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ABSTRACT The matrix of dominant support parameters plays an important role in solving the normal and
pseudo parameter reduction problems for soft sets. This article aims to make a fundamental investigation
on the properties of matrix of dominant support parameters. Firstly, we obtain some basic structural and
quantitative properties. Then we give some retrieving algorithms and filling algorithms for computing the
initial soft sets and the matrix itself by using only part of the matrix. Next we propose some characterization
theorems to check which kind of set-valued matrices can be induced by a soft set as its matrix of dominant
support parameters. Finally, we make a comparison between the matrix of dominant support parameters
and the soft discernibility matrix. It’s shown that the matrix of dominant support parameters has its own
characteristic and can represent the soft discernibility matrix in a simple way. An alternative and simple
procedure for computing the order relations with the matrix of dominant support parameters is brought in.

INDEX TERMS Soft set, matrix of dominant support parameters, normal parameter reduction, soft
discernibility matrix.

I. INTRODUCTION
A. SOFT SET AND CHOICE VALUE
In 1999 Molodtsov initiated the theory of soft set, which
represented a new mathematical tool for dealing with uncer-
tainties and vagueness [1]. The soft set theory has been
studied algebraically [2]–[11] and topologically [12]–[15],
and it has also been combined with types of vague concepts
such as fuzzy model set [16]–[24] and rough set [25]–[27].
A hypersoft set was studied in [28]. The theory of soft
sets has been shown useful for decision making in various
fields [18], [29]–[34].

A soft set can be regarded as a 0-1 valued information
system [35]. It can be represented by a 0-1 valued tabular
or a 0-1 valued matrix. In a soft set over U , the choice
value of an object has been defined as its number of sup-
porting parameters, i.e., the sum of its corresponding row in
the tabular or matrix representation of the soft set [1]. The
dicision making scheme of a soft set is to give a rank of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Josue Antonio Nescolarde Selva .

objects by the choice values of the objects. The object with
maximum number of supporting parameters is the dicision
making result.

B. NORMAL PARAMETER REDUCTION OF SOFT SET AND
THE MATRIX OF DOMINANT SUPPORT PARAMETERS
When there exist lots of parameters in a soft set, we need to
figure out a kind of subsets of parameters, which is named
as a normal parameter reduction [36]. Each combination of
parameters of this kind contributes the same to each object.
That is to say, once we have deleted this subset of parameters,
each object should lose the same amount for the choice value.
As a result, the rank of objects will not change.

It is important to give optimal algorithms for normal
parameter reductions of soft sets. Many researchers have
made contributions to this problem [37]–[40]. A method
for integrating all normal parameter reductions of a soft
set into a propositional logic formula is proposed in [41].
Ma et al. [42] pointed out an important property of normal
parameter reduction of soft sets, by which the workload for
finding candidates can be reduced.
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The matrix of dominant support parameters was brought
in and investigated in [41], [43], [44]. It has been proved
in [43] that the parameter reduction problems of soft sets
can be translated as 0-1 linear programming problems. It was
shown that by using part of the matrix of dominant support
parameters [43], the conditions for a normal or pseudo param-
eter reduction can be represented by some linear constraints
among local parameters.

C. COMPARISION AMONG MATIX OF DOMINANT
SUPPORT PARAMETERS AND SEVERAL KINDS OF
MATRICES FOR 0-1 TABLES IN DIFFERENT FIELDS
0-1 information systems do appear in many fields. It can
be used to record information in computer systems. Black
and white pictures can be represented by 0-1 matrices or
tables. In formal conceptual exploration [45], a formal con-
text (U ,A, I ) can be represented by a 0-1 information system.
In rough set theory [46], if an information system (U ,A,D, f )
satisfies: ∀a ∈ A, |Da| = 2, i.e., Da is two-valued, then such
an information system can be shown as a 0-1 information
system. In graph theory [47], a classical graph (V ,E) can be
represented by a 0-1 table or matrix too, which is named as
adjacency matrix. In soft set theory, we often use 0-1 table
to represent a soft set. However, we must make it clear that
given the same 0-1 information system, it may have different
meanings or senses in the corresponding areas. What’s more,
confronted with different fields, we have different aims or
research goals or applications. As a result, there exist different
methods for dealing with the related 0-1 information systems.

In rough set theory, given a 0-1 valued information sys-
tem, we can define its discernbility matrix D [48]. For an
arbitrary entry D(i, j), it records the set of attributes, each
one of which can be used to distinguish the object ui and uj.
For general information systems, we can also define its dis-
cernbility matrix D. And the discernbility matrix D is very
important for the attribute reduction problems of rough sets.
In ordered information system, a dominance relation was
proposed by [49]. In formal concept analysis theory, the
0-1 information system is called the relation matrix. It plays
an important role in the attribute reduction problem of con-
cept lattice theory.

The matrix of dominant support parameters for a soft set
is different from the discernbility matrix (or dominance rela-
tion) of a general (ordered) information system [49]. For each
pair of objects, it not only gets rid of the parameters for which
the objects have the same value, but also makes a detailed
classification for the left ones. This operation helps us to get
the essence for the parameter reduction problems. In other
words, the matrix of dominant support parameters maintains
the advantage information of each object.

Using the idea of discernbility matrix, [50] proposed sim-
ilar concepts such as soft discernibility and weighted soft
discernibility in soft sets, which was shown useful in the
decision making of soft set. We will make a detailed analysis
between the matrix of dominant support parameters and soft
discernibility matrix in Section V.

D. MAIN QUESTIONS TO BE INVESTIGATED
The parameter reduction problems are quite different from
that of information systems in rough set theory or that of
formal concept analysis. So it becomes an important task
for researchers to learn and develop these important prop-
erties or characterizations for matrices of dominant support
parameters. It has been discussed in [43], but it is not enough
or systematic. A lot of questions need to be investigated.
We make a list of them as follows:

(1) From the point view of knowledge representation,
what’s the logical relationship among the entries of the matrix
of dominant support parameters?

(2) Given a matrix of dominant support parameters, how
can we figure out the initial soft set?

(3) Given a set-valued square matrix, how can we check
or determinate whether it is the matrix of dominant support
parameters of a certain soft set?

These questions are fundamental but important for the
development of soft set theory. The remainder of this article
is organized as follows. Section II introduces basic concepts
such as the soft set and thematrix of dominant support param-
eters. Then fundamental structural and quantitative properties
are proposed in section III. With these properties we can learn
much more from the matrix of dominant support parameters.
In section IV, algorithms for retrieving the soft set itself
by using the given matrix of dominant support parameters
are given, and then the logical formulas for the relationship
among the entries are thoroughly discussed. At last, char-
acterization theorems for the matrix of dominant support
parameters are brought in. In section V we will make a
comparison between the matrix of dominant support param-
eters and the soft discernibility matrix. Finally, we come to
a conclusion of this article and outlook for potential future
work.

