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ABSTRACT A channel frequency response estimation method based on weighted twin support vector
regression (TSVR) for pilot-aided multi-input multi-output (MIMO) orthogonal frequency division mul-
tiplexing (OFDM) system is proposed in this work. Nonlinearity of channel in wireless communication
system is considered. The channel is fading in time domain produced by Doppler effect and in frequency
domain by propagation multipath. An improved TSVR-weighted TSVR is adopted to estimate channel
parameters in MIMO-OFDM system. The weights obtained by wavelet transform method are used to
improve the regression performance of TSVR. The characteristic of the proposed algorithm is that different
training samples are given weights calculated according to the distance from the samples to the mean values
filtered by wavelet transform method. Due to the regression characteristics of TSVR, the channel frequency
response estimation algorithm proposed in this work has good estimation performance and anti noise ability.
Experimental results show that compared with the classical pilot aided channel estimation method, the
proposed algorithm has better performance in estimating mean square error.

INDEX TERMS Channel estimation, wavelet transform, MIMO, OFDM, TSVR.

I. INTRODUCTION
High data rate wireless communication is a research
hotspot in the emerging wireless local area networks, home
audio/visual network and the fifth generation (5G) wire-
less cellular systems. However, due to the limitation of
peak to average power ratio (PAPR) and signal-to-noise
ratio (SNR) of the actual receiver, it is usually not feasible
to use traditional high data rate wireless links in Non-line-
of-sight (NLOS) networks. Additionally, there is a serious
range penalty to be paid for high bandwidth systems. Multi-
input multi-output (MIMO) wireless constitutes a techno-
logical breakthrough that will allow Gb/s speeds in NLOS
wireless networks. The use of MIMO systems can improve
the performance due to array gain, diversity gain, spatial
multiplexing gain, and interference reduction. Orthogonal
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frequency division multiplexing (OFDM) is a kind of multi-
carrier technique. It has good anti multipath fading ability and
can support multi-user access. In OFDM system, the chan-
nel is divided into orthogonal subchannels, and high-speed
serial data is converted into low-speed parallel data for trans-
mission. Orthogonal signals can be separated by coherent
technique at the receiver, which can reduce the inter channel
interference (ISI). The signal bandwidth of each subchannel
is less than the coherent bandwidth of the channel, hence,
it can be seen as flat fading on each subchannel and the ISI
can be eliminated. Due to the advantages of the MIMO and
OFDM technologies, the MIMO-OFDM is adopted by the
4G and 5G wireless communication systems [1].

At receiving end of wireless communication, the perfor-
mance of coherent demodulation is better than that of non-
coherent demodulation under the same signal-to-noise ratio
because of taking more channel information [2]. Therefore,
channel estimation is very important to the performance of
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high quality information transmission. However, due to the
frequency selectivity caused by multipath propagation and
the time selectivity caused by Doppler effect, channel estima-
tion becomes a very difficult task. OFDM system is sensitive
to inter carrier interference (ICI), which is caused bymobility,
and the carrier frequency drift and the increase of mobile
speed can further worsen the transmission performance [3],
[4]. To obtain effective communication in the time and fre-
quency selective cases (doubly selective), a well-designed
channel estimator is an important prerequisite.

Many channel estimation methods were given in the
existing literature, such as Least square (LS) estimation
method, linear minimummean square error (LMMSE) and its
improved algorithm [5]–[7]. For the doubly selective channel,
the above estimation methods can reduce the transmission
efficiency due to the large pilot ratio. In order to solve
this problem, serval algorithms were proposed. Basis expan-
sion model (BEM) for doubly selective channel was estab-
lished and algorithms for channel estimation were proposed
in [12]–[14]. Zhang et al. [18] designed adaptive weighted
estimators for OFDM systems. Jan [15] used iterative pro-
cessing method to estimate the doubly selective chan-
nel. Support vector regression (SVR) method was also
adopted to estimate the parameters of doubly selective
channel [16], [17].

