
Received November 20, 2020, accepted December 8, 2020, date of publication December 18, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045856

Data Link for the Creation of Digital Twins
RIKU ALA-LAURINAHO , (Graduate Student Member, IEEE),
JUUSO AUTIOSALO , (Graduate Student Member, IEEE),
ANNA NIKANDER , JOEL MATTILA , AND KARI TAMMI
Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland

Corresponding author: Riku Ala-Laurinaho (riku.ala-laurinaho@aalto.fi)

This work was supported by the Business Finland under Grant 8205/31/2017 (DigiTwin) and Grant 3508/31/2019 (MACHINAIDE).

ABSTRACT A digital twin offers various features such as visualizations, simulations with real data, and
performance monitoring. Several of these features or parts of them can be implemented employing existing
systems storing product data. However, to create a digital twin, these data being scattered to different
systems is needed to be merged. For merging data and straightforward linking of these systems, this
paper proposes a Data Link. The Data Link offers a single interface to access the systems via an API
(Application Programming Interface) gateway and makes all data of the physical product available and
accessible. In addition, it stores metadata about the systems and offers a user interface that allows searching
the system that contains the required piece of information or implements the needed feature. The Data Link
was implemented for an industrial overhead crane bringing operational data, control, and CAD (computer-
aided design) models behind a single interface. The example implementation indicated that the Data Link
based architecture for digital twins allows easy implementation of digital twins by using existing systems.

INDEX TERMS Data link, digital twin, industrial communication, industrial internet of things,
cyber-physical systems.

I. INTRODUCTION
Digital twin is a virtual counterpart of a physical entity
described to reflect its state in real-time [1]. Digital twin (DT)
enables predictive maintenance and optimization of opera-
tion [2] and allows designers to improve products based on
operational and service data [3]. It brings all data from a phys-
ical entity available and accessible via a single interface [4].
Autiosalo et al. [5] identified the features of digital twin and
propose a Feature-based Digital Twin Framework (FDTF)
to create digital twin instances. In the proposed framework,
the Data Link connects the features of a digital twin and
makes the physical product information, which is currently
scattered around different systems [4], available. This paper
builds on the FDTF presented byAutiosalo et al. [5]. It further
develops the Data Link concept and presents an implementa-
tion of the Data Link.

Each feature of a digital twin can be implemented by
a separate system or service analogously to microser-
vices architecture [5], [6]. Building a digital twin using
microservices architecture allows better scalability and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

maintainability, and, robustness is improved since the failure
of a single service does not likely cause the failure of the
whole system [7] – in this case, the digital twin. Implementa-
tion of digital twin based on microservices is demonstrated,
for example, in [8] and [9]. The major benefit of FDTF and
building DT using (micro-)services is that existing systems
can be used to implement features of a digital twin [5]. This
makes the implementation of a digital twin faster and more
cost-efficient.

The concept of Data Link was first presented by
Autiosalo et al. at the conceptual level in [5]. However,
the description of the Data Link did not include implemen-
tation details. The current paper develops the concept fur-
ther by presenting a way to implement the Data Link in
practice. In addition, the paper includes proof of concept
implementation of the Data Link for an overhead crane. The
idea of the Data Link is to provide a single access point
to all data available on the physical entity (Fig. 1). This
paper proposes an API (Application Programming Interface)
Gateway for linking the systems (or features) that form a
digital twin. The API gateway simplifies the communication
between these services by forwarding messages and taking
care of authentication. Data Link provides information about

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 228675

https://orcid.org/0000-0002-3246-8199
https://orcid.org/0000-0003-3714-748X
https://orcid.org/0000-0002-1779-7322
https://orcid.org/0000-0001-8319-1903
https://orcid.org/0000-0001-9376-2386
https://orcid.org/0000-0003-4704-5364


R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

FIGURE 1. Data Link connects systems that implement the features of the digital twin behind a single interface.

the digital twin and its features via a user interface. The
information is stored in a YAML document, the format of
which authors aim to standardize to allow the implemen-
tation of Digital Twin Web (DTW). DTW is analogous to
the document-based World Wide Web (WWW) but made
for digital twins. This paper contributes to DTW develop-
ment by building an initial version of an overhead crane
‘‘DT document’’.

In this paper, an overhead crane called Ilmatar [10] is
used as an example of an industrial machine for which a
digital twin prototype is created following FDTF. Currently,
the information of the crane is scattered across several sys-
tems that can be used to implement DT features. For example,
Siemens MindSphere and Teamcenter store historical data
and product design data such as CAD models, respectively,
OPC UA server allows access to real-time data and control,
and TRUCONNECT contains crane condition and opera-
tional data.

The main contributions of the paper are as follows:
1) Develop further Data Link concept presented in

the Feature-based Digital Twin Framework by
Autiosalo et al. [5]

2) Build a digital twin prototype for an overhead crane
following FDTF and using Data Link

3) Introduce a DT document standard draft to describe the
features of a digital twin

The first contribution is discussed in sections IV, VI
and VII-A, the second contribution in V and VII-B, and the
third in III and VII-C.