II. PRELIMINARIES
In this article, suppose U = {u1, u2, · · · , un} is a finite set of
objects, E is a set of parameters. For example, the attributes
in information systems can be taken as parameters.
℘(U ) means the power set of U , |A| means the cardinality
of set A. If B ⊆ A, then BC means the complementary set
of B. By [1] and [43] we have basic concepts about soft sets
shown in Definition 2.1 and Definition 2.2.
Definition 2.1 (Soft Set): A soft set on U is a pair

S = (F,A), where
(i) A is a subset of E ;
(ii) F : A → ℘(U ), ∀e ∈ A,F(e) means the subset of

U corresponding with parameter e. We also use F(u, e) = 1
(F(u, e) = 0) to mean than u is (not) an element of F(e), i.e.,
u ∈ F(e) (u 6∈ F(e)).
Definition 2.2 (Support Set of Parameters for Objects): Let

S = (F,A) be a soft set over U . ∀u ∈ U , define the support
set of parameters for u as the set {e ∈ A|F(u, e) = 1}, denoted
by supp(u).
Definition 2.3 (Choice Value Function): Let S = (F,A)

be a soft set over U . The function σS : U → N defined by
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FIGURE 1. A sketch map for the Main Diagonal Empty Property with soft set in TABLE 1.

σS (u) = |supp(u)| =
∑

e∈A F(u, e) is called the choice value
function of S.
We write σS as σ for short if the underlying soft set S is

explicit.
Example 2.1 [43]: TABLE 1 represents a soft set S =

(F,E) over objects domainU = {u1, u2, · · · , u6} and param-
eters domain E = {e1, e2, · · · , e8}, where F(e1) = {u6},
F(e2) = {u1, u4, u5}, F(e3) = {u1, u2, u6}, F(e4) = U ,
F(e5) = {u2, u3, u6}, F(e6) = {u2, u3}, F(e7) =
{u1, u2, u4, u5, u6}, F(e8) = {u1, u2}. σS represents the
choice value function of soft set S.
Definition 2.4 [41], [43], [44] (Dominant Support Param-

eters): Given a soft set S = (F,A) over U , ∀ui, uj ∈ U ,
define Di←j = supp(ui) − supp(uj). We call Di←j the set of
dominant support parameters of ui over uj.
Example 2.2: Consider the soft set S = (F,A) given

in Table 1. By Definition 3.1 and Fig. 1 it is easy to get that
D1←2 = supp(u1) − supp(u2) = {e2}, D2←1 = supp(u2) −
supp(u1) = {e5, e6}, D1←6 = supp(u1) − supp(u6) =
{e2, e8}, D6←1 = supp(u6)− supp(u1) = {e1, e5}.
Definition 2.5 [43] (Matrix of Dominant Support Parame-

ters): Given a soft set S = (F,A) over U , |U | = n. We call
matrix DS = [Di←j]n×n as the matrix of dominant support
parameters for soft set S. We will also use DS (i, j) for Di←j.
Example 2.3 [43]: Consider the soft set S = (F,A) given

in Table 1, then by Definition 3.2 we have DS which is
shown in Fig.1 (here for the convenience of readers we list
the objects ui, i = 1, 2, · · · , 6 ).

III. FUNDAMENTAL STRUCTURAL AND QUANTITATIVE
PROPERTIES FOR ENTRIES OF MATRIX OF DOMINANT
SUPPORT PARAMETERS
A. STRUCTURAL PROPERTIES OR RELATIONS FOR
ENTRIES OF MATRIX OF DOMINANT SUPPORT
PARAMETERS
By the lemma 3.1 in [43], we have the following Theorem 3.1.
We add its proof and summarize the properties here. As a
result, it becomes more systematically together with other
properties in this subsection.
Theorem 3.1: Given a soft set S = (F,A) over U , |U | = n.

Then DS is a set-valued matrix which satisfies the following
properties:

(i) (Main Diagonal Empty Property) the main diag-
onal elements are all empty subsets, i.e., DS (i, i) = ∅,
i = 1, 2, · · · , n;

TABLE 1. Tabular representation of a soft set S = (F , A).

(ii) (Symmetry Disjoint Property) the entries on symme-
try positions with respect to the main diagonal are disjoint,
i.e., DS (i, j) ∩ DS (j, i) = ∅, 1 ≤ i 6= j ≤ n;
(iii) (TransitionDisjoint Property) ∀i, j, k = 1, 2, · · · , n,

i 6= j, j 6= k , i 6= k , DS (i, j) ∩ DS (j, k) = ∅.
Proof: (i) ∀i = 1, 2, · · · , n, ∀e ∈ A, F(ui, e) = F(ui, e),

so DS (i, i) = ∅.
(ii) ∀i, j = 1, 2, · · · , n, i 6= j, ∀e ∈ A, if e ∈ DS (i, j), then

F(ui, e) = 1, F(uj, e) = 0, so e 6∈ DS (j, i); if e ∈ DS (j, i),
then F(uj, e) = 1, F(ui, e) = 0, so e 6∈ DS (i, j). Hence
DS (i, j) ∩ DS (j, i) = ∅.
(iii) ∀i, j, k = 1, 2, · · · , n, i 6= j, j 6= k , i 6= k , ∀e ∈

A, if e ∈ DS (i, j), then F(ui, e) = 1, F(uj, e) = 0, so e 6∈
DS (j, k); if e ∈ DS (j, k), then F(uj, e) = 1, F(uk , e) = 0,
so e 6∈ DS (i, j). Hence DS (i j) ∩ DS (j, k) = ∅.
For a better understanding of the above three fundamental

properties, by using the soft set given by Example 2.1 and
its matrix of dominant support parameters shown in
Example 2.3, we give three figures Fig.1 to Fig. 3.
Theorem 3.2 (Identical-Column-RowProperties forMatrix

of Dominant Support Parameters): Given a soft set S =
(F,A) overU , |U | = n. ThenDS is a set-valued matrix which
satisfies the following properties:
(i) (Identical-Column-Row Disjoint Property) once one

parameter appears in the ith column, then it can’t appear in the
ith row, and vice versa, i.e., ∀i = 1, 2, · · · , n,

(
n⋃

k=1

DS (i, k)) ∩ (
n⋃

k=1

DS (k, i)) = ∅. (3.1)

(ii) (Identical-Column-Row Union Property) ∀i =
1, 2, · · · , n, (

⋃n
k=1DS (i, k)) ∪ (

⋃n
k=1 DS (k, i)) = E −

{e|F(e) = ∅ or F(e) = U}.
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FIGURE 2. A sketch map for Symmetry Disjoint Property with soft set in TABLE 1.

FIGURE 3. A sketch map for the Transition Disjoint Property with soft set in TABLE 1.

FIGURE 4. A sketch map for the Identical-Column-Row Disjoint Property with soft set in TABLE 1.

(iii) (Identical-Column-Row Partition Property) ∀i =
1, 2, · · · , n, (

⋃n
k=1DS (i, k)) and (

⋃n
k=1DS (k, i)) is a parti-

tion of E − {e|F(e) = ∅ or F(e) = U}.
Proof: (i) Suppose e ∈ (

⋃n
k=1DS (i, k))∩(

⋃n
k=1DS (k, i)) 6=

∅, then ∃k1, k2 such that e ∈ DS (i, k1) and e ∈ DS (k2, i).
Hence F(ui, e) = 1, F(uk1 , e) = 0; F(uk2 , e) = 1, F(ui, e) =
0, which is a contradiction.

(ii) On one hand, since if e ∈ {e|F(e) = ∅ or F(e) = U},
it is easy to see that ∀k1, k2, F(ui, e) = F(uk1 , e) = F(uk2 , e),
e 6∈ DS (i, k1) and e 6∈ DS (k2, i). Thus (

⋃n
k=1 DS (i, k)) ∪

(
⋃n

k=1DS (k, i)) ⊆ E − {e|F(e) = ∅ or F(e) = U}.
On the other hand, if e ∈ E − {e|F(e) = ∅ or F(e) =

U}, then ∃k1, k2 such that F(uk1 , e) = 1,F(uk2 , e) = 0.
If F(ui, e) = 1, then e ∈ DS (i, k2); else e ∈ DS (k1, i).
So E − {e|F(e) = ∅ or F(e) = U} ⊆ (

⋃n
k=1DS (i, k)) ∪

(
⋃n

k=1DS (k, i)).
(iii) By (i) and (ii).
Fig. 4 shows an example of the Identical-Column-

Row Disjoint Property. The union of entries D(4, 1) to
D(4, 6) (framed with strong line) is disjoint with that
of entries D(1, 4) to D(6, 4) (surrounded with dotted
wire).

