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ABSTRACT This paper introduces an adaptable, human-computer interaction method to control multi-rotor
aerial vehicles in unsupervised, multi-subject environments. A region-based convolutional neural network
(R-CNN) first detects subjects in a frame and their faces’ regions of interest (RoIs), which are then fed to a
facial recognition module to search for the main subject within the frame. The R-CNN model supplies the
right-hand RoI of the main subject to a convolutional neural network (CNN) that classifies the right-hand
gesture. A motion processing unit (MPU) and four flex sensors are embedded in the left hand’s smart glove
to produce discrete and continuous signals. Those signals are generated based on the bending of left-hand
fingers and the left hand’s roll angle and then fed to a support vector machine (SVM) to classify the left-hand
gesture. Three validation layers have been implemented, including a human-based validation, classification
validation, and the system validation. The comprehensive experimental results have validated the proposed
method.

INDEX TERMS Gesture recognition, pose estimation, unmanned aerial vehicles, validation module,
wearable sensors.

I. INTRODUCTION
Wearable sensors and gesture recognition techniques have
been used to develop a reliable and acceptable human-robot
interaction, including wearable motion sensors for the hear-
ing and speech impaired [1], a wearable gesture recognition
glove to control robotic devices in harsh environments [2],
and wearable gesture-based gadgets for interaction with
mobile devices [3]. An adaptive control-based interface with
self-validation for multi-rotor aerial vehicles that recognizes
and classifies right and left-hand gestures in a single-subject
environment was developed in [4]. The quality of differ-
ent aspects of life has been increased by using multi-rotor
aerial vehicles in recent years, especially in monitoring and
transportation [5].

Various tools have been proposed for gesture recogni-
tion, from extending mathematical models based on hidden
Markov chains [6] to approaches based on 3D cameras [7],
and recognizing human activities [8]. In a single-subject envi-
ronment, it is assumed that the user faces a camera and only
gestures with one hand [4]. However, in real-life applications,
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a camera often captures both hands andmore than one subject
in a frame.

This paper proposes an adaptable, gesture-based control
interface for a multi-rotor aerial vehicle in a multi-subject
environment. The main goal here is to recognize and classify
the right-hand and left-hand gestures of the subject of interest
in a multi-subject environment. This paper considers that the
main subject controls the targeted device – amulti-rotor aerial
vehicle.

We employed a skeleton detection module to detect sub-
jects in a multi-subject environment. After identifying the
subject of interest in the frame, the proposed algorithm
detects the main subject’s hands. Finally, a CNN classifies
the detected right hand’s gesture into one of the pre-defined
classes.

In order to classify the left-hand gesture, a set of four flex
sensors and amotion processing unit (MPU) are implemented
on the smart glove to produce discrete and continuous signals
based on the bending value of each of the left-hand fingers
and the roll angle of the left hand, [4]. The produced signals
are fed into an SVM to classify the left hand’s gesture.

We verified the proposed algorithm on several groups of
two, three, and four subjects to study the algorithm’s behavior
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in various scenarios.We implemented the proposed algorithm
on Nvidia Jetson AGX Xavier GPU.

A. CONTRIBUTION
This paper offers the following novelties compared to existing
results in [9]–[12]: (i) the smart glove that produces
16 different gestures (commands) including two control
signals that are used in the real-time control; (ii) a hand recog-
nition module before gesture classification that improves
the classifier performance; (iii) an online learning method
that allows the system to be adaptable to new users; and
(iv) a classifier self-validation and an overall system val-
idation with a human-in-the-loop for improved system
reliability.

Note that the smart glove, which can generate 16 different
commands, appends the image processing approach with
four gesture-based commands to provide enriched control
capabilities compared to the gesture classification alone. For
instance, varying the angle in ‘‘turn right’’ and ‘‘turn left’’
commands is carried out by bending the left-hand fingers,
or changing the drone’s altitude is carried out by altering the
angle of the glove.