II. RELATED WORK
The origins of the digital twin concept are on the PLM field,
and it was first introduced by Grieves in 2002 [11]. Another
early adopter of the digital twin concept was the aerospace
field, and NASA planned to use the digital twin to simulate
and predict the vehicle behavior [12]. In both early visions,
the digital twin mirrors the physical counterpart accurately,
ultra-realistically [12] or ‘‘from the micro atomic level to
the macro geometrical level’’ [11]. After that, the concept
has significantly developed, and a high-fidelity model of
the physical product is not anymore a mandatory part of a
digital twin. For example, a definition by Industrial Internet
Consortium: ‘‘A digital twin is a formal digital representation
of some asset, process or system that captures attributes and
behaviors of that entity suitable for communication, storage,
interpretation or processing within a certain context’’ [13],
allows almost any digital representation linked to an entity
to be called a digital twin. This paper continues the work pre-
sented in [5] and share its definition of a digital twin: ‘‘Digital
twin is a virtual entity that is linked to a real-world entity.
Digital twin consists of various features that are selected and
customized to serve the needs of diverse use cases.’’ Several
review papers have been recently published about digital
twins [14]–[17] that provide more a comprehensive view on
the origins and characteristics of the digital twin.

The Feature-based digital twin framework was developed
by Autiosalo et al. [5] as a way to structure digital twins
and to put a digital twin from an abstract definition into
practice. The idea of the framework is to construct digital

228676 VOLUME 8, 2020



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

twins from separate software blocks, each providing specific
functionality for the digital twin. The software blocks are
connected with a Data Link that offers a single interface for
accessing the digital twin components. This approach allows
creating more complex digital twins because the twin is not
restricted to the capabilities of any single software platform.
As a limitation, the study did not provide implementation
details for the Data Link.

Employing microservices in the building of a digital twin
has been proposed by several papers [6], [8], [9], [18].
Alasaam et al. [8] used Apache Kafka to enable stream data
processing with microservices. Kafka also offered an API to,
for example, read and write stream data. This approach is
suitable for handling a continuous stream of measurement
data from sensors attached to a physical product. However,
it is not optimal for connecting various features of a digital
twin, because for each feature an adaptor for Kafka has to
implemented. Borodulin et al. [6] introduced the Digital Twin
Cloud Platform concept, in which a digital twin is described
as a set of services which implement the features of a digital
twin such as data analysis and simulation. These features
could be accessed via API providing them as microservices,
and the idea of the concept is similar to the FDTF. However,
the communication model is not described in detail, and
sufficient information for the implementation of the concept
is not provided. Preuveneers et al. [9] introduced a digital
twin architecture based on microservices, which allows easy
addition of new features to the digital twin. To prevent local
failures from propagating, theDigital Twins can be toggled by
other DTs via RESTful interface. The paper does not describe
in detail how the microservices communicate and if it is
possible to use already existing systems for creating a digital
twin. Mena et al. [18] presented the Digital Dice concept
that relies on microservices and is based on a digital twin.
Microservices are responsible for implementing the features
of the Digital Dice, and a Digital Dice can be generated from
theWeb of Things (WoT) Thing Description (TD) document.
The paper does not consider the applicability of the Digital
Dice architecture for more complex digital twins with more
advanced features. In addition, the implementation of the
communication with microservices is not described in detail.
Thramboulidis et al. [19] proposed a framework for the use of
microservices architecture in cyber-physical manufacturing
systems. The microservices communicate using the LwM2M
(Lightweight Machine to Machine) protocol that runs on top
of CoAP (Constrained Application Protocol) and their prop-
erties are described in CoRE resource directory. Compared to
FDTF, each physical unit of the manufacturing plant has only
one corresponding microservice. We argue that with complex
physical products it is necessary to use several microservices
to build a digital twin to avoid creating of one ‘‘monolithic’’
microservice.

Haag and Anderl presented a proof of concept digi-
tal twin for a bending beam [20]. The communication
between the features of the digital twin followed the
publish-subscribe model and was implemented with the

MQTT protocol. Publish-subscribe communication is suit-
able for use cases in which information from several data
sources (publishers) is needed to be distributed to several
clients (subscribers). In our case, data is often requested by
one service from another service, and, therefore, the publish-
subscribe communication model is not beneficial.

In FDTF, the services which implement the features of dig-
ital twin should have well-defined APIs. On the other hand,
the digital twin should also have an API that offers an inter-
face to access these services. Scheibmeir and Malaiya [21]
presented guidelines for developing DT software, includ-
ing APIs, such as Test-Driven Development. In addition,
they proposed an API mediation layer for enabling secu-
rity, management, and metering. The functionalities of the
API mediation layer can be implemented with the Data
Link in FDTF. To enable interoperability of digital twins,
Platenius-Mohr et al. [22] proposed file- and API-based
information exchange in which source information is trans-
lated to target information using intermediate mapping
model. In the proposed approach, the data of a digital twin
can be accessed using REST API. This approach could
also be used on top of FDTF to promote interoperability.
Ciavotta et al. [23] presented a microservice-based middle-
ware that offers a Web User Interface and API gateway for
managing digital twins in smart factories. In this model,
digital twins are not composed of microservices, but the
platform they are part of uses microservices to implement its
functionalities.

For describing a digital twin and its features, a few
approaches have been proposed.Mena et al. [18] usedWeb of
Things Thing Description document to depict the IoT device
features and endpoints to access these features. In addition,
a method to create a Digital Dice (or a digital twin) from
the TD document was introduced. Web of Things archi-
tecture developed by World Wide Web Consortium (W3C)
aims to enable interoperability of IoT devices [24]. Thing
Description document includes device metadata, interfaces,
and relations to other Things expressed with web links [25].
This information is described in a human-readable and
machine-understandable way using JSON and JSON-LD.
The vocabulary used to define terms in the TD document can
be extended with TD Content Extensions [25] which allows
the creation of a digital twin specific vocabulary.