TABLE 2 shows the Identical-Column-RowDisjoint Prop-
erty and the Identical-Column-Row union Property with the
DS in Example 2.3.

By Theorem 3.2 we have
Corollary 3.1 (Symmetry Disjoint Extension Rules): Sup-

pose DS is the matrix of dominant support parameters for a
soft set S = (F,A). ∀i, j = 1, 2, · · · , n− 1, i 6= j, then

DS (i, j) ∩
|U |⋃
k=1

DS (k, i) = ∅; (3.2)

DS (j, i) ∩
|U |⋃
k=1

DS (k, j) = ∅, (3.3)

and

DS (i, j) ∩
|U |⋃
k=1

DS (j, k) = ∅; (3.4)

DS (j, i) ∩
|U |⋃
k=1

DS (i, k) = ∅. (3.5)
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TABLE 2. Tabular explanation for the Identical-Column-Row Partition Property with soft set in TABLE 1.

FIGURE 5. A second sketch map for Corollary 3.1.

FIGURE 6. A sketch map for Submatrix Diagonal Vertices Rule with soft set in TABLE 1.

Corollary 3.1 comes specially to symmetrical positions.
It tells us that for arbitrary pair of symmetrical entriesDS (i, j)
and DS (j, i), DS (i, j) is not only disjoint with DS (j, i) but also
disjoint with any entries on the jth row or ith column; and
DS (j, i) is not only disjoint with DS (i, j) but also disjoint with
any entries on the ith row or jth column. In Fig. 5, D(4, 3) =
{e2, e7}, it is easy to see that {e2, e7} (The one framed with
solid wire) is disjoint with any entry in the 4th column which
is surrounded by dotted line.
Theorem 3.3 (Submatrix Diagonal Vertices Rule): Suppose

DS is the matrix of dominant support parameters for a soft set
S = (F,A). ∀k ∈ {1, 2, · · · , |A|}, If ek ∈ DS (i1, j1), ek ∈
DS (i2, j2), and i1 6= i2, j1 6= j2, then

ek ∈ DS (i1, j2), ek ∈ DS (i2, j1). (3.6)

Proof: Since ek ∈ DS (i1, j1), ek ∈ DS (i2, j2), we have
F(ui1 , e) = 1,F(uj1 , e) = 0;F(ui2 , e) = 1,F(uj2 , e) = 0.
Therefore ek ∈ DS (i1, j2), ek ∈ DS (i2, j1).
The Submatrix Diagonal Vertices Rule tells us that

if e appears both in one pair of diagonal vertices of a
submatrix, then e also appears both in the other pair of

diagonal vertices of the same submatrix. See Fig. 6 for an
example. We see that e5 ∈ D(3, 4) ∩ D(6, 5), then con-
sider the subdiagonal line of the submatrix which consists
of D(3, 4),D(6, 5),D(6, 4),D(3, 5) (corresponding to these
entries with colored elements). We can see that e5 appears in
both D(6, 4) and D(3, 5).
Theorem 3.4 (Single-Point-Induced Vertical and Horizon-

tal Rule): Given a soft set S = (F,A) over U , |U | = n. DS
is its matrix of dominant support parameters. Then ∀i, j, k =
1, 2, · · · , n, i 6= j, i 6= k, j 6= k , if e ∈ DS (k, j), we have
e ∈ DS (i, j) or e ∈ DS (k, i), i.e., logically

e ∈ DS (k, j)→ (e ∈ DS (i, j) ∨ e ∈ DS (k, i)) ≡ >,

¬(e ∈ DS (i, j)) ∧ ¬(e ∈ DS (k, i))→ ¬(e ∈ DS (k, j)) ≡ >.

(3.7)

Here > means the tautology formular.
Proof: If e ∈ DS (k, j), we have F(uk , e) = 1,F(uj, e) = 0.

Since i 6= k , if F(ui, e) = 1, then e ∈ DS (i, j); else
F(ui, e) = 0, we have e ∈ DS (k, i).
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FIGURE 7. A sketch map for Single-Point-Induced Vertical and Horizontal Rule with soft set
in TABLE 1.

FIGURE 8. A sketch map for Corollary 3.2.

Fig. 7 gives us an example for Theorem 3.4 with the DS
in Example 2.3. We can see that e5 ∈ {e5, e6} = D(2, 1).
Then by Theorem 3.4 we have: e5 ∈ {e5, e6} = D(3, 1)
but e5 6∈ D(2, 3); e5 ∈ {e5, e6} = D(6, 1) but e5 6∈
D(2, 6); e5 6∈ D(4, 1) but e5 ∈ D(2, 4); e5 6∈ D(5, 1) but
e5 ∈ D(2, 5).
According to the Theorem 3.3, the following corollary 3.2

and corollary 3.3 can be induced.
Corollary 3.2 (Two-Points-Induced Consistent Distribu-

tion Rule for Corresponding Columns): Suppose DS is the
matrix of dominant support parameters for a soft set S =
(F,A). ∀k ∈ {1, 2, · · · , |A|}, if ek ∈ DS (i1, j1), ek ∈
DS (i2, j2), and j1 6= j2, then ∀K ∈ {1, 2, · · · , |U |},

ek ∈ DS (K , j1) if and only if ek ∈ DS (K , j2). (3.8)

Corollary 3.2 tells us that if e appears in two differ-
ent columns, then for arbitrary pair of entries of this two
columns at the same row, e doesn’t appear or e appears two
times.

Fig. 8 gives us an example for Corollary 3.2 with the DS in
Example 2.3. It can be implied that e2 ∈ {e2, e7} = D(4, 3)
and e2 ∈ {e2} = D(5, 2). Then by Corollary 3.2: for these
pairs D(i, 2) and D(i, 3) (i = 1, 4, 5) which are surrounded
by solid lines, e ∈ D(i, 2)∩D(i, 3); for these pairsD(i, 2) and
D(i, 3) (i = 2, 3, 6) which are surrounded by dotted lines,
e 6∈ D(i, 2) and e 6∈ D(i, 3).
Corollary 3.3 (Two-Points-Induced Consistent Distribu-

tion Rule for Corresponding Rows): SupposeDS is the matrix
of dominant support parameters for a soft set S = (F,A).
∀k ∈ {1, 2 · · · , |A|}, if ek ∈ DS (i1, j1), ek ∈ DS (i2, j2), and
i1 6= i2, then ∀K ∈ {1, 2, · · · , |U |},

ek ∈ DS (i1,K ) if and only if ek ∈ DS (i2,K ). (3.9)

B. QUANTITATIVE PROPERTIES FOR THE ENTRIES OF THE
MATRIX OF DOMINANT SUPPORT PARAMETERS
Given a soft set S = (F,A) over U , |U | = n. DS is the
matrix of dominant support parameters. In this subsection
we will bring in some definitions and then discuss their
properties.