In the process of signal propagation, the channel shows a
certain degree of nonlinearity caused by some reasons like
saturation of components, dispersion of optical fiber and
coupling between devices [19]–[21], especially in the case
of doubly selective channel. The nonlinearity can degrade
the estimation performance if it is estimated under a lin-
ear assumption [17]. Therefore, some nonlinear methods
were used for nonlinear channel estimation. A nonlinear
Kalman filter-based high-speed channel estimation algorithm
for OFDM systems was proposed in [22]. Yang et al. [23]
proposed a channel estimator based on deep learning method.
While the advantages of SVR are that it is suitable for
regression of nonlinear systems and the number of training
samples is small [24], [25]. The kernel trick can be adopted
to extend the linear SVR method to the field of nonlinear
regression according to the theory of Vapnik-Chervonenkis
(VC) [26]. It is a powerful tool for system regression [27],
and can be used for wireless channel estimation. A MIMO
channel estimation method was proposed in [28], while
the channel of which was assumed to be flat in frequency
domain. In [16] and [17], basic SVR based OFDM channel
estimators were proposed for some application scenarios.
Later, many improved SVR algorithms were proposed. The
twin SVR (TSVR) was proposed in [29], ν-SVR was intro-
duced in [30], an asymmetric ν -TSVR method for asym-
metric noised data regression was proposed in [27], and
Y. Shao et al. proposed an improved algorithm of TSVR
by introducing the regularization criterion in [31]. These
algorithms mentioned above have been improved to a cer-
tain extent in terms of computational complexity and/or
performance.

In most of the literature, the training data share the same
weights, which are not conducive to noise suppression for the
communication signal polluted by noise, and the performance
will be reduced. In order to solve this problem, a wavelet
transform based weighted TSVR (WTWTSVR) was pro-
posed in our work [32]. In the propose algorithm, the weights
calculated by data variance are given to the training data and
the regression performance can be improved.

Inspired by this idea, an improved nonlinear channel fre-
quency response estimation in MIMO-OFDM systems based
on WTWTSVR is proposed in this paper. The contributions
of this work are described as: the novel improved TSVR
based channel frequency response estimator is proposed for
nonlinear parameter estimation in MIMO-OFDM systems.
The proposed algorithm outperforms traditional algorithms
such as linear interpolation, LMMSE, BEM based estima-
tion method and classic TSVR based algorithm. Moreover,
wavelet transform is used to preprocess the sample data. The
weights of the samples are obtained by calculating the dis-
tance between the sample points and the mean value obtained
by wavelet transform. Then they are assigned to the sample
points in objective functions to make use of the prior informa-
tion of data and reduce the impact of noise and outliers. Due
to the nature of wavelet filter, this method has advantages in
processing time series signal such as communication signal.

The outline of this paper is as follows: Section II dwells on
the MIMO-OFDM system model and Section III introduces
space time coding. WTWTSVR based channel frequency
response estimation algorithm is proposed in Section IV. Sim-
ulation results are demonstrated in Section V to exhibit the
performance of the proposed estimator. Finally, Section VI
summarizes the paper and prospects the future work.

II. MIMO-OFDM SYSTEM MODEL
Consider aMIMO-OFDM systemwithMT transmit antennas
andMR receive antennas (Figure 1). The sequence to be trans-
mitted X (k), which get from QPSK or QAM constellation
is sent to a space-time encoder. Then the output sequence
Xi(k) (i = 1, 2, . . . ,MT ) is parsed into blocks of N symbols
and transformed into a time-domain sequence using an N -
point inverse discrete Fourier transform (IDFT). To avoid
inter-block interference (IBI), a cyclic prefix (CP) of length
LC equal to or larger than the channel order L is inserted at the
head of each block. Denote xi(n) as the time-domain signal of
the i-th transmit antenna, which can be described as:

xi(n) =
1
√
N

N−1∑
k=0

Xi(k)ej2πnk/N (1)

where n = −LC , . . . ,N − 1, k = 0, . . . ,N − 1. Then xi(n)
can be passed over the doubly selective wireless channel.
At the receiver, the cyclic prefix will be removed, and the
received signal vector ofMR receive antennas in time domain
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FIGURE 1. MIMO-OFDM system model.