This paper is an extension of our conference paper [4]
and results presented there. Here we expanded our research
results and included: (i) detection of the main subject in a
multi-subject environment; (ii) detection of the main sub-
ject’s right-hand region and classifying the main subject’s
right-hand gesture; and (iii) a comprehensive set of experi-
ments in multi-subject environments.

II. BACKGROUND AND RELATED WORK
Human-robot interactions have vast applications in control
and navigation of quad-rotors [7], control of a vehicle to
minimize the user’s distraction while driving [13], and more.
In [7], [13] one of the limitations is that the user has to be
alone in front of the camera while we consider a multi-subject
environment where we first recognize the main subject, fol-
lowed by a hand gesture classification.

In [14], a gesture recognition-based method using depth
information from pixels for the human skeleton was pro-
posed, where the depth was used to segment the body into
joints. Whereas in this paper, we apply the skeleton detection
on 2D images to detect all subjects present in each frame.
The skeleton detection module also detects subjects’ heads
and both hands.

Authors in [15] propose a continuous hand gesture recog-
nition and detection method using radar technology to gather
the intermediate frequency signal from the environment and
estimate the different features of the hand gesture. While
the method in [15] recognizes the hand gestures using the
k-means algorithm, our proposed method first identifies the
main subject in the environment and then classifies the hand
gesture using a CNN model.

A skeleton detection module is used to detect all subjects
present in each frame [16] and label their bodies to determine
their heads Region of Interest (RoI). A facial recognition

module is then applied to identify the main subject among
all subjects [17]. The skeleton detection module determines
the RoI of the pair of hands of the detected main subject.
Finally, a gesture classification module is used to classify
the gesture of the right hand of the subject of interest. The
system recognizes the left-hand gesture using the smart glove
and an SVM module that uses data from flex sensors and
the MPU on the glove. It simultaneously classifies right-hand
and left-hand gestures in each frame with three validation
modules running to improve the hand gesture classification
modules’ performance.

A. CONVOLUTIONAL NEURAL NETWORK MODEL
The CNN model used in this paper consists of different
hidden layers. We also used the dropout technique in two
separate layers with sigmoid activation function to avoid
overfitting [18]. Based on our application and the dataset,
we have chosen the number of CNN hidden layers by increas-
ing the number of layers until the classifier achieved the
desired performance. We have chosen three layers of max-
pooling, two layers of dropout, five rectified activation func-
tions in different layers, one sigmoid activation function,
one flattening layer, and two fully connected layers for the
CNN hidden layers.

1) POOLING LAYERS
The pooling layers concept is to decrease the feature
maps’ resolution and summarize the input distortions in a
smaller feature map. We use the max-pooling method in the
CNN design to extracts the highlights from the input frame.
In max-pooling, we select the largest element within each
feature map such that [19]:

yi,j = max
(p,q)∈Ri,j

xp,q , (1)

where xp,q is defined as

xp,q =
m∑
i=1

ωixp,qi , (2)

yi,j is the output of the pooling function associated with
the feature map region Ri,j, and xp,q is the input element at
location (p, q) which embodies an area around the position
(i, j) in the input frame. In (2), ωi is the i-th weight associated
with xp,qi which is i-th element of xp,q, and m is the number
of elements in input xp,q.
By using a max-pooling technique, unnecessary informa-

tion is removed from the generated feature maps in the con-
volutional layer, thus reducing the map’s dimensions. The
maximum value in each sub-region of the feature maps is
stored, and the remaining values are deleted as unnecessary
information. The pooled feature maps are generated to form
the max-pooling layer.

2) DROPOUT TECHNIQUE
The dropout technique temporarily disables a neuron at each
iteration with a probability of p, which prevents overfitting
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during the training process. The dropped-out neurons are
tested with probability p at every iteration of training, so a
dropped-out neuron at one step can be activated at the next
iteration [20].