1) TIMES THAT ek APPEARS IN DS
Definition 3.1: Given a soft set S = (F,A) over U , |U | = n.
DS is the matrix of dominant support parameters, ∀ek ∈ A,
denote the times that ek appears in DS by NDS (ek ), i.e.,

NDS (ek ) =
n∑
i=1

n∑
j=1

|DS (i, j) ∩ {ek}|. (3.10)

Theorem 3.5: Given a soft set S = (F,A) over U , |U | = n.
DS is the matrix of dominant support parameters, ∀ek ∈ A,
then NDS (ek ) =

|{u ∈ U |F(u, ek ) = 1}| · |{u ∈ U |F(u, ek ) = 0}|, (3.11)

i.e.,

|{u ∈ U |F(u, ek ) = 1}| · (|U | − |{u ∈ U |F(u, ek ) = 1}|).

Proof: ∀ek ∈ A, it suffices to get the number of pairs
of F(u, ek ) = 1 and F(v, ek ) = 0. By the knowledge of
Permutation and Combination, it is easy to see ∀ek ∈ A,
NDS (ek ) = |{u ∈ U |F(u, ek ) = 1}| · |{u ∈ U |F(u, ek ) = 0}|.
And obviously NDS (ek ) = |{u ∈ U |F(u, ek ) = 1}| · (|U | −
|{u ∈ U |F(u, ek ) = 1}|) = |{u ∈ U |F(u, ek ) = 1}| · |{u ∈
U |F(u, ek ) = 0}|.
Corollary 3.4:Given a soft set S = (F,A) overU , |U | = n.

DS is the matrix of dominant support parameters, ∀ek ∈ A,
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FIGURE 9. A sketch map for Corollary 3.5.

TABLE 3. NDS (ek ) values for the soft set S = (F , A) in TABLE 1.

then NDS (ek ) =
∨m

i=1 NDS (ei) if and only if

||{u|u ∈ F(ek )}| −
|U |
2
| =

m∧
i=1

||{u|u ∈ F(ei)}| −
|U |
2
|.

Corollary 3.5:Given a soft set S = (F,A) overU , |U | = n.
DS is the matrix of dominant support parameters, ∀ek ∈ A,
then ∀k = 1, 2, · · · ,m,

NDS (ek ) ≤
n2

4
. (3.12)

Fig. 9 shows us the underlying reason with a quadratic
function image for Corollary 3.4 and Corollary 3.5.
Example 3.1: TABLE 3 shows the NDS (ek ) values for the

soft set S represented by TABLE 1.
By Theorem 3.5 we can get
Corollary 3.6: Assume DS is the matrix of dominant sup-

port parameters for the soft set S = (F,A) over U , |U | = n.
∀i, j = 1, 2, · · · |A|, if NDS (ei) and NDS (ej) are both prime
numbers larger than 1, then

NDS(ei) = NDS(ej) = |U | − 1. (3.13)

Example 3.2: By TABLE 3 NDS (e1) = NDS (e7) = 5, 5 is
a prime number larger than 1. It is easy to testify that 5 =
|U | − 1, where |U | = 6.

Corollary 3.7:Given a soft set S = (F,A) overU , |U | = n.
DS is the matrix of dominant support parameters, denote the
sum of cardinalities of all entries in DS by N (DS ), then

N (DS ) =
∑
ek∈A

|{u ∈ U |F(u, ek ) = 1}|

·(|U | − |{u ∈ U |F(u, ek ) = 1}|). (3.14)

2) TIMES THAT ek APPEARS IN A PAIR OF COLUMN AND
ROW IN DS
Definition 3.2: Given a soft set S = (F,A) over U , |U | = n.
DS is the matrix of dominant support parameters, ∀ek ∈ A,
denote the times that ek appears in the ith row and jth column
of DS by NDS (ek , i, j), i.e.,

NDS (ek , i, j) =
n∑
t=1

|DS (i, t) ∩ {ek}| +
n∑
t=1

|DS (t, j) ∩ {ek}|.(3.15)

Corollary 3.8: Given a soft set S = (F,A) over U , |U | =
n. DS is the matrix of dominant support parameters, ∀i, j =
1, 2, · · · , n, i 6= j, ∀k = 1, 2, · · · ,m, if ek ∈ DS (i, j), then

NDS (ek , i, j) = |U | − 1. (3.16)

Example 3.3: Consider the soft set S = (F,A) given in
TABLE 1, DS |e3 in expression (3.17) maintains the details
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TABLE 4. Some NDS (ek , i, j ) values for DS of the soft set S = (F , A) in TABLE 1.

especially for e3 when we remove all other parameters in DS .
It can be checked that NDS (e3, i, j) where e3 ∈ DS (i, j)
satisfies Corollary 3.8.

DS |e3 =



u1 u2 u3 u4 u5 u6
u1 ∅ ∅ {e3} {e3} {e3} ∅
u2 ∅ ∅ {e3} {e3} {e3} ∅
u3 ∅ ∅ ∅ ∅ ∅ ∅

u4 ∅ ∅ ∅ ∅ ∅ ∅

u5 ∅ ∅ ∅ ∅ ∅ ∅

u6 ∅ ∅ {e3} {e3} {e3} ∅


. (3.17)

IV. APPLICATIONS AND CHARACTERIZATIONS OF DS
WITH CERTAIN ENTRIES OF THE MATRIX OF
DOMINANT SUPPORT PARAMETERS
In this section, all soft sets mentioned have no ∅ or U
approximations. This is to say the tabular representations of
these soft sets have no one column which has only 0 or has
only 1.

A. RETRIEVING OF SOFT SETS WITH JTH ROW AND JTH
COLUMN THE MATRIX OF DOMINANT SUPPORT
PARAMETERS
As shown in the above section, the entries of the matrix
of dominant support parameters for the same soft set have
connections. Actually, we need only part of these entries to
regain the initial soft set.
Theorem 4.1 (Retrieving Algorithm 1 for S With the First

Row and the First Column of DS ): Given the first row and
the first column of DS for soft set S = (F,A) over U , then
∀k = 1, 2, · · · , |A|, ∀i = 1, 2, · · · , |U |,

F(ui, ek )=


0, ek ∈ D1←i;

1, ek ∈ Di←1;∨
K 6=i ek ∈ D1←K , ek 6∈ D1←i ∧ ek 6∈ Di←1.

(4.1)

Proof: (i) If ek ∈ D1←i, then F(u1, ek ) = 1 and
F(ui, ek ) = 0.

(ii) If ek ∈ Di←1, then F(u1, ek ) = 0 and F(ui, ek ) = 1.
(iii) If ek 6∈ D1←i ∧ ek 6∈ Di←1, then F(u1, ek ) =

F(ui, ek ). Since it is assumed that F(ek ) 6= ∅ and F(ek ) 6= U ,
∃J such that F(u1, ek ) 6= F(uJ , ek ). If F(u1, ek ) = 1, then
F(uJ , ek ) = 0, ek ∈ D1←K , so F(u1, ek ) = F(ui, ek ) =∨

K 6=i ek ∈ D1←K . If F(u1, ek ) = 0, then the logical value of
formula

∨
K 6=i ek ∈ D1←K is equal to 0, F(ui, ek ) = 0.

Corollary 4.1: Given two soft sets S = (F1,A) and T =
(F2,A) over U , |U | = n. Then S = T if and only if DS (1, :
) = DT (1, :) and DS (:, 1) = DT (:, 1).
Similarly, we can also use the Jth row and the Jth column

of DS for regaining soft set S = (F,A).