y(n) ∈ CMR can be expressed as

y(n) =
MT∑
i=1

L−1∑
l=0

hi(n, l)xi(n− l)+ v(n) (2)

where v(n) = [v1(n), v2(n), . . . , vMR (n)]
T is additive white

Gaussian noise (AWGN). The expectation and variance value
of vi(n) are 0 and σ 2

n , respectively, and v(n) is indepen-
dent, i.e. E(vT (m1)v(m2)) = 0, ∀m1 6= m2. hi(n, l) =
[hi1(n, l), hi2(n, l), . . . , hiMR (n, l)]

T is the channel response
vector from the ith transmit antenna. DenotingY(k) ∈ CMR as
the frequency response vector of the received sequence vector
after removing CP at the kth subcarrier, we have

Y(k) =
1
√
N

N−1∑
n=0

y(n)e−j2πnk/N (3)

Substituting (2) in (3), it can be obtained

Y(k) =
MT∑
i=1

N−1∑
r=0

Xi(r)
L−1∑
l=0

Hi(r − k, l)e−j2π lr/N

+V(k) (4)

=

MT∑
i=1

Xi(k)
L−1∑
l=0

Hi(0, l)e−j2πkl/N + I(k)

+V(k) (5)

=

MT∑
i=1

Xi(k)Hi(k)+ I(k)+ V(k) (6)

where

Hi(m, l) =
1
√
N

N−1∑
n=0

hi(n, l)e−j2πmn/N (7)

and

I(k) =
MT∑
i=1

N−1∑
r=0,
r 6=k

Xi(r)
L−1∑
l=0

Hi(r − k, l)e−j2π lr/N . (8)

V(k) ∈ CMR is the frequency response of noise v(n) at
subcarrier k , and I(k) ∈ CMR is ICI induced by subcarriers
around the subcarrier k . At the receiver, the doubly fading
channel can be equalized and the transmitted symbols can be
recovered based on channel information.

III. SPACE–TIME CODING TRANSMISSION
In order to obtain the diversity gain, the Alamouti space–time
coding scheme can be adopted for data transmission. The
simplest MIMO-OFDM system is with two transmit antennas
and one receive antenna, which can be expressed by the
following matrix.[

X1
X2

]
=

[
Xe − X∗o
Xo X∗e

]
(9)

where (·)∗ is the complex conjugate operator, X1 and X2
represent the two transmitted signals by antennas 1 and 2,
respectively andXo andXe denote the odd and even sequences
of the signal to be transmitted X , respectively. Two different
signals X1 and X2 can be transmitted from antennas 1 and 2,
respectively. We assume that the channel response remains
unchanged over consecutive symbol periods. The signals
received by the receive antenna over consecutive symbol
periods in the frequency domain can be expressed as[
Ye(k)
Yo(k)

]
=

[
Xe(k) Xo(k)
−X∗o (k) X∗e (k)

]
·

[
H1(k)
H2(k)

]
+

[
Ve(k)
Vo(k)

]
(10)

where Xe/o(k), Ye/o(k), and Ve/o(k) denote the transmit-
ted, received signal and the noise at the k-th subcarrier
of the even/odd sequences, and H1/2(k) denotes the chan-
nel response of the 1st/2nd transmit antenna to the receive
antenna at the k-th subcarrier.

IV. MIMO-OFDM SYSTEM CHANNEL ESTIMATION
Due to the fading in time domain and frequency domain,
wireless communication channels are nonlinear, while the
classical channel estimation is based on the linear assump-
tion. TSVR based estimation algorithm is adopted in this
work for its nonlinear properties. In this section, a novel
TSVR, weighted TSVR based on wavelet transform is
used for estimating the MIMO-OFDM channel frequency
response.