The dropout is applied to input neurons with a parameter p
during the training process, controlling the participation
of each neuron xj with an independent Bernoulli random
variable αj for each step [21]:

yi =
1
p

N∑
j=1

ωj,i(αj · xj), αj ∼ B(1, p), (3)

where B(1, p) is the Bernoulli function which generates the
independent random variable αj with probability p. The scal-
ing factor 1

p scales the output yi to keep the expected value
of the output during the training process. The weight from
input xj to input xi is denoted by ωj,i, and N is the number of
neurons connected to the neuron xi.

3) ACTIVATION FUNCTION
Activation function limits the amplitude of the neuron’s
output and maps the neuron’s output to a range such as
between 0 and 1 [20], [22].

Authors in [22] compared various activation functions for
different classification problems. The comparison reveals
the suitable activation functions for training an image
processing-based algorithm with the proposed architecture in
this paper are a rectified linear activation function (ReLU)
and a sigmoid activation function. Moreover, the training
process requires fewer iterations with ReLU and a sigmoid
activation function than other activation functions to solve
nonlinear problems. Additionally, we found that our CNN’s
accuracy is 5% higher with these two functions than other
activation functions such as radial basis function and hyper-
bolic tangent function.

ReLU is defined by

f (x) = max(x, 0), (4)

where f (x) is the output of the function and x is the input
neuron. We use the sigmoid function that is defined as:

g(xi) =
1

1+ e−xi
, (5)

and input neuron xi is defined as:

xi =
N∑
j=1

ωjxij, (6)

where ωj denotes the weight associated to the j-th element
of input xi and N is the number of element in input xi. In this
paper, we apply the sigmoid activation function to obtain each
hand-gesture class’s probability.

4) OPTIMIZER
The primary purpose of using optimizer is to reduce
the losses, increase the learning rate, and provide accu-
rate results [23]. Based on comparisons between adaptive

moment estimation (Adam), gradient descent, adagrad, and
adadelta in [23], [24] it has been shown that the suitable opti-
mizer for the proposed neural network structure is Adam due
to its algorithm speed, computation capacity, and obtained
results in the proposed method. The weights update law for
Adam optimizer is given in [25]

ωt+1 = ωt −
η · m̂t√
v̂t + ε

, (7)

where ωt and ωt+1 are the current model weight and the
next iteration model weight, respectively. The learning rate
(step size) is η and to avoid division by zero, a small pos-
itive term ε is added. The bias correction of the moving
averages m̂t and v̂t in the Adam optimizer are as follows:

m̂t =
mt

1− β t1
,

v̂t =
vt

1− β t2
, (8)

where mt and vt are moving averages

mt = (1− β1)g2t + β1mt−1,

vt = (1− β2)g2t + β2vt−1, (9)

gt is gradient on current mini-batch, and β1, β2 are the
exponential decay rates.

B. SMART GLOVE
The proposed smart glove converts hand gestures to a set
of pre-defined commands [26], which maps the fingers’
dynamic movements to a set of pre-defined surgery robot
actions. We use the flex sensors’ output values to determine
the main subject command to control a multi-rotor aerial
vehicle.

In [27], the authors compared the consistency and the
level of interaction in wearable and non-wearable sensors to
control a robot. They tested different gadgets such as keypads,
joysticks, single button, and gloves on random subjects.
Their results show that the users were much more comfort-
able creating commands and controlling other devices using
wearable sensors. Hence, the users made more intuitive and
natural connections with the handmovements of the wearable
sensors.

In [28]–[30], the authors described a vision-based recog-
nition and how to control a machine. They demonstrated that
the vision-based gesture recognition techniques are of utmost
importance in designing highly efficient and intelligent
human-machine interfaces. The users have a natural, creative,
and intuitive way of communicating with the target machine.
These features make the vision-based interaction with com-
puters as natural as an interaction with another human.