FIGURE 10. The soft set induced by D(1, :) and D(:, 1) in Example 4.1.

Theorem 4.2 (Retrieving Algorithm 2 for S With the Jth
Row and Jth Column of DS ): Given the Jth row and the Jth
column of DS for soft set S = (F,A) over U , then ∀k =
1, 2, · · · , |A|, ∀i = 1, 2, · · · , |U |,

F(ui, ek )=


0, ek ∈ DJ←i;

1, ek ∈ Di←J ;∨
K 6=i ek ∈ DJ←K , ek 6∈ DJ←i ∧ ek 6∈ Di←J .

(4.2)

Proof: It is similar with that of Theorem 4.1, we omit it
here.
Corollary 4.2: Given two soft sets S = (F1,A) and T =

(F2,A) over U , |U | = n. Then ∀J = 1, 2, · · · , |U |, S = T if
and only if DS (J , :) = DT (J , :) and DS (:, J ) = DT (:, J ).

The retrieving algorithms enable us to construct soft sets
or 0-1 ordered information systems which are supposed or
required to be under certain constraints. It’s very interesting
to construct different distribution of subsets of parameters
on the first row and the first column, and see what kind of
information systems we get.
Example 4.1: DS (1, 2) = {1}; DS (1, 3) = {2}; DS (1, 4) =
{3}; DS (1, 5) = {4}; DS (1, 6) = {5}; DS (1, 7) = {6};
DS (1, 8) = {7}; DS (2, 1) = {8}; DS (3, 1) = {9}; DS (4, 1) =
{10}; DS (5, 1) = {11}; DS (6, 1) = {12}; DS (7, 1) = {13};
DS (8, 1) = {14}, then we can get the induced soft set S =
(F,A) over U shown in Fig. 10, where A = {1, 2, · · · , 14},
U = {u1, u2, · · · , u8}.
Example 4.2: DS (1, 2) = {1}; DS (1, 3) = {1, 2};

DS (1, 4) = {1, 2, 3}; DS (1, 5) = {1, 2, 3, 4}; DS (1, 6) =
{1, 2, 3, 4, 5}; DS (1, 7) = {1, 2, 3, 4, 5, 6}; DS (1, 8) =
{1, 2, 3, 4, 5, 6, 7}; DS (2, 1) = {8}; DS (3, 1) = {8, 9};
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FIGURE 11. The soft set S = (F , A) over U induced by the Retrieving
Algorithm 1 in Example 4.2.

DS (4, 1) = {8, 9, 10}; DS (5, 1) = {8, 9, 10, 11}; DS (6, 1) =
{8, 9, 10, 11, 12}; DS (7, 1) = {8, 9, 10, 11, 12, 13};
DS (8, 1) = {8, 9, 10, 11, 12, 13, 14}, then we can get the
induced soft set S = (F,A) over U shown in Fig. 11, where
A = {1, 2, · · · , 14}, U = {u1, u2, · · · , u8}.

B. FILLING ALGORITHMS OF DS WITH PART OF THE
MATRIX OF DOMINANT SUPPORT PARAMETERS
According to the Definition 2.5 and the Retrieving
Algorithm 2, we can get the following algorithm which can
be used to compute the rest of DS with the Jth row and the
Jth column of DS :
The Filling Algorithm 1 forDS with the Jth row and the Jth

column of DS computes the rest of DS one by one, it costs a
lot. It can be proved that ∀i, j, Di←j can be represented by the
entries in the 1st row and the 1st column of DS as follows:
Theorem 4.3 (Filling Algorithm 2 for DS With the First

Row and First Column of DS ): Given the 1st row and the
1st column of DS for soft set S = (F,A) over U , then
∀i, j = 1, 2, · · · , |U |,

Di←j = α ∩ β
C , (4.3)

where

α = DC1←i ∩ (Di←1 ∪

|U |⋃
k=1

D1←k ), i.e.,

α = (
|U |⋃
k=1

D1←k − D1←i) ∪ Di←1, (4.4)

and

β = DC1←j ∩ (Dj←1 ∪

|U |⋃
k=1

D1←k ), i.e.,

β = (
|U |⋃
k=1

D1←k − D1←j) ∪ Dj←1. (4.5)

TABLE 5. Filling Algorithm 1 for DS with the Jth row and the Jth column
of DS .

Proof: (1) We prove Di←j ⊆ α ∩ β
C .

Suppose e ∈ Di←j, then F(ui, e) = 1 and F(uj, e) = 0.
If F(u1, e) = 0, then e ∈ α. If F(u1, e) = 1, then e 6∈ D1←i.
Since F(e) 6= ∅ and F(e) 6= U , e ∈

⋃|U |
k=1D1←k ) − D1←i.

Next we try to prove that e 6∈ (
⋃|U |

k=1D1←k −D1←j)∪Dj←1,
i.e., e 6∈ (

⋃|U |
k=1 D1←k − D1←j) and e 6∈ Dj←1.

• If e ∈ (
⋃|U |

k=1D1←k − D1←j, then e ∈
⋃|U |

k=1D1←k

and e 6∈ D1←j. Hence by e ∈
⋃|U |

k=1D1←k , there exists K ,
F(u1, e) = 1, F(uK , e) = 0. Therefore e ∈ D1←j, which is a
contradiction because e 6∈ D1←j.
• Since F(uj, e) = 0, e 6∈ Dj←1.
(2) We prove α ∩ βC ⊆ Di←j.
If e ∈ α ∩ βC , then e ∈ α, e ∈ βC . Hence e ∈

(
⋃|U |

k=1D1←k − D1←j)C and e ∈ DCj←1. By e ∈ α, we have
two situations:
• e ∈ Di←1. Thus F(ui, e) = 1, F(u1, e) = 0. It suffices to

show that F(uj, e) = 0. We prove it by contrary. If F(uj, e) =
1, then e ∈ Dj←1. That is a contradiction.
• e ∈ (

⋃|U |
k=1D1←k − D1←i). So F(u1, e) = 1 and e 6∈

D1←i. So F(ui, e) = 1. It suffices to show that F(uj, e) = 0.
We prove it by contrary. If F(uj, e) = 1, then e 6∈ D1←j.
So e ∈ (

⋃|U |
k=1D1←k − D1←j). That’s a contradiction.

At last, it is easy to check by set theory that

α = DC1←i ∩ (Di←1 ∪

|U |⋃
k=1

D1←k )

= (
|U |⋃
k=1

D1←k − D1←i) ∪ Di←1,

and

β = DC1←j ∩ (Dj←1 ∪

|U |⋃
k=1

D1←k )

= (
|U |⋃
k=1

D1←k − D1←j) ∪ Dj←1.

Generally, we get
Corollary 4.4 (Filling Algorithm 3 for DS With the

Jth Row and Jth Column of DS ): Given the Jth row and
the Jth column of DS for soft set S = (F,A) over U , then
∀i, j = 1, 2, · · · , |U |,

Di←j = α ∩ β
C , (4.6)
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FIGURE 12. A sketch map for Filling Algorithm 4.

