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ABSTRACT Iterative methods for solving nonlinear problems are of great importance due to their
appearance in various areas of applications. In this paper, based on the inertial effect, we propose two
projection derivative-free iterative methods for solving system of nonlinear equations. For the purpose of
improving the numerical performance, the two methods incorporated the inertial step into the modified
Barzilai and Borwein (BB) spectral parameters to generate the sequence of their respective search directions.
The two spectral parameters are shown to be well-defined. For each method, the sequence of the search
direction is bounded and satisfies the sufficient descent property. We establish the convergence analysis
of the two methods based on the assumption that the underlying mapping is Lipschitzian and monotone.
We demonstrate the efficiencies of the two methods on some collection of monotone system of nonlinear
equations test problems. Finally, we apply the two methods to solve motion control problem involving a two
planar robot.

INDEX TERMS Inertial effect, line search, nonlinear monotone equations, nonlinear problems, numerical
algorithms, projection method, spectral parameters.

I. INTRODUCTION
Let 3 be a nonempty closed and convex subset of an
n−dimensional Euclidean space Rn. Let 〈·, ·〉 and ‖ · ‖,
respectively, denote the inner product and Euclidean norm in
Rn. Recall the following definitions:
Definition 1: A mapping Q : Rn

→ Rn is monotone if
for all x, y ∈ Rn,

〈Q(x)− Q(y), x − y〉 ≥ 0.

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

Definition 2: Let x, y ∈ Rn. A mapping Q : Rn
→ Rn is

said to be L-Lipschitz continuous with constant L > 0 if

‖Q(x)− Q(y)‖ ≤ L‖x − y‖, for all x, y ∈ Rn.

In this paper, we are concerned with the problem of finding
a vector, x∗ ∈ 3 ⊂ Rn, such that

Q(x∗) = 0, (1)

where the mapping Q : Rn
→ Rn is assumed to be continu-

ous.We call problem (1) a nonlinear system of equations with
convex constraints. Various problems arising from different
areas of applications such as optimization, differential equa-
tions and variational inequalities problems, can be converted
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into nonlinear system of equations [1] and [2]. Moreover,
by splitting x ∈ Rn into two positive and negative parts, the
`1− norm regularized optimization problems can be reformu-
lated as nonlinear system of equations [3]–[5].

Let x0 ∈ 3 ⊂ Rn be an initial guess and P3(x) be the
projection of x ∈ Rn onto the closed and convex set 3.
The hyperplane projection algorithm proposed by Solodov
and Svaiter [6] has provoked many iterative algorithms that
update their sequences of iterates using the following formula

xk+1 = P3

[
xk −

〈Q(zk ), xk − zk 〉
‖Q(zk )‖2

Q(zk )
]
,

where zk = xk + αkdk and the scalar αk > 0 is a step length
obtained via suitable line search techniques. The search direc-
tion dk ∈ Rn is usually generated using conjugate gradient
approach, spectral gradient approach or their combinations
(see, [7]–[11]).

The classical spectral gradient algorithm, first proposed by
Barzilai and Borwein (BB) [12], is a matrix-free algorithm
that defines its search direction as

dk =

{
−Q(xk ), if k = 0,
−µkQ(xk ), if k ≥ 1,

(2)

where the function Q is a vector-valued and µk is a scalar,
known as spectral parameter, which is updated in every iter-
ation. The BB spectral parameters are updated using the
following rules

µBB1k =
‖sk−1‖2

〈yk−1, sk−1〉
and µBB2k =

〈yk−1, sk−1〉
‖yk−1‖2

, (3)

where sk−1 = xk − xk−1 and yk−1 = Q(xk )− Q(xk−1).
In [13], Zhang and Zhou [13] incorporated the spectral

gradient method into the projection technique of Solodov and
Svaiter [6] and proposed an interesting projection spectral
method for solving monotone system of nonlinear equa-
tions. In addition, they presented a modified line search
strategy that does not use any merit function but takes the
monotonicity of Q into consideration. The global conver-
gence of their method was proved under suitable assump-
tions. Subsequently, Yu et al. [14] extended the projection
method of Zhang and Zhou [13] to solve monotone system
of nonlinear equations with convex constraints. Their method
was shown to be globally convergent under monotonicity
and Lipschitzian assumptions. The preliminary numerical
experiment presented showed that their method competes
favourably with the projection method in [10]. Recently,
a hybrid projection spectral method for monotone nonlinear
equationswas proposed in [15] based on themodified spectral
parameters in [12] and [16]. The numerical experiments on
some monotone system of nonlinear equations showed that
the method outperforms the method of Yu et al. [14].
On the other hand, consider the inertial-based algorithms