We used a glove with an MPU module, four flex sensors,
and an Arduino UNO microprocessor board for the smart
glove implementation. The MPU module calculates the left
hand’s angles in three axes, and the flex sensors measure the
bending of each finger on the left hand. The microprocessor
gathers the raw data from the MPU and the flex sensors for
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FIGURE 1. System block diagram for multi-subject environment including three separate validation modules: (i) validation of the gesture classifier;
(ii) System Validation; and (iii) Human-in-the-loop.

further processing and classifying the left-hand gesture. For
instance, when the user makes a pointing gesture, the micro-
processor receives the MPU module’s angles and each flex
sensor’s bending value. An SVM model then classifies the
collected data into one of the 16 possible left-hand gestures
and calculates the coefficients. After all, the microprocessor
transmits the classified gesture and the coefficients to the
controller unit and the system validation module.

III. DESIGN DETAILS
We developed a gesture-based, closed-loop control system
with validation modules for single- and multi-subject envi-
ronments. The user can validate and disapproves of the
system’s output through the smart glove by observing the
drone behavior [4]. In case the user disapproves the drone’s
movement, the system validation module monitors the clas-
sifier’s outputs and the flight controller’s outputs (command
executioner) to trace the source of a problem. As illus-
trated in Figure 1, the gesture-based control interface for
a multi-subject environment contains three main units and
four main modules: (1) a human-in-the-loop for validation,
(2) a skeleton detection module, (3) a facial recognition
module, (4) a right-hand detection module, (5) a gesture
classification unit, (6) the controller unit, and (7) the system
validation module.

Two gesture recognition methods are used to interact with
an aerial vehicle: (i) image processing-based method and
(ii) smart glove-based method.

A. GESTURE RECOGNITION MODULE USING SMART
GLOVE
The user calibrates the MPU by keeping his/her hand parallel
to the ground and fully closing and opening the fingers before

the system starts. After the calibration process, the micropro-
cessor transmits the generated signals from the flex sensors
and the MPU to two of the main units, the flight controller
and the system validation module, Figure 1.

The smart glove operates between two different modes
simultaneously. The first mode considers each finger as ‘‘on
switch’’ when the finger is bent and ‘‘off switch’’ when the
finger is fully open. The second mode uses the exact bending
value of each flex sensor. More details on the smart glove
modes are given in [4]. Figure 2 shows various signatures
with four flex sensors for each gesture.

FIGURE 2. Finger bending fluctuation of four flex sensors. These signals
are used for left-hand gesture recognition and continuous control signals
generation. As indicated in the horizontal axis, a combination of four flex
sensors bending values represents a specific gesture signature.

B. SKELETON DETECTION MODULE
In every input frame, the skeleton detection module recog-
nizes the joints (or skeleton) of the subjects [16]. The pro-
posed method is a top-down approach to detect the joints.
The initial step in finding subjects in each frame is to find
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a nose. The skeleton detection module starts from the nose,
and then it searches to find eyes, ears, neck, and then the rest
of the body as long as it is visible in the frame. If the skeleton
detection module finds the nose and ears, the module counts
that as a subject. Afterward, the module connects all detected
joints and forms the body of each subject.

In case the skeleton detector fails to detect all the joints
of each subject (when subjects are close to the camera, for
instance), the skeleton detection module saves the related
coordinates of each joint and creates a list of detected joints
and their coordinates in the frame with a specific number for
each joint.

In the first step, the skeleton detection module receives
an input RGB frame and feeds it through a neural network
to detect each subject’s skeleton. This module’s algorithm
searches for a similar pattern and calculates the confidence
scores, keypoint positions, and keypoint confidence scores
from the network for each pattern that it detects. With a
gesture confidence score, we can determine the overall con-
fidence in estimating the skeleton (between 0 and 1). This
keypoint confidence score can be used to hide the skeletons
that do not have a high score and sets the keypoint with a high
score in the array that forms the skeleton. After the module
finds the detectable keypoints, it connects them and forms the
skeleton.

C. FACIAL RECOGNITION MODULE
After the skeleton detection module detects subjects in each
frame, the next step is to determine themain subject. Detected
head regions by the skeleton detection module are fed to
the facial recognition module to determine the main subject.
Suppose the facial recognition module confirms the detected
face of the main subject. In that case, the algorithm uses
the joints coordinates obtained from the skeleton detection
module to find the main subject’s right hand.