Microsoft has published Digital Twin Definition Language
(DTDL) [26]. They use it for Azure digital twins and provide
it as an open standard that enables communication with other
software providers’ products. We see DTDL as a promising
development direction. However, the identifiers it provides
are not globally unique by default, which, in our opinion,
tends to create siloed digital twin networks. Also, even though
the identifier documentation has a URI compatibility section,
it, unfortunately, leaves the reader unaware of how to form
a URI based on the identifier. Nevertheless, we see DTDL
as the most promising of existing initiatives for creating
a global network of digital twins and will be following it
closely.

VOLUME 8, 2020 228677



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

III. DIGITAL TWIN WEB (DTW)
Digital Twin Web (DTW) is an ongoing development
effort for creating a global network of digital twins in
a similar internet-native and user-friendly manner as the
World Wide Web (WWW) provides information to people.
DTW is planned to consist of any means necessary to achieve
this goal, for example, a language or a schema for defining
the core properties of digital twins and a protocol for twins
to communicate with each other. DTW development was
initiated by the FDTF framework [5], and especially the
descriptions of the ‘‘Data Link’’ and ‘‘Identifier’’ include
basic design principles for DTW. The current paper leverages
the DTW as a long-term end goal, providing motivation for
incremental concrete actions.

We aim the DTW to use and integrate with as many exist-
ing standards as possible, e.g., using the WWW schemas
(http:// and https://) as default and creating a specialized
digital twin schema only if the need for that may be
traced to fundamental basic principles, i.e., it would not
be possible to build a global network of digital twins
without it. We acknowledge that human adoption repre-
sents an important role in these fundamentals. Hence, even
though some design choices may seem disadvantageous
from a technical perspective, they may be justified to
speed up the human adoption rate of DTW. We see poor
usability as a major issue in IoT standards: using them
requires too much learning, leading to a situation where
only a limited amount of people have the time available to
learn them, meaning that the standard will not reach wide
adoption.

In DTW, each digital twin is described with a
‘‘DT document’’ containing the identity, basic information,
and the connected services of the digital twin. The need for
this type of document was also identified when the Data Link
was developed and the connected features were needed to
be described. The authors aim to initiate a standardization
process for this document. However, the result of the stan-
dardization does not necessarily have to be a completely new
standard, but the DT document can be merged as a part of
DTDL or WoT TD. We propose that the DT document is a
YAML file that follows a uniform structure, and we created
an example implementation of this file for the digital twin of
an overhead crane.

The DT document includes mandatory fields such as stan-
dard version, digital twin id, name, and description, and
several optional fields such as the location of the physical
product, manufacturer, and features of the digital twin. The
features are described at a high level containing the name
and URL of the service, keywords, and service descrip-
tion. The DT document standard draft is publicly avail-
able at GitHub [27], and an excerpt from the document is
shown in Fig. 2. DT document does not provide a means
for automatic communication between digital twins, and
manual work for establishing a connection between digital
twins is required. Nevertheless, the API gateway of the Data
Link facilitates the communication between digital twins by

FIGURE 2. Excerpt from the public part of the DT document describing
the metadata of the overhead crane digital twin.

forwarding messages to requested features and providing
authentication.

IV. DATA LINK
The Data Link offers a flexible and scalable way of build-
ing digital twins, as a digital twin may only implement
the necessary features and additional features can be easily
added based on need. At simplest, a digital twin may only
consist of its metadata description, i.e., DT document. The
Data Link has two parts: the user interface that allows a
human-friendly way to examine the information and features
of the digital twin (Fig. 3) and an API gateway which links
the features of a DT behind a single API and facilitates
their communication. API gateway forwards requests to cor-

FIGURE 3. The user interface of the Data Link provides information on
the Digital Twin and its features.

228678 VOLUME 8, 2020



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

FIGURE 4. Communication with A) Star-like communication is more efficient than with B) Grid style communication [5].

rect services and provides authentication. The API gateway
forms a star-like structure to connect the features of a digital
twin (Fig. 4a). This structure streamlines the communication
by lowering the number of connections per client [5] which
can be seen by comparing Fig. 4a and 4b. Thus, a client,
i.e., service, needs to know only the URL and credentials of
the API gateway. Compared to the situation in which each
service needs to store information on how to connect other
services, API simplifies access management. For example,
if the authentication method or credentials are changed for
one service, the corresponding change has to be made only
to API gateway, not to all other clients. The more there are
services, the more beneficial is the centralized management
of authentication. In addition, the API gateway has two main
purposes:

1) It provides a single access point to the features of a
digital twin. This access point can be used by external
services or other digital twins.

2) Services can use other services to implement their func-
tionalities by communicating with one another via the
gateway. For example, a predictivemaintenance feature
can fetch both historical data and simulation models
using the gateway and then use them for calculations.

In this paper, Flask, a Python web framework, was used
to implement the API gateway. There are also several com-
mercial solutions to API gateways such as Amazon API gate-
way [28] and Azure APIManagement [29] available. Writing
our own API gateway enabled full-control of the gateway
logic, which allowed, for example, implementation of custom
authentication methods. The API gateway forwards a request
to a service with the following steps:

1) Client sends a request to API gateway to address
<gateway url>/services/<service name>/<subpath>,
in which service name defines the service and subpath
the resource accessed from the target API.

2) API gateway checks if the authentication token sent
with the request is valid. If it is not valid, a response
with HTTP status code 401 Unauthorized is returned.