which are based on the heavy ball methods of the second-
order time dynamic system. The first known inertial method
was proposed by Polyak [17] to solve a smooth convex mini-
mization problem. The inertial effect is usually incorporated

into an algorithm for the purpose of speeding up the iteration
process. Several studies have shown that iterative algorithms
for solving nonlinear problems such as variational inequality
problems, split feasibility problems, split variational inclu-
sion problems and equilibrium problems that incorporated the
inertial step have better numerical performance in terms of
number of iterations and CPU time compared to their coun-
terparts without the inertial effect. This impressive advantage
motivated some researchers to developed different kind of
inertial-type iterative methods (see, for example, [18]–[22]
and the references therein). However, to the best of our knowl-
edge, the effect of the inertial step has not been investigated
on spectral gradient algorithms for solving nonlinear system
of equations.

Question: Can the inertial effect speeds up the numerical
performance of the derivative-free spectral iterative algorithm
for system of nonlinear equations?

In this paper, we provide answer to the above question.
We propose two inertial-based spectral algorithms for solving
system of monotone nonlinear equations with convex con-
straints based on the projection technique. Based on themodi-
fied BB1 and BB2 spectral parameters, we present two search
directions that are sufficiently descent and bounded. Further-
more, we apply the two proposed algorithms to solve motion
control of a two planar robot. The remaining part of this
paper is organized as follows. In Section 2, we describe the
proposed methods and their global convergence. We report
numerical experiments to show the efficiency of the algo-
rithms in Section 3. We give the conclusion in Section 4.

II. INERTIAL-BASED DERIVATIVE-FREE ALGORITHMS
AND THEIR CONVERGENCE ANALYSIS
Let x0 and x−1 be the given two starting points and let wk =
xk + αk (xk − xk−1) be an inertial step where αk ∈ (0, 1)
such that lim

k→∞
αk = 0. We begin this section by stating

the following assumptions which are vital in the convergence
analysis of the proposed algorithms.
Assumption 1: A. The solution set of problem (1) is not
empty.

B. The function Q : Rn
→ Rn is monotone and Lipschitz

continuous.
Let βk > 0 be a step length and dk ∈ Rn be the search

direction. Given a starting point, say x0, the classical iterative
method for solving system of nonlinear equations usually
computes its next iterates using the following rule

xk+1 = xk + βkdk ,

where dk supposed to satisfy the following descent condition

Q(xk )T dk ≤ −ψ‖Q(xk )‖, ψ > 0. (4)

It is worth mentioning that the inequality (4) is very important
for an iterative algorithm to be globally convergence.

In order to state the proposed algorithms, the following
projection operator is of great importance. Given any point
x ∈ Rn, its projection onto the feasible set3 ⊂ Rn is defined
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as

P3(x) = argmin{‖x − y‖ : y ∈ 3}. (5)

The projection defined by (5) satisfies the following proper-
ties

‖P3(x)− P3(y)‖ ≤ ‖x − y‖, for all x, y ∈ Rn.

‖P3(x)− y‖ ≤ ‖x − y‖, ∀y ∈ 3.

We now state the details of the proposed algorithms.

Algorithm 1 Derivative-free Algorithm with Inertia Step
(DAIS1)
Inputs: Given x0, x−1 ∈ 3, κ, r > 0, σ, % ∈ (0, 1) and
{αk} ∈ (0, 1) such that lim

k→∞
αk = 0. Set k = 0.

Step 1: If ‖Q(xk )‖ ≤ Tol, then xk is a solution and the
iteration process stops.
Step 2: Compute wk = xk + αk (xk − xk−1) and

dk = −
‖xk − wk‖2

〈Q(xk )− Q(wk )+ r(xk − wk ), xk − wk 〉
Q(xk ),

(6)

with xk 6= wk .
Step 3: Set υk = xk + βkdk , βk = κ%i where i is the
smallest nonegative integer such that

−〈Q(xk + κ%idk ), dk 〉

≥ σκ%i‖dk‖2min
{
1, ‖Q(xk + κ%idk )‖1/c

}
, c ≥ 1.