FIGURE 13. The matrix of dominant support parameters for the soft set in TABLE 6.

where

α = DCJ←i ∩ (Di←J ∪

|U |⋃
k=1

DJ←k ), i.e.,

α = (
|U |⋃
k=1

DJ←k − DJ←i) ∪ Di←J , (4.7)

and

β = DCJ←j ∩ (Dj←J ∪

|U |⋃
k=1

DJ←k ), i.e.,

β = (
|U |⋃
k=1

DJ←k − DJ←j) ∪ Dj←J . (4.8)

Theorem 4.4 (Filling Algorithm 4 for DS With the First
Row and First Column of DS ): Given the 1st row and the
1st column of DS for soft set S = (F,A) over U , then
∀i, j = 1, 2, · · · , |U |,

Di←j = (D1←j − D1←i) ∪ (Di←1 − Dj←1). (4.9)

Proof: (1) We prove that Di←j ⊆ (D1←j − D1←i) ∪
(Di←1 − Dj←1). Suppose e ∈ Di←j, then F(ui, e) = 1 and
F(uj, e) = 0. If e ∈ D1←j−D1←i, then e ∈ (D1←j−D1←i)∪
(Di←1 − Dj←1). Otherwise e 6∈ D1←j − D1←i, thus we have
two possible situations:
• e 6∈ D1←j, then we have F(u1, e) = 0, so e ∈ (Di←1 −

Dj←1).
• e ∈ D1←j and e ∈ D1←i, then we have F(u1, e) = 1,

F(ui, e) = 0, that’s a contradiction, since we have e ∈ Di←j.

So Di←j ⊆ (D1←j − D1←i) ∪ (Di←1 − Dj←1).
(2)We prove that (D1←j−D1←i)∪(Di←1−Dj←1) ⊆ Di←j.

Suppose e ∈ (D1←j−D1←i)∪ (Di←1−Dj←1), then we have
two possible situations:
• If e ∈ D1←j − D1←i, then F(u1, e) = 1, F(uj, e) = 0,

F(ui, e) = 1. Thus e ∈ Di←j.
• If e ∈ Di←1 − Dj←1, then F(ui, e) = 1, F(u1, e) = 0,

F(uj, e) = 0. Thus e ∈ Di←j.
According to the Filling Algorithm 4, we need only four

values D1←j, D1←i, Di←1, Dj←1 to figure out D(i, j). Notice
that we need at least the first row and the first collumn of DS
if we use the Filling Algorithm 2.

Fig. 13 gives an example for the Filling Algorithm 4. Take
DS (3, 4) = {e5, e6} for an example (circled with red line),
DS (3, 4) = (DS (1, 4)− DS (1, 3)) ∪ (DS (3, 1)− DS (4, 1)) =
({e3, e8} − {e2, e3, e7, e8}) ∪ ({e5, e6} − ∅) = ∅ ∪ {e5, e6} =
{e5, e6}.
Generally, the following corollary is true:
Corollary 4.5 (Filling Algorithm 5 for DS With the

Jth Row and Jth Column of DS ): Given the Jth row and
the Jth column of DS for soft set S = (F,A) over U , then
∀i, j = 1, 2, · · · , |U |, we have

Di←j = (DJ←j − DJ←i) ∪ (Di←J − Dj←J ). (4.10)

Corollary 4.6:Given the 1st row and the 1st column ofDS
for soft set S = (F,A) overU , then ∀i, j = 1, 2, · · · , |U |,we
have

|Di←j| = |D1←j − D1←i| + |Di←1 − Dj←1|. (4.11)
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FIGURE 14. The GET and LOSE values with respect to the matrix of dominant support parameters for the soft set
in TABLE 6.

FIGURE 15. Menus operation results of the SCORE values for the objects in TABLE 6.

Proof: Since (D1←j − D1←i) ∩ (Di←1 − Dj←1) = ∅,
by Theorem 4.4, |Di←j| = |D1←j−D1←i|+ |Di←1−Dj←1|.

C. CHARACTERIZATION THEOREMS OF THE MATRIX OF
DOMINANT SUPPORT PARAMETERS
Theorem 4.5 (Characterization Theorem I With the First Row
and the First Column of D): Given the domain of objects
U , |U | = n. A = {e1, e2, · · · , em}. Let D be a set-valued
n × n matrix, i.e., ∀i, j = 1, 2, · · · n, D(i, j) ⊆ A. Then
D is the matrix of dominant support parameters for a soft
set S = (F,A) if and only if the following conditions are
satisfied:

(i) D(1, 1) = ∅;
(ii) (

⋃n
k=1D1←k ) ∪ (

⋃n
k=1Dk←1) = A, (

⋃n
k=1 D1←k ) ∩

(
⋃n

k=1Dk←1) = ∅, i = 1, 2, · · · , n;
(iii) ∀i, j = 1, 2, · · · , |U |, D(i, j) = α ∩ βC , where

α = DC1←i ∩ (Di←1 ∪

|U |⋃
k=1

D1←k ),

and

β = DC1←j ∩ (Dj←1 ∪

|U |⋃
k=1

D1←k ).

Proof: Theorem 4.5 is implied by Theorem 3.1,
Theorem 3.2 and Theorem 4.3 (Filling Algorithm 2).
Generally, by Theorem 3.1, Theorem 3.2 and Corollary 4.4

(Filling Algorithm 3) we can derive the following theorem.
Theorem 4.6 (Characterization Theorem II With the Jth

Row and Jth Column of D): Given the domain of objects
U , |U | = n. A = {e1, e2, · · · , em}. Let D be a set-valued
n × n matrix, i.e., ∀i, j = 1, 2, · · · n, D(i, j) ⊆ A. Then
D is the matrix of dominant support parameters for a soft
set S = (F,A) if and only if the following conditions are
satisfied:

(i) D(J , J ) = ∅;
(ii) (

⋃n
k=1DJ←k ) ∪ (

⋃n
k=1Dk←J ) = A, (

⋃n
k=1DJ←k ) ∩

(
⋃n

k=1Dk←J ) = ∅, i = 1, 2, · · · , n;
(iii) ∀i, j = 1, 2, · · · , |U |, D(i, j) = α ∩ βC , where

α = DCJ←i ∩ (Di←J ∪

|U |⋃
k=1

DJ←k ),

and

β = DCJ←j ∩ (Dj←J ∪

|U |⋃
k=1

DJ←k ).

Theorem 4.7 (Characterization Theorem III With the First
Row and the First Column of D):Given the domain of objects
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U , |U | = n. A = {e1, e2, · · · , em}. Let D be a set-valued
n × n matrix, i.e., ∀i, j = 1, 2, · · · n, D(i, j) ⊆ A. Then D is
the matrix of dominant support parameters for a soft set S =
(F,A) if and only if the following conditions are satisfied:

(i) D(1, 1) = ∅;
(ii) (

⋃n
k=1D1←k ) ∪ (

⋃n
k=1Dk←1) = A, (

⋃n
k=1 D1←k ) ∩

(
⋃n

k=1Dk←1) = ∅, i = 1, 2, · · · , n;
(iii) ∀i, j = 1, 2, · · · , |U |, the following equality holds:

Di←j = (D1←j − D1←i) ∪ (Di←1 − Dj←1).

Proof: Theorem 4.7 is implied by Theorem 3.1,
Theorem 3.2 and Theorem 4.4 (The Filling Algorithm 4).

Generally, by Theorem 3.1, Theorem 3.2 and Corollary 4.5
(The Filling Algorithm 5) we get
Theorem 4.8 (Characterization Theorem IV With the Jth

Row and Jth Column of D): Given the domain of objects
U , |U | = n. A = {e1, e2, · · · , em}. Let D be a set-valued
n × n matrix, i.e., ∀i, j = 1, 2, · · · n, D(i, j) ⊆ A. Then
D is the matrix of dominant support parameters for a soft
set S = (F,A) if and only if the following conditions are
satisfied:

(i) D(J , J ) = ∅;
(ii) (

⋃n
k=1DJ←k ) ∪ (

⋃n
k=1Dk←J ) = A, (

⋃n
k=1DJ←k ) ∩

(
⋃n

k=1Dk←J ) = ∅, i = 1, 2, · · · , n;
(iii) ∀i, j = 1, 2, · · · , |U |, it holds that

Di←j = (DJ←j − DJ←i) ∪ (Di←J − Dj←J ).