In addition, if the user does not have the rights to
forward a message, a response with HTTP status code
403 Forbidden is returned.

3) Based on the service name, information on how to
connect to the service such as URL, authentication
method, and credentials are fetched from the gateway
database. If the service does not exist in the database,
a response with status code 404 Not Found is returned.

4) API replaces the authentication fields and target URL
from the original request and forwards the request to
the requested service API.

5) If the target service responds with status code
401 Unauthorized, the gateway continues to the next
step. Otherwise, the response is forwarded back to the
client, and the message forwarding is completed.

6) API gateway tries to refresh the credentials for the
requested service. If the operation is successful,
the gateway continues to the next step. If it is not,
the initial response from the service API with status
code 403 is forwarded back to the client.

7) The request is forwarded to the service API, and the
response is returned to the client. Themessage forward-
ing is completed.

The user interface provides an overview of a digital twin
and its capabilities, i.e., features of the digital twin (Fig. 3).
This information is stored in a DT document introduced in the
previous section. The UI includes a search function (Fig. 5)
that allows finding the correct feature or piece of information
for a specific task. Currently, the search function relies on
the metadata stored on the DT document. The user interface
is a single page application implemented with React. The
application back-end was built with Node.js and Express
framework, and it uses a MongoDB database.

V. THE IMPLEMENTATION OF THE DATA LINK
FOR AN OVERHEAD CRANE
The Data Link was implemented for an overhead crane
(Fig. 6), which acts as an example of a large industrial

VOLUME 8, 2020 228679



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

FIGURE 5. Search functionality allows finding services with desired data.

FIGURE 6. Ilmatar the overhead crane for which the digital twin was
created.

machine. The crane has several additional features compared
to ordinary cranes in the field, such as MindSphere con-
nectivity, and is not a standard solution from the manufac-
turer. Currently, several separate systems store the crane data.
These systems can be used to implement a subset of the
features of the digital twin of the crane. However, not all of
these systems have Web APIs, and therefore, they can not
be connected to the API gateway directly. In this case, Data
Link provides only the metadata about the system to allow at
least finding the system with relevant information. The Data
Link is visualized in Fig. 7, and the list below describes each
system added to the Data Link:

1) Siemens MindSphere stores the historical data about
the crane, such as position and distance driven. It offers

FIGURE 7. Data Link connects the separate systems forming a digital twin
of an overhead crane.

a web user interface that provides visualizations of the
data and an extensive REST API connected to the API
gateway. MindSphere allows developing applications
on top of it, and we have developed a bearing lifetime
estimation application for the crane rope sheaves [30].

2) TRUCONNECT is a service for remote monitoring
provided by the manufacturer of the crane. It offers a
web user interface that displays the condition of the
crane, such as the wear of the brakes. In addition,
operation statistics, such as hours driven, and possible

228680 VOLUME 8, 2020



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

safety alerts, such as emergency stops and overloads,
are available in this service. The service helps the
user in the interpretation of the statistics and recom-
mends actions to improve the operation of the crane,
such as training of operators to avoid emergency stops.
TRUCONNECT does not have an API, and, thus, only
details on how to access the web user interface is stored
on the Data Link.

3) OPC UA server allows controlling and monitoring of
the crane. It is directly connected to the PLC system
of the crane. Therefore, it provides access to the crane
internal values, which can then be read and modified
in real-time. For example, the speed of the trolley can
be set via the OPC UA server. The crane also has a
few internal sensors, such as laser distance sensors for
measuring its position, the readings of which can be
read from the OPC UA server. The OPC UA server is
connected to the API gateway via GraphQL API.

4) Teamcenter is a PLM software that is used to store CAD
files of the crane. It offers a graphical user interface but
does not have an HTTP/RESTAPI. Nevertheless, some
of the CAD files are hosted on a separate server to be
accessible via API gateway.

5) Open SensorManager allows managing retrofitted sen-
sors [31]. Currently, the position of the trolley and
bridge are measured with two distance sensors, and
an accelerometer is attached to the hook of the crane.
These sensors can be managed via OSEMA. OSEMA
also has a REST API that is connected to the API
gateway.

6) Regatta IoT Platform platform stores data from
retrofitted sensors and allows data analysis. With
Regatta, an application that estimates the usage rough-
ness of the crane has been developed [31]. The appli-
cation uses measurement data from the accelerometer
attached to the crane hook to calculate the roughness
index. Regatta also provides a wide range of data visu-
alizations. It offers an extensive REST API connected
to the API gateway.

VI. EXPERIMENTS ON THE API GATEWAY
The latency added by the API gateway was measured with
a test setup consisting of a client, API gateway, a simple
HTTP API server, a laptop, and a router (Fig. 8). The client,
API gateway, and the test APIwere run onRaspberry Pi 4, and
a switch mirrored traffic to port 8 from which the laptop cap-
tured it with Wireshark software. The client made GET and
POST requests both directly and via the gateway to the test
HTTP API, and the request execution times were recorded.
There were two sizes of responses used with GET requests:
the first contained 2 value-pairs as JSON and the second on
100 000 value-pairs. These payload sizes were also used with
POST requests, whereas the response for a POST request
always contained two value-pairs as JSON. Each request was
executed 50 times.

FIGURE 8. The measurement setup consists of client, API gateway, test
API, switch, and laptop capturing network traffic.