For the facial recognition model, we use the Histogram
of Oriented Gradients (HOG) method [31], which searches
face patterns in the detected head region and face landmark
in order to recognize the main-subject face. The goal of the
HOG method is to find a pattern in the image that has a
face. HOG finds the basic structure of the image based on
the lighting of each pixel. As the next step, finding the part
of the image similar to a known HOG pattern extracted from
a data set of other training faces is crucial in identifying the
main subject’s face.

In the first step, the face recognition module uses the
HOG method to get the locations and outlines of each per-
son’s eyes, nose, mouth, and chin. These locations are needed
for the feature extraction for the main subject identification.
Then, the module compares the HOG results from the input
frame with the provided picture from the main subject, and
if results are above (or below) a certain threshold, then the
module confirms the user’s identity.

D. RIGHT-HAND DETECTION MODULE
The right-hand detection module (part of the skeleton detec-
tion) searches through the main subject’s detected joints for

the right hand’s wrist. The right-hand detection module sends
the right-hand region to the gesture classification module, see
Figure 3. In Section IV, we evaluated the algorithm’s behav-
ior in various multi-subject environment scenarios, including
hidden right hand and no gesture by the main subject.

FIGURE 3. Flowchart of the hand gesture recognition in a multi-subject
environment.

E. HAND GESTURE CLASSIFICATION
We apply the CNN model to classify the right-hand ges-
ture into one of the four specified right-hand gestures. Each
gesture represents a particular command that is given to the
multi-rotor aerial vehicle as a control signal. The considered
gesture classes are Palm gesture for take-off, Fist gesture for
landing, Victory sign gesture for turning left, and OK sign
gesture for turning right command.

To train the classifier, we use the Keras library [32].
The hand gesture classification has three main modules:
(i) a classification module, (ii) a classification validation
module, and (iii) a re-trainermodule, Figure 4. The right-hand
RoI and the classified gesture are the primary input and
output of this unit, respectively. Also, an internal valida-
tion module checks the classifier’s performance and acti-
vates the re-trainer in case the classifier performance was not
satisfying.

1) RIGHT-HAND CLASSIFIER
Upon receiving the detected right-hand RoI as an input
image, a CNN model classifies the detected RoI into one of
the predefined classes. The classified output is then sent to
the classification validation module to check the classifier
performance. Furthermore, the classified output is mapped
to one of the pre-determined commands. The command is
then sent to the system validation module to monitor the
system performance and to the next module for command
execution, Figure 4.

2) RE-TRAINER
Re-trainer’s module responsibility is to take S new images
as input and train the current CNN model with the newly
gathered images. The re-trainer module then sends the newly
obtained weights to the CNN model to improve the classi-
fier performance. The re-trainer module is triggered when
either: (i) the classification validation module detects low
confidence in the classifier performance; or (ii) the user
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TABLE 1. Comparison between the proposed method in multi-subject environment and similar approaches.

FIGURE 4. Gesture classification block diagram for a multi-subject
environment.

declines the drone output with the smart glove, which then
the system validation module triggers the re-trainer module,
Figure 4. Retraining and validation process for single- and
multi-subject environment cases are explained in Algorithm1
and Algorithm2, given in the Appendix section.

IV. EXPERIMENTAL RESULTS
The system performance is evaluated under various scenarios
and penalties on the controller and the classifier. Here we
demonstrate the system performance for the multi-subject
environment using a LOGI HD 1080p webcam. For the algo-
rithm implementation, an external Linux-based GPU, Nvidia
Jetson AGX Xavier, was used. The GPU algorithm run-time
for one and two subjects per frame is three frames per
second (FPS), and for three and four subjects per frame is
five to six FPS. Furthermore, Table 1 provides a comparison
between the proposed method and similar methods based on
specific criteria such as the number of gestures, classifier
accuracy, validation modules, ability to increase the number
of gestures, adaptability with a new user, type of classifiers,
and the source of interaction between the user and the system.