A. CHANNEL ESTIMATION AT PILOT SUBCARRIES
In this work, the pilots are inserted in time domain and
frequency domain uniformly. Phrases ‘pilot symbol’ and
‘data symbol’ denote OFDM symbol inserted into the pilot
and that without pilot, respectively. ‘Pilot subcarrier’ and
‘data subcarrier’ denote the subcarrier being pilot in a pilot
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symbol and the subcarrier being data, respectively. In order
to realize channel estimation in space-time coding scheme,
pilot symbols appear in pairs in time domain. The position
set of pilot symbols in time domain can be expressed as
{n1t, n1t + 1|n = 0, . . . ,Nt/2− 1}, where the even num-
ber 1t ≥ 2 is the pilot symbol interval and Nt is the
pilot symbols number. The position set of pilot subcar-
riers can be described as

{
m1f |m = 0, . . . ,Nf − 1

}
, Nf

and 1f are the pilot number in one OFDM symbol and
the pilot frequency interval, respectively. Figure 2 demon-
strates the pilot insertion scheme. The channel frequency
response of pilot subcarrier positions can be estimated by
inverting (10), i.e[

Ĥ1p

Ĥ2p

]
=

[
Xep Xop
−X∗op X∗ep

]−1
·

[
Yep
Yop

]
(11)

FIGURE 2. The pilot insertion scheme.

where ∗̂ represents the estimation of ∗, and the subscribe
p means the pilot, such as Ĥ1p = Ĥ1(n1t,m1f ) is the
estimated frequency response at pilot positions (n1t , m1f ).
All the estimated channel response Ĥ1p

(
Ĥ2p

)
at pilot posi-

tions of the channel from antenna 1 (antenna 2) to the receive
antenna can be collected to form a matrix Ĥ1P/2P.

Then the frequency response will be computed, and the
estimated value of all subcarriers can be expressed as

H̃1/2 = f (Ĥ1P/2P) (12)

B. CHANNEL ESTIMATION ALGORITHM
Define a training set S = {(τ1, r1), (τ2, r2), . . . , (τm, rm)},
where the position of pilot sample points in time domain and
frequency domain is used as training input: τk ∈ R2 and the
impulse response of pilot sample points is used as training
output: rk ∈ R, k = 1, 2, . . . ,m, which constitute a training
input-output pair (τk , rk ), m is the samples number. The
output vector can be expressed as R = (r1, r2, . . . , rm)T ∈
Rm and the training input as T = (τ1, τ2, . . . , τm)T ∈
Rm×2. Define e and I as ones column vector and identity
matrix, respectively.

In the wireless environment with relative mobility and
multipath propagation, the channel shows selectivity in both

time domain and frequency domain. Nonlinearity is the basic
characteristic of doubly selective channel. The estimation
of nonlinear channel using linear method will lead to large
error. In this paper, we adopt the WTWTSVR to estimate the
channel response in MIMO-OFDM system, since TSVR is
superior in solving nonlinear regression or pattern recognition
problems. Similar to classical TSVR, the WTWTSVR is
composed by down-bound f1(τ ) and up-bound f2(τ ), and the
regressor can be calculated by

f (τ ) =
1
2
(f1(τ )+ f2(τ )). (13)

The regressor (13) is a linear expression, it can be changed
to nonlinear form by adopting kernel tricks [26], that is
mapping the training samples into a higher-dimensional
space: down and up bounds of the regressor are f1(τ ) =
K (τ,TT )g1 + δ1 and f2(τ ) = K (τ,TT )g2 +δ2, respectively,
where K is a kernel function, g1, g2 ∈ Rm and δ1, δ2 ∈ R are
parameters to be estimated. The average of f1(τ ) and f2(τ ) is
the final regression result, which shares the same expression
as the linear one (13). The optimization problems can be
expressed as (15) and (16) where v1, v2, c1, c2, c3, c4 > 0
are pre-selected parameters, ε1, ε2 are insensitive constants,
ξ1, ξ2 are slack vectors reflecting whether the training sam-
ples locate in the ε tube or not [29]. d ∈ Rm and D =
diag(d) ∈ Rm×m are weights, which will be calculated
by wavelet filtering algorithm [32]. The weighting vector
d
(
= [d1, d2, . . . , dm]T