The results indicate that gateway significantly increases
the latency (Fig. 9). With a small amount of data sent or
received, the latency increases relatively more than with a
larger amount of data. The added latency with a small amount
of data is approximately 34 ms, whereas, with a large amount
of data, it is approximately 120 ms. The statistical properties
of the measurements are presented in Table 1.

FIGURE 9. Average request execution times directly and via the
API gateway to the test API.

TABLE 1. Statistical properties of request execution times. All values are
in milliseconds. GW = API gateway, SD = standard deviation.

VII. DISCUSSION
A. DATA LINK
Currently, there is no standardized architecture for building
digital twins that has led to a wide variety of implementa-
tions. This variety makes the interoperability of digital twins
challenging. To promote interoperability and clearer structur-
ing of Digital twins, this paper developed further Data Link

VOLUME 8, 2020 228681



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

introduced byAutiosalo et al. [5]. The Data Link allows using
the existing services to create a digital twin and implement
its features. It provides an API gateway for accessing the ser-
vices, and the services can use the gateway to communicate
with one another. In addition, digital twins might use Data
Link to communicate with other digital twins.

Building digital twin using independent software blocks
or systems allows flexibility since features can be added and
removed based on need. In addition, this architecture offers
scalability as each block can easily be replaced. For example,
if more accurate simulations are needed, the simulation ser-
vice can be switched to one with more computational power.
In this paper, we used an overhead crane as an example, but
the architecture is also suitable for both simpler and more
complex objects. For example, at simplest, a digital twin
may only contain the metadata description, DT document,
of itself. On the other hand, a digital twin may consist of
several other digital twins, each having various features. For
example, a factory-level digital twin may have – in addition
to its own features such as a dashboard for the whole fac-
tory – references to other digital twins, such as individual
production equipment. These references are stored in the DT
document of the factory digital twin.

Several papers have already proposed composing a digital
twin of several blocks, such as microservices. The Data Link
connects these blocks using an ordinary API gateway and
enables the communication between the blocks by forwarding
requests from one service to another. It lowers the number
of connections compared to architectures in which systems
communicate directly with each other presented by, for exam-
ple, Preuveneers et al. [9]. Lowering the number of connec-
tions simplifies the linking of services because each service
does not need to contain information on how to connect to all
other services. In addition, the centralized Data Link allows
monitoring of communication since all requests go through
the gateway.

Numerous commercial and open-source API gateways are
available. However, in this paper, the API gateway was
implemented by the authors because APIs of the systems
implementing features of the overhead crane digital twin used
custom methods for updating access tokens. API gateway
eases access management since it takes care of the authen-
tication. Thus, services need to authenticate themselves only
to the gateway, not to each other, and credentials to services
are easier to manage and keep up to date.

The major obstacle for using existing services and systems
to implement the features of a digital twin is their lack of inter-
faces, specifically HTTPAPIs. To overcome this, HTTPAPIs
have to be written to these systems, which might difficult
or even impossible due to the closed nature of the systems.
If the creation of APIs is not possible, this paper proposes
that Data Link contains information on the data these services
contain and how to access them. Later, these servicesmight be
replaced with new services following microservices architec-
ture, i.e., one service implements one feature or functionality.
However, following pure microservices architecture is not

necessary for using Data Link, as pointed out in [5], and a
single system might implement several features of DT.

To evaluate the suitability of the API gateway for linking
the features of a digital twin, the request execution times
were measured with the test setup. The results are only
extensible to a limited extent since various implementations
of API gateways are available. In addition, several other
factors affect the overall latency, such as services itself,
their location, and network quality. Nevertheless, measure-
ments clearly show that the API gateway adds a considerable
amount of latency to request execution times. In the case of
small requests, the execution times were increased more than
fivefold compared to direct requests. Thus, control and moni-
toring applications that require low latency should not rely on
communication via the Data Link but, instead, communicate
directly with the physical product, for example, using its OPC
UA server. However, direct communication between services
and between services and a physical product would com-
plicate the management of connections, contrary to one of
the main motivations for creating Data Link, i.e., simplifying
client-side communication. In addition, expect for real-time
control and monitoring, almost any other feature can use
the API gateway, and new features can be implemented by
combining existing features. For example, simulations can
be run on models stored on another service, and the results
can then be analyzed using yet another service. With features
transferring a large amount of data such as a batch of histori-
cal data, the significance of request execution time decreases
since the whole operation, which often includes heavy data
processing, is also more time-consuming. Furthermore, with
a large amount of data, the relative difference in execution
times between direct requests and requests via API gateway
diminishes.

B. DIGITAL TWIN PROTOTYPE FOR AN OVERHEAD CRANE
As the crane for which theData Linkwas implemented is used
for research and student projects [10], there are often new
people unfamiliar with the crane working with it. Therefore,
the Data Link that describes the features of the digital twin
of the crane is especially useful. For example, if the crane
user wants to find the CAD models of the crane, the search
functionality can be used (Fig. 5), and information on how to
access these files is provided.

The implementation of the Data Link for the crane was
straightforward, and the problems were mainly caused by
services without HTTP API, i.e., TRUCONNECT and Team-
center. For TRUCONNECT, we described only how to access
it and the data it contains, and for Teamcenter, we hosted
the CAD files, which are more static than TRUCONNECT
operational data, on the separate server. This underlines the
importance of interfaces for constructing uniform digital twin
from separate systems. However, all information related to
the crane is now accessible from a single endpoint. We have
not yet deployed the API gateway to the public Internet
because the API gateway needs to be connected to the crane
(Wi-Fi) network to be able to communicate with the crane

228682 VOLUME 8, 2020



R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

OPC UA server. In addition, before exposing the gateway
to the Internet, the security of the gateway needs to be
assured because an attacker capable of physically controlling
the crane would cause serious consequences. The quality of
the crane network is poor, causing high latency, and thus,
the latency added by the API gateway was not considered a
major drawback with the crane digital twin.