(7)

Step 4: If ‖Q(υk )‖ = 0, stop. Else, compute the next iterate
using the following

xk+1 = P3

[
xk −

〈Q(υk ), xk − υk 〉
‖Q(υk )‖2

Q(υk )
]
. (8)

Step 5: Set k := k + 1 and go to Step 1.

Algorithm 2 Derivative-free Algorithm with Inertia Step
(DAIS2)
Inputs: Use the same inputs as in Algorithm 1 and replace
Step 2 with the following step
Step 2: Compute wk = xk + αk (xk − xk−1) and

dk=−
〈Q(xk )− Q(wk )+r(xk − wk ), xk−wk 〉
‖Q(xk )−Q(wk )+r(xk−wk )‖2

Q(xk ), (9)

where xk 6= wk .

Remark 1: The definition of the search directions (6) and
(9) are different from those used in [14] and [23]. Unlike
the search directions in [14] and [23] that use the difference
between two successive iterates xk and xk−1 as well as their
their images F(xk ) and F(xk−1), the two proposed search
directions (6) and (9) use the difference between the iterate
xk and the inertial step wk together with their images.

Remark 2: Motivated by the work of Solodov and Svaiter
[6], the step length βk in [13] is computed as βk = κ%i where
i is the smallest nonegative integer for which

−〈Q(xk + κ%idk ), dk 〉 ≥ σκ%i‖dk‖2. (10)

Also, Cheng [24] computed the step length βk = κ%i where i
is the smallest nonegative integer for which

−〈Q(xk+κ%idk ), dk 〉 ≥ σκ%i‖dk‖2‖Q(xk+κ%idk )‖. (11)

Numerical experiments have shown that the line search
strategy (10) and (11) may behave differently on some
test problems. We can observe that when xk is far from
x∗, that is the solutions of problem (1), then ‖Q(xk +
κ%idk )‖ will be very big and consequently causes the right
hand side of (11) to be very large. This may result in
the increase of the computational costs of the line search.
By this observation, Awwal et al. [25] proposed the following
modification

−〈Q(xk + κ%idk ), dk 〉 ≥ σκ%i‖dk‖2‖Q(xk + κ%idk )‖1/c,

c ≥ 1. (12)

If c is large enough, then (12) reduces to (10) and if
c = 1, then (12) becomes (11). The use of the power 1/c
was aimed to reduce the value of ‖Q(xk + κ%idk )‖. How-
ever, if ‖Q(xk + κ%idk )‖ is very large, then the corre-
sponding ‖Q(xk + κ%idk )‖1/c might not be as small as
desired.
Therefore, we consider the line search procedure (7) to

compute the step lengths for Algorithms 1 and (2). Please
observe that the line search (7) contains (10) and (12) as
special cases.
Lemma 1: Suppose that Assumption 1 holds and the

search direction {dk} is generated by Algorithm 1. Then we
have the followings

(i) The search direction is well-defined.
(ii) The search direction is descent, that is

〈Q(xk ), dk 〉 ≤ −p1‖Q(xk )‖2, p1 > 0. (13)

(iii) The search direction satisfies

‖dk‖ ≤ p2‖Q(xk )‖, p2 > 0. (14)
Proof: The monotonicity of Q gives 〈Q(xk ) −

Q(wk ), xk − wk 〉 ≥ 0. It follows we have

〈Q(xk )− Q(wk )+ r(xk − wk ), xk − wk 〉

= 〈Q(xk )− Q(wk ), xk − wk 〉 + r‖xk − wk‖2

≥ r‖xk − wk‖2. (15)

On the other hand, by the Lipschitz continuity and Cauchy
Schwarz inequality, we have

〈Q(xk )− Q(wk )+ r(xk − wk ), xk − wk 〉

= 〈Q(xk )− Q(wk ), xk − wk 〉 + r‖xk − wk‖2

≤ (L + r)‖xk − wk‖2. (16)
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Therefore, since xk 6= wk , then by (15) and (16) we have

1
L + r

≤
‖xk − wk‖2

〈Q(xk )− Q(wk )+ r(xk − wk ), xk − wk 〉
≤

1
r
.

(17)

Hence, the search direction defined by (6) is well-defined.
(ii) Now, from (6) and (17), it holds

〈Q(xk ), dk 〉 ≤ −
1

L + r
‖Q(xk )‖2.

(iii) Similarly, from (6) and (17), we have

‖dk‖ ≤
1
r
‖Q(xk )‖.

