertainties of the SCARA
robot. The performance of each control algorithm varies
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FIGURE 25. The tracking error curves of joint 1 with 1kg payload.

FIGURE 26. The tracking error curves of joint 2 with 1kg payload.

TABLE 4. Comparisons of steady-state performance of the joint 1 with
different payload.

TABLE 5. Comparisons of steady-state performance of the joint 2 with
different payload.

with different payloads. Thus, we conduct three comparative
experiments with 0kg, 0.5kg, and 1kg payload. Fig.21 to
Fig.26 show the comparison results of the three control algo-
rithms. The tracking error under the NRC algorithm just
increases a little, whereas the increase of payload has a great
impact on the other two algorithms, especially joint 2.

Table 4 and Table 5 show the RMSE and MAXE of the
three algorithms with different payloads. The improvement
refers to the performance improvement of NRC relative to
PID and MPD, respectively. The NRC algorithm, compared
with the other two, possesses smaller RMSE and MAXE in
each case. Moreover, as the load increases, the performance

of the NRC algorithm has improved even more, which means
that the NRC algorithm shows better robustness when exter-
nal disturbances increase.

V. CONCLUSION
We propose a novel practical robust control scheme for the
SCARA robot and verify the effectiveness through exper-
iments in this paper. The algorithm is composed of a PD
feedback term based on the model and a robust term. The for-
mation of the robust part comprises the upper bound of
the uncertainty. To restrain the reversal chattering, we apply
the modified Stribeck friction model with Gaussian com-
pensation term as the friction description. The algorithm
is demonstrated the guaranteed system performance with
the Lyapunov minimax method. Simulation and experimen-
tal results prove that the proposed algorithm has a good
steady-state performance. Moreover, rapid controller proto-
typing cSPACE, as the experimental platform, can eliminate
the tedious programming work and provide a great conve-
nience for the experiments. The experiments mainly com-
pare the trajectory tracking capabilities of the robot under
three algorithms. The results indicate that the proposed algo-
rithm has better robustness, which provides accurate tra-
jectory tracking under the influence of uncertainties. The
algorithm could solve the control design problem of similar
time-varying nonlinear systems, especially appropriate for
engineering applications. We will further consider the effect
of electromagnetic interference on the SCARA robot system
in future work.
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