C. DIGITAL TWIN DOCUMENT
A need to formally describe the digital twin and its features
was identified during the development of Data Link. For
that, we proposed a DT document, which is a high-level
human-readable description of the DT. The document does
not yet allow services to communicate with one another auto-
matically, but this will be considered in future development.
In order to achieve automatic communication, the interfaces
of the services are needed to be documented in more detail
and machine-readable format, for example, using a similar
approach as WoT TD, in which forms allow communication
with the thing interface. However, documenting all interfaces
in the DT document would require excessive manual work.
Therefore, the DT document currently contains only a link
to the original documentation of the service. When auto-
matic communication is achieved, the DT document could
allow direct communication between services for low-latency
applications. In addition, other digital twins could automati-
cally discover and access digital twin features.

D. FUTURE WORK
Future research includes enabling communication between
several digital twins using Data Link and forming an ecosys-
tem containing multiple digital twins. In addition, more intel-
ligent methods for indexing the data of a digital twin could
be investigated to allow more advanced search functionality.
For wider adoption of the DT document and creation of
the Digital Twin Web, an iterative standardization process
needs to be initiated. To promote standardization, we have
published our proposal for DT document in GitHub [27]. This
proposal could be added as a part of Microsoft DTDL orWoT
TD standards in the future.

VIII. CONCLUSION
This paper implemented a Data Link following Feature-based
Digital Twin Framework architecture presented by Autiosalo
et al. [5]. The Data Link allows using already existing sys-
tems to form a digital twin of an entity. It consists of two
parts: the user interface that allows exploring the features
of a digital twin and the API gateway that offers a single
interface for accessing all information about the physical
entity. In addition, the API gateway facilitates the communi-
cation of features by forwardingmessages between them. The
HTTP API interface makes a digital twin accessible on the
Internet and allows communication with the DT enabling the
interoperability of digital twins. The measurements show that
latency added by the API gateway is suitable for connecting
the services implementing the features of the digital twin.

However, time-critical applications should not communicate
via the gateway to minimize latency.

We implemented a prototype digital twin for an overhead
crane demonstrating the suitability of the Data Link for cre-
ating a digital twin of a large industrial machine. We also
identified a need to describe the features of a digital twin
and developed a proposal for the DT description document
available at [27]. Future research includes standardization of
the DT document and creating larger ecosystems consisting
of multiple digital twins implemented with the Data Link.

ACKNOWLEDGMENT
Riku Ala-Laurinaho would like to thank Tekniikan
edistämissäätiö.

REFERENCES
[1] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, ‘‘Digital

twin-driven product design, manufacturing and service with big data,’’
Int. J. Adv. Manuf. Technol., vol. 94, nos. 9–12, pp. 3563–3576, 2018,
doi: 10.1007/s00170-017-0233-1.

[2] E. Negri, L. Fumagalli, and M. Macchi, ‘‘A review of the roles of dig-
ital twin in CPS-based production systems,’’ Procedia Manuf., vol. 11,
pp. 939–948, 2017, doi: 10.1016/j.promfg.2017.07.198.

[3] S. Boschert and R. Rosen, ‘‘Digital twin—The simulation aspect,’’ in
Mechatronic Futures, P. Hehenberger and D. Bradley, Eds. Cham, Switzer-
land: Springer, 2016, pp. 59–74, doi: 10.1007/978-3-319-32156-1_5.

[4] H. Laaki, Y. Miche, and K. Tammi, ‘‘Prototyping a Digital Twin
for Real Time Remote Control Over Mobile Networks: Application
of Remote Surgery,’’ IEEE Access, vol. 7, p. 20 325–20 336, 2019,
doi: 10.1109/ACCESS.2019.2897018.

[5] J. Autiosalo, J. Vepsalainen, R. Viitala, and K. Tammi, ‘‘A feature-based
framework for structuring industrial digital twins,’’ IEEE Access, vol. 8,
pp. 1193–1208, 2020, doi: 10.1109/ACCESS.2019.2950507.

[6] K. Borodulin, G. Radchenko, A. Shestakov, L. Sokolinsky, A. Tchernykh,
and R. Prodan, ‘‘Towards digital twins cloud platform: Microservices and
computational workflows to rule a smart factory,’’ in Proc. the10th Int.
Conf. Utility Cloud Comput., Austin Texas USA, Dec. 2017, pp. 209–210,
doi: 10.1145/3147213.3149234.

[7] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Processes, motivations, and
issues for migrating to microservices architectures: An empirical inves-
tigation,’’ IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, Sep. 2017,
doi: 10.1109/MCC.2017.4250931.

[8] A. B. A. Alaasam, G. Radchenko, and A. Tchernykh, ‘‘Stateful stream pro-
cessing for digital twins: microservice-based kafka stream DSL,’’ in Proc.
Int. Multi-Conf. Eng., Comput. Inf. Sci. (SIBIRCON), Novosibirsk, Russia,
Oct. 2019, pp. 0804–0809, doi: 10.1109/SIBIRCON48586.2019.8958367.