�
Lemma 2: Suppose that Assumption 1 holds, and the

search direction {dk} is generated by Algorithm 2. Then we
have the followings
(i) The search direction is well-defined.
(ii) The search direction is descent, that is

〈Q(xk ), dk 〉 ≤ −p3‖Q(xk )‖2, p3 > 0. (18)

(iii) The search direction satisfies

‖dk‖ ≤ p4‖Q(xk )‖, p4 > 0. (19)
Proof: Using the Lipschitz continuity, we have

‖Q(xk )− Q(wk )+ r(xk − wk )‖2 ≤ (L + r)2‖xk − wk‖2.

(20)

Also, by the monotonicity of Q, we have

‖Q(xk )− Q(wk )+ r(xk − wk )‖2

= 〈Q(xk )− Q(wk )+ r(xk − wk ), Q(xk )− Q(wk )

+ r(xk − wk )〉

= ‖Q(xk )− Q(wk )‖2 + 2r〈Q(xk )− Q(wk ), (xk − wk )〉

+ r2‖xk − wk‖2

≥ ‖Q(xk )− Q(wk )‖2 + r2‖xk − wk‖2

≥ r2‖xk − wk‖2. (21)

This together with (20) gives

r2‖xk − wk‖2 ≤ ‖Q(xk )− Q(wk )+ r(xk − wk )‖2

≤ (L + r)2‖xk − wk‖2. (22)

Therefore, since xk 6= wk , then by (15), (16) and (22) we
have

r
(L + r)2

≤
〈Q(xk )− Q(wk )+ r(xk − wk ), xk − wk 〉
‖Q(xk )− Q(wk )+ r(xk − wk )‖2

≤
r + L
r2

. (23)

Hence, the search direction defined by (9) is well-defined.
Moreover, similar arguments in Lemma 1 show that (ii) and
(iii) hold. �
Lemma 3: Suppose the Assumption 1 holds. If the

sequences of iterates {xk} and the search direction {dk} are
generated by Algorithm 1 then the followings hold

(i) {xk} and {wk} are bounded
(ii) lim

k→∞
‖xk − x∗‖ exists.

(iii) lim
k→∞

βk‖dk‖ = 0.

(iv) lim
k→∞
‖wk − xk‖ = 0.

Proof: If the point x∗ satisfies Q(x∗) = 0, then the
monotonicity of Q gives

〈Q(υk ), υk − x∗〉 ≥ 〈Q(x∗), υk − x∗〉.

Furthermore,

〈Q(υk ), xk − x∗〉 = 〈Q(υk ), xk − υk + υk − x∗〉

= 〈Q(υk ), xk − υk 〉 + 〈Q(υk ), υk − x∗〉

≥ 〈Q(υk ), xk − υk 〉 + 〈Q(x∗), υk − x∗〉

= 〈Q(υk ), xk − υk 〉. (24)

By the definition of xk+1, and (24) we have

‖xk+1 − x∗‖2

=

∥∥∥∥P3 [xk − 〈Q(υk ), xk − υk 〉
‖Q(υk )‖2

Q(υk )
]
− x∗

∥∥∥∥2
≤

∥∥∥∥xk − x∗ − 〈Q(υk ), xk − υk 〉
‖Q(υk )‖2

Q(υk )

∥∥∥∥2
= ‖xk − x∗‖2 − 2

〈Q(υk ), xk − υk 〉
‖Q(υk )‖2

〈Q(υk ), xk − x∗〉

+
〈Q(υk ), xk − υk 〉2

‖Q(υk )‖2

≤ ‖xk − x∗‖2 − 2
〈Q(υk ), xk − υk 〉
‖Q(υk )‖2

〈Q(υk ), xk − υk 〉

+
〈Q(υk ), xk − υk 〉2

‖Q(υk )‖2

= ‖xk − x∗‖2 −
〈Q(υk ), xk − υk 〉2

‖Q(υk )‖2

≤ ‖xk − x∗‖2. (25)

This implies that ‖xk−x∗‖ ≤ ‖x0−x∗‖ for all k, and therefore
the sequence {xk} is bounded and lim

k→∞
‖xk−x∗‖ exists. Since

αk ∈ (0, 1) and {xk} is bounded, then it implies that {wk} is
also bounded. Hence, (i) and (ii) hold.