)
is computed by:

d = Ae
(−
∣∣∣R−R̂∣∣∣2/σ 2)

, (14)

where A and σ are amplitude and standard deviation of
the Gaussian function, respectively. R̂(= [r̂1, r̂2, . . . , r̂m]T )
represents the filtered value vector of output R(=
[r1, r2, . . . , rm]T ). In the proposed algorithm, the R̂ can be
calculated by the wavelet filter described by [32].

min
g1,δ1,ξ1,ε1

1
2
(R− (K (T,TT )g1 + eδ1))T

×D(R− (K (T,TT )g1+eδ1))+
1
2
c1(gT1 g1+δ

2
1)

+c2(v1ε1+
1
m
dT ξ1)

s.t. R− (K (T,TT )g1 + eδ1) > −ε1e− ξ1
ξ1 > 0e ε1 > 0, (15)

min
g2,δ2,ξ2,ε2

1
2
(R− (K (T,TT )g2 + eδ2))T

×D(R− (K (T,TT )g2+eδ2))+
1
2
c3(gT2 g2 + δ

2
2)

+c4(v2ε2 +
1
m
dT ξ2)

s.t. (K (T,TT )g2 + eδ2)− R > −ε2e− ξ2
ξ2 > 0e ε2 > 0. (16)

The first term in (15)/(16) is the sum of weighted squared
errors from training points to the down/up bound function.
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The regularization term (the second term) can smooth the
regression function f1/2(t), and the third term is adopted to
narrow the ε tube. The objective functions in (15) and (16)
are proposed based on the principle of structural risk mini-
mization. The structural minimization principle is helpful to
weaken the problem of overfitting and improve the quality
of normalization [29]. For a more detailed explanation of the
objective functions, please refer to reference [32].

It is difficult to solve the optimization problems of (15)
and (16) directly. However, we can map them into the dual
problems by adopting Lagrangian multipliers. Then, (15) can
be transformed as ( 17),

L (g1, δ1, ξ1, ε1, α, β, γ )

=
1
2
(R−(K (T,TT )g1 + eδ1))TD(R−(K (T,TT )g1 + eδ1))

+
1
2
c1(gT1 g1 + δ

2
1)+ c2(v1ε1 +

1
m
dT ξ1)

−αT (R−(K (T,TT )g1 + eδ1)+ ε1e+ ξ1)−βT ξ1−γ ε1,

(17)

where α = (α1, . . . , αm)T , β = (β1, . . . , βm)T , and γ > 0
are Lagrangian multipliers. By using Karush–Kuhn–Tucker
(KKT) conditions, we can get the dual problem as (18),

min
1
2
αT4(4TD4+ c1I)−14Tα

−RTD4(4TD4+ c1I)−14Tα + RTα

s.t. 0e 6 α 6
c2
m
d,

eTα 6 c2v1. (18)

where

4 = [K (T,TT ) e ] (19)

By computing the dual QPP problem (18), it can be obtained

w1 = [ gT1 δ1 ]T = (4TD4+ c1I)−14T (DR− α). (20)

Similarly, the dual problem of (16) can be expressed as (21),
and it is not difficult to get

min
1
2
λT4(4TD4+ c3I)−14Tλ

+RTD4(4TD4+ c3I)−14Tλ− RTλ

s.t. 0e 6 λ 6
c4
m
d,

eTλ 6 c4v2. (21)

w2 = [ gT2 δ2 ]
T
= (4TD4+ c3I)−14T (DR+ λ). (22)

C. SUMMARY OF THE ALGORITHM (TAKING 2 TRANSMIT
ANTENNAS AND 1 RECEIVE ANTENNA AS AN EXAMPLE)
The channel frequency response estimation can be carried out
according to the following procedure.