[9] D. Preuveneers,W. Joosen, and E. Ilie-Zudor, ‘‘Robust Digital twin compo-
sitions for industry 4.0 smart manufacturing systems,’’ in Proc. IEEE 22nd
Int. Enterprise Distrib. Object Comput. Workshop (EDOCW), Stockholm,
Sweden, Oct. 2018, pp. 69–78, doi: 10.1109/EDOCW.2018.00021.

[10] J. Autiosalo, ‘‘Platform for industrial Internet and digital twin focused
education, research, and innovation: Ilmatar the overhead crane,’’ in Proc.
IEEE 4th World Forum Internet Things (WF-IoT), Singapore, Feb. 2018,
pp. 241–244, doi: 10.1109/WF-IoT.2018.8355217.

[11] M. Grieves and J. Vickers, ‘‘Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems,’’ in Transdisci-
plinary Perspectives on Complex Systems: New Findings and Approaches,
F.-J. Kahlen, S. Flumerfelt, and A. Alves, Eds. Cham, Switzerland:
Springer, 2017, pp. 85–113.

[12] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne,
and L. Wang, ‘‘DRAFT Modeling, Simulation, information technol-
ogy & processing roadmap,’’ Technol. Area, NASA, Washington, DC,
USA, Tech. Rep., Nov. 2010. [Online]. Available: https://www.nasa.
gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf

[13] S. Malakuti, P. van Schalkwyk, B. C. R. Boss; Sastry, V. Runkana,
S.-W. Lin, S. Rix, G. Green, K. Baechle, and S. V. Nath, ‘‘Digital twins
for industrial applications,’’ Ind. Internet Consortium, White Paper, Feb.
2020, pp. 1–19. [Online]. Available: https://www.iiconsortium.org/stay-
informed/digital-twins-for-industrial-applications.htm

VOLUME 8, 2020 228683

http://dx.doi.org/10.1007/s00170-017-0233-1
http://dx.doi.org/10.1016/j.promfg.2017.07.198
http://dx.doi.org/10.1007/978-3-319-32156-1_5
http://dx.doi.org/10.1109/ACCESS.2019.2897018
http://dx.doi.org/10.1109/ACCESS.2019.2950507
http://dx.doi.org/10.1145/3147213.3149234
http://dx.doi.org/10.1109/MCC.2017.4250931
http://dx.doi.org/10.1109/SIBIRCON48586.2019.8958367
http://dx.doi.org/10.1109/EDOCW.2018.00021
http://dx.doi.org/10.1109/WF-IoT.2018.8355217


R. Ala-Laurinaho et al.: Data Link for the Creation of Digital Twins

[14] B. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on
digital twin: Definitions, characteristics, applications, and design
implications,’’ IEEE Access, vol. 7, pp. 167653–167671, 2019,
doi: 10.1109/ACCESS.2019.2953499.

[15] M. Liu, S. Fang, H. Dong, and C. Xu, ‘‘Review of digital twin about
concepts, technologies, and industrial applications,’’ J. Manuf. Syst., to be
published, doi: 10.1016/j.jmsy.2020.06.017.

[16] A. Rasheed, O. San, and T. Kvamsdal, ‘‘Digital twin: Values, chal-
lenges and enablers from a modeling perspective,’’ IEEE Access, vol. 8,
pp. 21980–22012, 2020, doi: 10.1109/ACCESS.2020.2970143.

[17] K. Y. H. Lim, P. Zheng, and C.-H. Chen, ‘‘A state-of-the-art survey
of digital twin: Techniques, engineering product lifecycle management
and business innovation perspectives,’’ J. Intell. Manuf., vol. 31, no. 6,
pp. 1313–1337, Aug. 2020, doi: 10.1007/s10845-019-01512-w.

[18] M. Mena, J. Criado, L. Iribarne, and A. Corral, ‘‘Digital dices: Towards
the integration of cyber-physical systems merging the Web of things and
microservices,’’ in Proc. 9th Int. Conf. Model Data Eng. (Lecture Notes
in Computer Science), vol. 11815, K.-D. Schewe and N. K. Singh, Eds.
Cham, Switzerland: Springer, 2019, pp. 195–205, doi: 10.1007/978-3-030-
32065-2_14.

[19] K. Thramboulidis, D. C. Vachtsevanou, and A. Solanos, ‘‘Cyber-physical
microservices: An IoT-based framework for manufacturing systems,’’ in
Proc. IEEE Ind. Cyber-Physical Syst. (ICPS), May 2018, pp. 232–239,
doi: 10.1109/ICPHYS.2018.8387665.

[20] S. Haag and R. Anderl, ‘‘Digital twin–Proof of concept,’’ Manuf. Lett.,
vol. 15, pp. 64–66, Jan. 2018, doi: 10.1016/j.mfglet.2018.02.006.

[21] J. Scheibmeir and Y. Malaiya, ‘‘An API development model for digital
twins,’’ in Proc. IEEE 19th Int. Conf. Softw. Qual., Rel. Secur. Companion
(QRS-C), Sofia, Bulgaria, Jul. 2019, pp. 518–519, doi: 10.1109/QRS-
C.2019.00103.

[22] M. Platenius-Mohr, S. Malakuti, S. Grüner, J. Schmitt, and T. Gold-
schmidt, ‘‘File- and API-based interoperability of digital twins by
model transformation: An IIoT case study using asset administration
shell,’’ Future Gener. Comput. Syst., vol. 113, pp. 94–105, Dec. 2020,
doi: 10.1016/j.future.2020.07.004.