Theorem 4.9: Given the domain of objects U , |U | = n.
A = {e1, e2, · · · , em}. Denote the set of dominant support
parameters generated by all soft sets S = (F,A) over U
satisfying our assumptions (i.e, ∀e ∈ A,F(e) 6= ∅) and
F(e) 6= U ) as DS (U ,A), then

|DS (U ,A)| = (2|U | − 2)|A|. (4.12)

Proof: First we need to divide A into two parts, and we
have 2|A| ways for doing this. Each way can be represented
by a pair B ⊆ A (appearing on the first column) and BC ⊆ A
(appearing on the first row). For the first column, there exist
(2|U |−1 − 1)|B| ways. Similarly, for the fist row, there are
(2|U |−1 − 1)|B

C
| ways. So in total,

|DS (U ,A)| = 2|A| ∗ ((2|U |−1 − 1)|B|) ∗ (2|U |−1 − 1)|B
C
|.

So

|DS (U ,A)| = (2|U | − 2)|A|.

Corollary 4.8: Suppose U is a set of objects, A is a set of
parameters. D is a randomly generated set-valued matrix of
size |U | × |U | with D(i, j) ∈ 2A, then the probability of D ∈
DS (U ,A) is equal to

(2|U | − 2)|A|

(2|A|)|U |×|U |
. (4.13)

TABLE 6. Tabular representation of a soft set S = (F , A).

V. APPLICATIONS OF THE MATRIX OF DOMINANT
SUPPORT PARAMETERS IN REPRESENTING THE SOFT
DISCERNIBILITY MATRIX AND AN ALTERNATIVE
ALGORITHM FOR COMPUTING THE
ORDER REATIONS OF S
In this section we want to make a comparison between the
matrix of dominant support parameters and the soft discerni-
bility matrix in soft set theory given in [50]. We will show
that the matrix of dominant support parameters can represent
the soft discernibility matrix in a simple way and provide
an alternative procedure for computing the order relation by
choice values.

A. THEORIES FOR DECISION MAKING WITH THE MATRIX
OF DOMINANT SUPPORT PARAMETERS OF SOFT SET S
Example 5.1: In order to make it clear, we will give our
idea by a soft set example (The soft set in Example 1 and
shown in Table 1 of [50]), where U = {h1, h2, · · · , h6},
E = {e1, e2, · · · , e7}, see TABLE 6. By [50], we have
TABLE 7 and TABLE 8. By Definition 2.5 we have its matrix
of dominant support parameters shown in Fig. 13.

TABLE 7, TABLE 8 and DS give us a clear and intuitive
comparision among the concepts discernibility matrix, soft
discernibility matrix and the matrix of dominant support
parameters. For information system, the discernibility matrix
take 0 and 1 just as different symbols, which are used to
distinguish the objects. The soft discernibility matrix took
the form of discernibility matrix as foundation. But it pays
attention to the order 1 > 0 and represents these relation
by addding well-defined superscripts. These superscripts in
arbitrary entry of TABLE 8 can be divided into two parts.
The matrix of dominant support parameters [41], [43] was
inspired by the following idea: for each pair of objects ui, uj,
we defineDS (i, j) to be the set of parameters, for which ui has
a high value than uj, i.e., F(ui, e) = 1 and F(uj, e) = 0.

It is easy to draw a close relation between the soft discerni-
bility matrix and the matrix of dominant support parameters:
the elements in DS (i, j) ∪ DS (j, i) is equal to the entry D(i, j)
(i > j) of the soft discernibility matrix. In a word, the matrix
of dominant support parameters divide D(i, j) into two parts
which correspond to the different superscripts. That is ets ∈
D(i, j) belongs to DS (i, j) if and only if t = i.

[50] gave a method for finding the order relation among
objects by the Definition 2.3 with the soft discernibility
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TABLE 7. The discernibility matrix for information system S = (F , E) shown in TABLE 6.

TABLE 8. The soft discernibility matrix for information system S = (F , E) shown in TABLE 6.

FIGURE 16. Comparative experimental results for Algorithm 1,
Algorithm 2 and Algorithm 3.

matrix itself. It’s an useful result. We list its algorithm as
follows in TABLE 10, but we refer to [50] for more details.

Now we try to propose another method for getting the
order relation of objects with the matrix of dominant support
parameters itself.

FIGURE 17. Comparative experimental results for Algorithm 1,
Algorithm 2 and Algorithm 3.

Definition 5.1: Suppose S = (F,E) is a soft set over U ,
where U = h1, h2, ..., hm. C = {Ci|i = 1, 2, · · · ,K ,K <=

m} is the set of classifications according to [50], i.e.,
∃n, hi, hj ∈ Cn if and only if ∀k = 1, 2, · · · , |E|,
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TABLE 9. Algorithm 1 for decision making based on soft discernibility
in [50].

TABLE 10. Algorithm 2 for decision making algorithm by matrix of
dominant support parameters.

F(hi, ek ) = F(hj, ek ). ∀i = 1, 2, · · · ,K , define

GET (i) =
K∑
j=1

|DS (i, j)|, (5.1)

Lose(i) =
K∑
j=1

|DS (j, i)|, (5.2)

and

SCORE(i) = GET (i)− Lose(i). (5.3)

Fig. 14 adds the GET and LOSE values to the DS in the
Fig. 13.
Theorem 5.1: Suppose S = (F,E) is a soft set over U ,

whereU = h1, h2, . . . , hm.C = {Ci|i = 1, 2, · · · ,K ,K <=

m} is the set defined in Definition 5.1. Then we have

SCORE(Ci)− SCORE(Cj) = |C|(|D(i, j)|−|D(j, i)|), (5.4)

where |C| means the number of elements in C .
Proof:We can take a pair of objects for example. Assume

h1 ∈ C1, and h2 ∈ C2 and it suffices to show that
SCORE(C1)− SCORE(C2) = |C|(|D(1, 2)| − |D(2, 1)|).

TABLE 11. Algorithm 3 for decision making algorithm with the first row
and the first column in the matrix of dominant support parameters.

∀e ∈ E , we can get four situations as follows:
(1) When F(h1, e) = 1, F(h2, e) = 1, e contributes the

same value toGET (1) andGET (2). And e contributes nothing
to LOSE(1) and LOSE(2).

(2) When F(h1, e) = 0, F(h2, e) = 0, it can be derived that
e contributes the same value to LOSE(1) and LOSE(2),and e
contributes nothing to GET (1) and GET (2).
(3) When F(h1, e) = 1, F(h2, e) = 0, i.e, e ∈ D(1, 2), e

contributes an advantage value |C| for C1 over C2.
(4) When F(h1, e) = 0, F(h2, e) = 1, i.e, e ∈ D(2, 1), e

contributes an advantage value |C| for C2 over C1.
So we have SCORE(C1)− SCORE(C2) = |C|(|D(1, 2)| −
|D(2, 1)|).
It can be proved in the same way for an arbitrary pair of

objects from different classes. The proof is over.
Thematrix in expression (5.5) and thematrix in Fig. 15 give

test examples for Theorem 5.1 with the soft set
in TABLE 6.

|D(i, j)| − |D(j, i)| C1 C2 C3 C4 C5

C1 0 − 1 2 2 0

C2 1 0 − 3 3 1

C3 − 2 3 0 0 − 2

C4 − 2 − 3 0 0 − 2

C5 0 − 1 2 2 0


. (5.5)

Denote σ (Ci) = σ (h), h ∈ Ci. According to [43], [50], it’s
easy to see that

σ (Ci) > σ (Cj) if and only if |D(i, j)| > |D(j, i)|,

σ (Ci) = σ (Cj) if and only if |D(i, j)| = |D(j, i)|.