As shown in Table 1, while none of the approaches has vali-
dations and the user must be alone in front of the camera, our
proposed method has three validations, and supports cases
with multiple subjects in front of the camera.

In order to evaluate the accuracy and study behavior of the
proposed algorithm, a data-set of subjects showing different,
pre-defined, right-hand gestures was created. We randomly
selected n subjects with different physical features to take
their pictures in different situations while the subjects are
showing pre-defined gestures in front of the camera in various
group sizes. We distributed n subjects in groups ofm subjects
as shown in Table 2. After filtering and excluding blurry
and noisy images, we used the remaining images to test the
proposed method. Furthermore, we added another class in
case the main subject does not perform any gesture and keeps
his/her right hand down. We tested our algorithm on different
subjects based on the number of subjects in each picture.
Table 2 shows the results of the experiment in each group.

A. VALIDATION MODULES
The proposed algorithm has three validation modules with a
goal to improve the overall system performance. A user is the
first to validate the system output by observing the drone’s
behavior and can send his/her disapproval through the smart
glove by performing a dedicated gesture (Gesture#15). This
specific gesture was chosen to code the observedmisbehavior
and trigger the system validation that monitors both outputs –
the classifier output and the flight controller output signals
to find the misbehavior source. Second, the system’s outer
layer has a validation module that identifies the misbehavior
source, which can be either with the classifier or the flight
controller. Finally, to validate the gesture classifier output,
a classification validation module re-trains the classifier until
the classifier confidence reaches the predefined threshold,
which is set before the system starts [4].

B. SKELETON DETECTION
In order to detect all subjects in the input frame, we imple-
mented a joint-based detection module [16] with an R-CNN
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TABLE 2. Gesture recognition in a multi-subject environment experimental results for four different group populations.

network on the GPU with 15 FPS. The proposed algorithm
maps the joints from top to bottom.

C. FACIAL RECOGNITION
For the facial recognition model, we used a condition-free
facial recognition library (no illumination changes or occlu-
sions) with 99.38% accuracy that needs just one sample
image for training [17]. The facial recognition model creates
the landmark based on the provided single face image from
the main subject and uses it to detect the main subject’s face
among the detected head RoIs from the skeleton detection
module. A picture of the main subject’s face is provided
during the initialization phase.

D. HAND GESTURE RECOGNITION USING THE WEBCAM
To classify the right-hand gesture, the CNN model is used.
Our data set to train this CNNmodel consists of 8125 images,
640 × 480 pixels, were collected from 65 subjects standing
at various distances from the camera. Each subject stood in
front of a white background with their right hand showing
four pre-determined static gestures. After manually refining
the images, a data set of 7600 JPEG pictures was obtained.
We applied 70% of refined images (5320 images) to train the
CNNmodel and used the rest (2280 images) as a test data set.

A sign of an overfitted model is when the training loss
is low, and the validation loss is high [18]. As shown
in Figure 5(b), the training loss is higher than the valida-
tion loss. Moreover, since its inception, both validation and
training losses have diminished until they reached their low-
est value after 14 epochs. In order to avoid the overfitting
at each epoch, the data augmentation technique is used in
the training process, Figure 5. The model was trained for
14 epochs with an accuracy of 95.83%. The batch size is 32,
‘Adam’ is chosen as the optimizer, and mean squared error is
used as a loss function in the training process. After train-
ing, the system’s accuracy of 300 images from each class
(total of 1200 pictures that the system has not seen before)
was 96.41%.

In the algorithm’s implementation, four right-hand ges-
tures were used; however, the proposed algorithm can handle
different numbers of gestures, and the only part that requires
adjustment is the dense of the last layer in the CNN model.

Table 3 shows the accuracy, loss values, and their related
training data sizes. The proposed CNN model shows con-
vergence for data size larger than 700 images for each class

FIGURE 5. Training set versus validation set: (a) accuracy, (b) loss.

(gesture). The data augmentation technique based on vertical
flipping and setting degree range for random rotation is used
to reduce the required data size and reach higher accuracy.

TABLE 3. Right-hand gesture classifier training and validation results for
different data sizes.