Input: Transmitted pilot value matrixXP and pilot position
T =[n1t,m1f ], n = 0, . . . ,Nt − 1, m = 0, . . . ,Nf − 1;
received pilot value YP; the selected constants c1, c2, c3, c4,
ν1 and ν2, in (15) and ( 16); A, σ in (14).

FIGURE 3. Channel response under v = 100km/h, L = 5.

Output: The estimated channel frequency response of all
subcarriers H̃1/2.
Process:
1. Use (11) to compute channel frequency response at

T =[n1t,m1f ]: Ĥ1P and Ĥ2P.
2. LetR = real(Ĥ1P), use wavelet transform to filterR and

get R̂. Use (14) to compute d.
3. In (18) and (21), 4 = [K (T,TT ) e ]. By Solving (18)

and (21), we can get α and λ.
4. Compute w1 and w2 by (20) and (22), respectively.
5. Calculate h1real(τ ) = 1

2K (τ,TT )(g1+g2)T + 1
2 (δ1+δ2).

6. Let R = imag(Ĥ1P), R = real(Ĥ2P) and R =

imag(Ĥ2P), respectively, and repeat 2-5, the h1imag(τ ),
h2real(τ ) and h2imag(τ ) can be obtained.
7. Frequency response can be estimated as (H̃)1t/2t =

h1/2real(t) + jh1/2imag(t), where (H̃)1t/2t is the t = (n,m)
element of H̃1/2.

V. SIMULATION RESULTS
In this section, the simulation experiments are presented
to demonstrate the performance of the proposed weighted
TSVR based nonlinear channel frequency response esti-
mation algorithm for MIMO-OFDM system. The proposed
algorithm, linear interpolation, TSVR in [29], BEM based
estimation, LMMSE estimation and perfect estimation are
presented for comparison. Computations are carried out on
MATLAB R2014a.

At the receiving end, any one of the MR receiving
antennas needs to estimate MT channel responses indepen-
dently. Therefore, we generally choose 2I1O-OFDM as the
test example. Consider a 2I1O-OFDM system with dou-
bly fading channel.Channel taps are assumed to be inde-
pendent and identically distributed (i.i.d.). The channel
response is correlate in time, which can be expressed as
E[h(n1, l1)h∗(n2, l2)] = σ 2J0(2π fmaxTs(n1 − n2))δ(l1 − l2),
where E(·) denotes taking expected value, (·)∗ means con-
jugate, ni and li (i = 1, 2) are time index and channel path
index, respectively. J0 is Bessel function with the first kind
zeroth-order, Ts and σ 2 are sampling interval and variance of
the channel impulse response, respectively [33].
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TABLE 1. Simulation parameters.

FIGURE 4. Channel response under v = 300km/h, L = 5.

FIGURE 5. Channel response under v = 100km/h, L = 10.

In the simulation, pilots are inserted both in time and fre-
quency domain. Gaussian function is selected as the nonlinear
mapping kernel in (19) for WTWTSVR based algorithm and
TSVR [29] base estimator:

K (xT1 , x
T
2 ) = exp(−‖x1 − x2‖2 /η), (23)

where η is the width or the variance of the Gaussian function.
Constants in (18) and (21) are determined by searching from
{10k |k = −2,−1, . . . , 3}. The simulation parameters are
listed in Table 1.
Two criteria, sum squared error (SSE) and bit error

rate (BER) are selected to estimate the performance of algo-
rithms. The criteria are specified as: SSE=

∑nt
i=1

∣∣yi − ŷi∣∣2,
BER=ne/nT , where ŷi is the predicted value of the testing
sample yi, ne and nT are error data number and total data

FIGURE 6. Channel response under v = 300km/h, L = 10.

FIGURE 7. Regression of WTWTSVR to training samples of channel
response.