So by Theorem 5.1 we have the following corollary.
Corollary 5.1: Suppose S = (F,E) is a soft set over U ,

where U = h1, h2, ..., hm. C = {Ci|i = 1, 2, · · · ,K ,K <=

m} is the set defined in Definition 5.1. Denote σ (Ci) =
σ (h), h ∈ Ci. Then we have

σ (Ci) > σ (Cj)⇔ SCORE(Ci) > SCORE(Cj),

and

σ (Ci) = σ (Cj)⇔ SCORE(Ci) = SCORE(Cj)
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TABLE 12. Comparative experimental results for time cost of Algorithm 1, Algorithm 2 and Algorithm 3( to be continued).

B. ALGORITHMS FOR DECISION MAKING WITH THE
MATRIX OF DOMINANT SUPPORT PARAMETERS
OF SOFT SET S
According to Theorem 5.1 and Corollary 5.1, we give
Algorithm 2 to compute the decision making of soft sets by
its matrix of support parameters, see TABLE 10.

It is easy to show that SCORE(1) = 9 − 6 = 3,
SCORE(2) = 11 − 3 = 8, SCORE(3) = 5 − 12 =
−7, SCORE(4) = 4 − 11 = −7, SCORE(5) = 9 −
6 = 3. So we have h2 > h1 = h6 > h3 =
h4 = h5. That’s the same with the order given by choice
values σ (i).

227624 VOLUME 8, 2020



B. Han et al.: Characterizations for Matrices of Dominant Support Parameters in Soft Sets

TABLE 13. Comparative experimental results for Algorithm 1, Algorithm 2 and Algorithm 3( the continuation of TABLE 12).

Compared with the Algorithm in [50] (given in TABLE 9),
Algorithm 2 makes use of the matrix of dominant support
parameters in a quantitative way. It is an alternative method
for retrieving the order relations of S by DS itself. It is simple
and much more direct.

By the Filling Algorithm 4, once we have only the
first row and the first column entries in matrix of domi-
nant support parameters, we can firstly compute DS itself,
and then use Algorithm 2 to get the decision making
order.
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FIGURE 18. The contents that have been discussed in this article.

C. COMPARATIVE EXPERIMENTAL RESULTS FOR
ALGORITHM 1, ALGORITHM 2 AND ALGORITHM 3
In this subsection we will show the results of compara-
tive experiments among Algorithm 1, Algorithm 2 and
Algorithm 3 .

1) EQUIPMENT AND DATA GENERATION METHOD
(i) Our experiments are performed on PC with AMDRyzen 5
3500U 2.10GHz CPU, 8G RAM and Win10 professional
operating system.

(ii) Our data are generated in the following way: Firstly,
we use the rand function of MATLAB to generate a uni-
formly distributed matrix of random numbers in the [0,1]
interval. Then the number less than or equal to N in the
matrix is changed to 1 and the rest of the numbers are
changed to 0. So we can get a matrix with a ratio of 1
to N .

2) MAIN CONTROLLING PARAMETERS IN OUR
EXPERIMENTS
(i) The number of rows, i.e., the number of objects |U |.
(ii) The number of columns, i.e., the number of

parameters |A|.
(iii) The ratio of value 1, i.e., the proportion of 1 values

over |U | × |A|

3) COMPARATIVE EXPERIMENTAL RESULTS FOR
ALGORITHM 1, ALGORITHM 2 AND ALGORITHM 3
For each combination of parameters shown above, with
respect to the same data set we run each algorithm
for 100 times. The average time cost for Algorithm 1,
Algorithm 2 and Algorithm 3 are listed in TABLE 12 and
TABLE 13. Particularly we give two pictures FIGURE 16
and FIGURE 17. For FIGURE 16 we have the following
explanations:
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(i) Let |A| = 30, |U | = 10, 15, · · · , 30. The ratio of 1
is equal to 0.5. The results of the time cost are shown at the
top-level of FIGURE 16 (In FIGURE 16, the subfigure on the
right side of each level is the partial display of the correspond-
ing left one). With respect to |U |, the time cost decreases
when |U | increase, the time cost of Algorithm 3 is much
longer when compared with Algorithm 1 and Algorithm 2.
The time cost of Algorithm 1 is longer when compared with
Algorithm 2.

(ii) Let |U | = 15, |A| = 10, 20, · · · , 90. The ratio of 1 is
equal to 0.5. The results of the time cost are shown at the
middle-level of FIGURE 16. With respect to |A|, the time
cost changes a little when |A| increase. The time cost of
Algorithm 1 is longer when compared with Algorithm 2.

(iii) Let |U | = 15, |A| = 30. The ratio of 1 is equal to
0.1, 0.3 and 0.5. The results of the time cost are shown at the
bottom-level of FIGURE 16. With respect to the ratio of 1,
the time cost changes a little when |A| increase. The time cost
of Algorithm 1 is longer when compared with Algorithm 2.

As to FIGURE 17, we have a similar result with
FIGURE 16 shows.

VI. CONCLUSION AND FUTURE WORK
Fig. 18 gives the contents that have been discussed in this
article.

A. THE MAIN RESULTS OF THIS PAPER
(1) The fundamental structural and quantitative properties
are investigated, and these properties can help us in having
a better understanding of the matrix of dominant support
parameters.

(2) By using only part of the matrix of dominant support
parameters, we can recompute the initial soft sets and fill the
rest of the matrix itself. These algorithms are important from
the aspect of knowledge representation and data mining.

(3) The proposed characterization theorems are helpful.
With them we can judge which kind of set-valued matrices
can be the matrices of dominant support parameters for cer-
tain soft sets or information systems.

B. LIMITATIONS OF OUR THEORY
(1) The matrix of dominant support parameters does not
contain these parameters whose corresponding approxima-
tions are equal to ∅ or U . This problem should be solved.
A potential way is to add the related parameters into the main
diagonal of the matrix.

(2) The Algorithm 1 computes D1 and D2. If D2 = ∅,
then it is implied than all the choice values of subjects are odd
numbers or all the choice values of objects are even numbers.
That is, if ∃ui, uj, i 6= j, σ (ui) is odd and σ (uj) is even, then
D2 6= ∅. Our algorithms don’t involve such information.
So they need to be further improved.

(3) From the experimental results, we can we see that
Algorithm 3 costs much longer than Algorithm 2 and
Algorithm 1 do. So we need to consider the following
questions: (i) Do we have to retrieve all the entries of the

matrix? (ii) Which ones should we retrieve and in which
order?

C. FUTURE WORK
In the near future, we will make more research on the matrix
of dominant support parameters. For example, as a future
possible research direction we will upgrade the matrices of
dominant support parameters in hypersoft sets [28] or soft
sets combined with fuzzy set theory [16]–[25]. And we also
will investigate the areas in which our theory and methods
can be useful.
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