To test the proposed method in a multi-subject
environment, we randomly selected 35 single-subjects,
190 two-subject groups, 560 three-subject groups, and
210 four-subject groups. After manually filtering the blurry
and noisy images, a dataset of 10420 JPEG color pictures was
obtained. Each group was used to test all the main modules,
such as skeleton detection, facial recognition, main subject’s
right-hand detection, and right-hand gesture classification.

Table 2 shows the results of single-, two-, three-, and
four-subject groups separately. All of the 10420 captured
images from the 81 subjects were used to test the
multi-subject environment algorithm. The captured dataset of
10420 images is divided into 140 images of single-subject
groups, 760 images of two-subject groups, 4480 images
of three-subject groups, and 5040 images of four-subject
groups. The final accuracy for the multi-subject environment
is 94.96%.
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FIGURE 6. Gesture recognition on different groups of subjects including a
main subject performing in front of the camera. The commands are: class
#0: take off; class #1: land; class #2: turn left; and class #3: turn right.

E. CASE ONE: FRAME CONTAINS BOTH HANDS
In this scenario (Figure 6(a), Figure 6(b), Figure 6(d),
Figure 6(f), Figure 6(g), Figure 6(h), and Figure 6(i)) the user
shows both hands in proper angles such that the camera can

FIGURE 7. The experimented case: penalty on the classifier. The
commands are: class #0: Take-off, class #1: Land, class #2: Turn left, and
class #3: Turn right.

TABLE 4. Penalty on the classifier: Class #3. Classification validation
decides to re-train the model on Class #3 in three steps, thus raising the
confidence from 54.55% to 79.19%. The four classes are Class #0: take
off, Class #1: land, Class #2: turn left, and Class #3: turn right.

capture one of the gestures. The algorithm detects the correct
hand of the main subject and then sends the right-hand RoI to
the classification module.

F. CASE TWO: FRAME WITHOUT RIGHT HAND
In this scenario, Figure 6(c), the user shows a gesture with
his left hand while his right hand is hidden. As the first
step, the skeleton detection module detects the subject in the
frame, sends his head RoI to the facial recognition module,
and returns the confirmation that the main subject has been
detected. Then, the skeleton detection module searches for
the joint number of 4, and when it can not be found in the list
of the detected joints, the process stops there until the user
shows his right hand.

Furthermore, we examine the algorithm performance in
three undesired scenarios: 1) the user holds right hand
towards the ground; 2) the user shows both hands; 3) the
user does not show any gesture and hides his/her hand, or the
camera does not capture the correct hand.

G. CASE THREE: FRAME CONTAINS RIGHT HAND
WITHOUT GESTURE
Here the user does not show any gesture and keeps his right
hand down, Figure 6(e). The proposed algorithm detects the
right-hand joint and is ready to capture the hand region. The
algorithm calculates the shoulder joint and wrist joint angle
before the algorithm sends the detected right-hand region to
the classification module. The expected angle between the
shoulder and wrist is between 0 to 90 degrees. If a user opens
the right hand more than this range, the algorithm assumes
that the right-hand points towards the ground and the result is
‘‘No Gesture.’’

H. CASE FOUR: PENALTY ON THE CLASSIFIER
In this case, the user confronts the wrong behavior from
the drone. The user shows the ‘‘Land’’ command, which is
Gesture#1, but the drone turns right instead of landing, see
Figure 7. Hence, the user declines the drone action with
the smart glove and creates Gesture#15. The system valida-
tion module discovers that the controller output meets the
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Algorithm 1: Pseudo-Code for the Retraining and
Validation Process in a Multi-Subject Environment

begin
Subjects pose in front of the camera;
Skeleton detection module← Input frame;
Facial recognition module← Heads RoI;
Skeleton detection module←Main subject ID;
Classifier← Hand RoI;
Flight controller← Classification unit output;
Drone← Flight controller output parameters;
User observes the drone behavior;
if User disapproves the drone behavior then