FIGURE 8. Bit error rate at moving speed v = 100km/h, 1t = 4, 1f = 4.

number in binary, respectively. Define SNR=10log(σ 2
x /σ

2
v ),

where σ 2
x = E(|x(k)|2), σ 2

v is AWGN variance.
Number of transmission multipath and the relative mov-

ing speed can affect the fading depth of the channel.
Figure 3 - Figure 6 demonstrate the channel response in one
OFDMsymbol undermoving speed being 100km/h, 300km/h
and number of multipath being 5 and 10. It can be observed
that large moving speed affects the channel response of adja-
cent subcarriers, resulting in ICI and more multipath makes
the channel fading deeper. Therefore, higher speed and more
paths will bring more challenges to channel estimation.
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TABLE 2. SSE of estimation methods.

FIGURE 9. Bit error rate at moving speed v = 300km/h, 1t = 4, 1f = 4.

Figure 7 illustrates the effectiveness of WTWTSVR for
regression of nonlinear channels. In this test, SNR = 5dB,
path number L = 10, mobile speed v = 100km/h. The star
points are noised channel response for training WTWTSVR.
We can see that the estimate of the proposed method (dashed
line) can fit the channel response (the solid line) well.

Figures 8 and 9 show the BER performance of the
WTWTSVR based algorithm at mobile speed 100km/h and
300km/h with pilot insertion interval 1t = 4 in time domain
and 1f = 4 in frequency domain, respectively. For compar-
ison, curves of TSVR-based, linear interpolation, LMMSE,
BEM based methods and perfect estimation are also demon-
strated. Figures 10 and 11 show those of1t = 8 and1f = 8.

FIGURE 10. Bit error rate at moving speed v = 100km/h, 1t = 8, 1f = 8.

The channel frequency response SSE of methods is shown
in Table 2. The results are averaged from 50 runs.
It can be observed fromFigures 8 - 11 that the improvement

in BER performance becomes significant as SNR increases.
While the improvement is negligible when SNR is less than
10dB due to the main interference effect of additive noise at
low SNR. The increase of moving speed can also degrade
the BER performance. This is because faster relative move-
ment speed leads to greater ICI. The BER curves of the
proposed method and the TSVR based algorithm have similar
trends, and their performance is better than that of tradi-
tional methods, which shows that SVR has the regression
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FIGURE 11. Bit error rate at moving speed v=300km/h, 1t = 8, 1f = 8.

advantage of nonlinear relationship. Comparing Figures 8, 9
with 10, 11, it can be seen that the increase of time and fre-
quency interval degrades the regression performance, which
is due to the decrease of information content and the increase
of interpolation interval. As shown in Figures 8- 11, the pro-
posed algorithm outperforms the TSVR based algorithm due
to the function of weights obtained by wavelet transform
preprocessing.

The results in Table 2 also show the same conclusion from
the perspective of SSE, and the effectiveness of the proposed
algorithm is further verified.

VI. CONCLUSION
A weighted TSVR based MIMO-OFDM channel frequency
response estimator is proposed in this paper. The proposed
estimation method is based on pilots inserted uniformly in
time and frequency domain, which are known to transmit-
ter and receiver. At the transmitter, the pilots are inserted
into the data sequence, and then transmitted through the
antenna after space-time coding and OFDM processing.
At the receiver, after OFDM demodulation and space-time
decoding, the channel frequency response of pilot symbol can
be calculated by LS algorithm. Then the channel response
of data symbol is interpolated by the WTWTSVR based
estimator. In the proposed algorithm, training samples on the
pilot position are given different weights according to the
distance from the mean position based on wavelet transform.

The WTWTSVR method is suitable for dealing with time
series signal denoising such as the channel estimation prob-
lems, which is determined by the property of wavelet filter.
The effectiveness of the proposed method in the estimation
of nonlinear wireless communication channel is confirmed
by computational experiments. However, the computational
complexity of SVR increases significantly with the increase
of training samples. Therefore, how to reduce the computa-
tional complexity under the premise of ensuring the accuracy
of estimation is our next research goal.
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