[23] M. Ciavotta, M. Alge, S. Menato, D. Rovere, and P. Pedrazzoli, ‘‘A
microservice-based middleware for the digital factory,’’ Procedia Manuf.,
vol. 11, pp. 931–938, 2017, doi: 10.1016/j.promfg.2017.07.197.

[24] World Wide Web Consortium (W3C) (2020). Web of Things
(WoT) Architecture. Accessed: Oct. 30, 2020. [Online]. Available:
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/

[25] World Wide Web Consortium (W3C). (2020). Web of Things (WoT)
Thing Description. Accessed: Oct. 30, 2020. [Online]. Available:
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

[26] Microsoft. (2020). Digital Twins Definition Language. Accessed:
Sep. 30, 2020. [Online]. Available: https://github.com/Azure/
opendigitaltwins-dtdl

[27] R. Ala-Laurinaho, A. Nikander, and J. Autiosalo. (2020). Digi-
tal Twin Document. Accessed: Nov. 16, 2020. [Online]. Available:
https://github.com/AaltoIIC/dt-document

[28] AmazonWeb Services. (2020). Amazon API Gateway. Accessed:
Sep. 30, 20220. [Online]. Available: https://aws.amazon.com/api-gateway/

[29] Microsoft. (2020). API Management. Accessed: Sep. 30, 2020. [Online].
Available: https://azure.microsoft.com/en-us/services/api-management/

[30] J. Mattila, ‘‘Nosturidatan analysointi ja visualisointi IoT-alustalla,’’ B.Sc.
thesis, Dept. Mech. Eng., Aalto Univ., Espoo, Finland, 2020.

[31] R. Ala-Laurinaho, J. Autiosalo, and K. Tammi, ‘‘Open sensor manager
for IIoT,’’ J. Sensor Actuator Netw., vol. 9, no. 2, p. 30, Jun. 2020,
doi: 10.3390/jsan9020030.

RIKU ALA-LAURINAHO (Graduate Student
Member, IEEE) was born in Espoo, Finland,
in 1995. He received the B.Sc. and M.Sc. degrees
from Aalto University, in 2018 and 2019, respec-
tively. He is currently pursuing the Ph.D. degree
with Aalto University. He was a Research and
Teaching Assistant with the Department of Com-
puter Science, where he was involved in the devel-
opment of learning materials. His current research
interests include interoperability of digital twins,

digital twin ecosystems, and communication in smart factories.

JUUSO AUTIOSALO (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees from
Aalto University, in 2015 and 2017, respectively,
where he is currently pursuing the Ph.D. degree.
He has instructed four master’s theses and two
bachelor’s theses and performed teaching activi-
ties at three university courses.

He was the Project Manager for the DigiTwin
project, which was executed in tight collabora-
tion with industry partners. His research interests

include the practical implementation and network effects of digital twins.
Before focusing on the intersection of the Internet of Things and machine
design, he implemented several study projects on mechatronics and wrote
his M.Sc. thesis on hydraulic accumulators.

ANNA NIKANDER was born inHelsinki, in 1999.
She is currently pursuing the B.Sc. degree in infor-
mation networks with Aalto University, Espoo,
Finland. She is also a Research Assistant with the
Mechatronics Group alongside her studies. She
is also a Course Assistant with the Department
of Computer Science, Aalto University. Her cur-
rent research interests include new service mod-
els enabled by Digital Twin and improving the
user experience of industrial internet of things
applications with the help of augmented reality.

JOEL MATTILA received the B.Sc. degree from
Aalto University, Espoo, Finland, in 2020, where
he is currently pursuing the M.Sc. degree in
mechanical engineering. He is also a Research
Assistant with Aalto University alongside his
studies.

KARI TAMMI was born in 1974. He received
the M.Sc., Lic.Sc., and D.Sc. degrees from the
Helsinki University of Technology, in 1999, 2003,
and 2007, respectively. He received a Teacher’s
pedagogical qualification from the Häme Univer-
sity of Applied Sciences in 2017.

He was a Researcher with the CERN (European
Organization for Nuclear Research) from 1997 to
2000, and a Postdoctoral Researcher with North
Carolina State University, USA, from 2007 to

2008. From 2000 to 2015, he was a Research Professor, a ResearchManager,
the Team Leader, and other positions with the VTT Technical Research
Centre of Finland. He has been an Associate Professor with Aalto University
since 2015. He currently serves as a Chief Engineer Counselor for the Finnish
Administrative Supreme Court. He has authored over 90 peer reviewed
publications cited in over 5000 other publications. He is also a member of
the Finnish Academy of Technology. He also serves as the Deputy Chair for
IFTOMM Finland.

228684 VOLUME 8, 2020

http://dx.doi.org/10.1109/ACCESS.2019.2953499
http://dx.doi.org/10.1016/j.jmsy.2020.06.017
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1007/s10845-019-01512-w
http://dx.doi.org/10.1007/978-3-030-32065-2_14
http://dx.doi.org/10.1007/978-3-030-32065-2_14
http://dx.doi.org/10.1109/ICPHYS.2018.8387665
http://dx.doi.org/10.1016/j.mfglet.2018.02.006
http://dx.doi.org/10.1109/QRS-C.2019.00103
http://dx.doi.org/10.1109/QRS-C.2019.00103
http://dx.doi.org/10.1016/j.future.2020.07.004
http://dx.doi.org/10.1016/j.promfg.2017.07.197
http://dx.doi.org/10.3390/jsan9020030