User sends a command to the system validation
module through the smart glove;
System validation module checks the flight
controller output changes;
if The changes of the flight controller output
were not as expected then

System validation module adjusts the flight
controller;

else
System validation modules activates the
classifier re-trainer;
while Gestures confidence values are less
than predefined threshold do

The re-trainer captures S new images
from the low confidence gesture;
Re-trainer re-trains the running CNN
model with the newly gathered data in
order to obtain new weights;

Re-trainer fits the new weights to the CNN
model, and sends the CNN model to the
classifier;

classifier output and concludes that the problem is with the
classifier. Subsequently, the system validation module trans-
fers the discipline command to the re-trainer in the classifi-
cation module.

As shown in Table 4, when the classifier re-trainer is
activated, S images (in our implementation S = 5) of
the gesture with the lowest confidence level are taken by
sending a specific command, i.e.,Gesture#15, using the smart
glove. After gathering S images with the described system
configuration, it takes 4.2 seconds to re-train the classifier
and fit new weights into the running CNN model. After each
step (gathering images, re-training based on gathered images,
and fitting the new weights to the running CNN model),
if the confidence is less than the threshold (determined by the
user before the system starts; in this experiment set to 70%),
the classification validation module reactivates the re-trainer.
Repeatedly, the re-trainer captures the images by the user’s
command, re-trains based on those images, and fits the CNN
model. As shown in Table 4, the classification validation

Algorithm 2: Pseudo-Code for the Validation Process in
a Single-Subject Environment

begin
User poses in front of the camera;
Hand detector← Input frame;
Classifier← Hand RoI;
Flight controller← Classification unit output;
Drone← Flight controller output parameters;
User observes the drone behavior;
if User disapproves the drone behavior then

User sends a command to the system validation
module through the smart glove;
System validation module checks the flight
controller output parameters changes;
if The changes of the flight controller output
parameter were not as expected then

System validation module adjusts the flight
controller;

else
System validation modules activates the
classifier re-trainer;
while Confidences of the gestures are less
than predefined threshold do

The re-trainer captures S new images
from the low confidence gesture;

Re-trainer re-trains the running CNN
model with the newly gathered data in
order to obtain new weights;

Re-trainer fits the new weights to the CNN
model, and sends the CNN model to the
classifier;

module triggers the re-trainer until all the calculated confi-
dence values are above the threshold.

V. CONCLUSION
We presented a gesture-based control system for multi-rotor
aerial vehicles that detects and classifies both right- and
left-hand gestures in a multi-subject environment. There are
no limitations such as requiring a user to stand alone in front
of the camera or show just one hand. The proposed algorithm
distinguishes between subjects to find the main subject and
classifies the user’s right-hand gesture.

The proposed system operates with two different
human-robot interaction subsystems: (i) the smart glove
that produces continuous and discrete control commands,
and (ii) an image processing method that produces discrete
commands using hand tracking and gesture recognition. The
proposed system uses separate modules to find the correct
hand’s region in the input frame before the hand gesture
recognition module recognizes the gesture, which improves
the gesture recognition accuracy. An online learning method
is developed to improve system reliability and allow adapta-
tion to new users.
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The proposed method contains three separate validation
modules to improve system performance. The proposed
method’s performance was evaluated for cases including
penalties on the classifier, undesired user performance, and
subjects with various physical features.

Future work will include developing a gesture-based con-
trol system that can detect multiple main subjects in a
multi-subject environment and classify their hand gestures.
Furthermore, an inertial measurement unit (IMU) sensor
will be embedded in the smart glove to measure the hand’s
acceleration and rotation. Additionally, an electromyography
(EMG) sensor will be used on themain subject’s arm to gather
electrical signals generated by themain subject’s muscles.We
will use these newly gathered data to train an SVM model to
classify additional gestures and create additional commands
for control purposes.

APPENDIX A: PSEUDO-CODE FOR THE RETRAINING AND
VALIDATION PROCESS
Here we present two pseudo-codes of algorithms used in the
validation process in single- and multi-subject environments.
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