From the line search (7), let the
min

{
1, ‖Q(xk + κ%idk )‖1/c

}
= ‖Q(xk + κ%idk )‖1/c, then

we have

σ 2β4k ‖dk‖
4
‖Q(υk )‖2/c ≤ 〈Q(υk ), βkdk 〉2. (26)

Also, from (25), we have

〈Q(υk ), βkdk 〉2 ≤ ‖Q(υk )‖2(‖xk − x∗‖2 − ‖xk+1 − x∗‖2).

(27)

Now, combining (26) and (27) gives

σ 2β4k ‖dk‖
4
‖Q(υk )‖2/c

≤ ‖Q(υk )‖2(‖xk − x∗‖2 − ‖xk+1 − x∗‖2). (28)
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Since Q is Lipschitz continuous and the sequence {xk} is
bounded, then there exists some constant, p5 > 0, for which

‖Q(xk )‖ ≤ p5, (29)

which in turns, by (14), gives

‖dk‖ ≤ p6, p6 > 0. (30)

Furthermore, by the boundedness of {xk}, (30) and the defi-
nition of υk in Step 3 of Algorithm 1, it holds that {υk} is also
bounded. Similarly, by the Lipschitz continuity of Q, we can
find some constants, say p7 such that

‖Q(υk )‖ ≤ p7. (31)

Since lim
k→∞
‖xk − x∗‖ exists and (31) holds, taking limit on

both sides of (28), as k →∞, we have

σ 2 lim
k→∞

β4k ‖dk‖
4
‖Q(υk )‖2/c = 0. (32)

Since ‖Q(υk )‖ 6= 0 (see Step 5 of Algorithm 1), we conclude
that (iii) holds, that is

lim
k→∞

βk‖dk‖ = 0. (33)

Lastly, since lim
k→∞

αk = 0 then by the boundedness of the

{xk}, we have lim
k→∞
‖wk − xk‖ = 0. �

Remark 3: If the min
{
1, ‖Q(xk + κ%idk )‖1/c

}
= 1, then

(28) and (32) respectively become

σ 2β4k ‖dk‖
4
≤‖Q(υk )‖2(‖xk−x∗‖2−‖xk+1−x∗‖2), (34)

σ 2 lim
k→∞

β4k ‖dk‖
4
= 0, (35)

and thus all the results of Lemma 3 hold.
Remark 4: Suppose that the sequence of iterates {xk} and

the search direction {dk} generated by Algorithm 2, then by
Lemma 2, the results in Lemma 3 also hold.
Theorem 1: Suppose that Assumption 1 holds, then the

sequence of iterates {xk} generated by Algorithm 1 converges
to a point x∗ such that Q(x∗) = 0.

Proof: We claim that the sequence of iterates {xk}
generated by Algorithm 1 satisfies

lim inf
k→∞

‖Q(xk )‖ = 0. (36)

We prove the above claim by contradiction. Let us assume
that (36) does not hold, then there exists some constants, say
p8 > 0 for which

‖Q(xk )‖ ≥ p8, ∀ k ≥ 0. (37)

Let the min
{
1, ‖Q(xk + κ%idk )‖1/c

}
= ‖Q(xk+κ%idk )‖1/c.

If βk 6= κ, then %−1βk does not satisfy (7), that is,

−〈Q(xk + %−1βkdk ), dk 〉

< σ%−1βk‖dk‖2‖Q(xk + %−1βkdk )‖1/c. (38)

Now, from the sufficient descent condition (13), we have

p1‖Q(xk )‖2

≤ −〈dk , Q(xk )〉

= −〈dk , Q(xk )− Q(xk + %−1βkdk )+ Q(xk + %−1βkdk )〉

= −〈dk , Q(xk )− Q(xk + %−1βkdk )〉

− 〈dk , Q(xk + %−1βkdk )〉

< −〈dk , Q(xk )− Q(xk + %−1βkdk )〉

+ σ%−1βk‖dk‖2‖Q(xk + %−1βkdk )‖1/c

≤ ‖dk‖‖Q(xk + %−1βkdk )− Q(xk )‖

+ σ%−1βk‖dk‖2‖Q(xk + %−1βkdk )‖1/c

≤ L‖dk‖‖xk + %−1βkdk − xk‖

+ σ%−1βk‖dk‖2‖Q(xk + %−1βkdk )‖1/c

≤ L%−1βk‖dk‖2 + σ%−1βk‖dk‖2‖Q(xk + %−1βkdk )‖1/c,

(39)

where the second and third inequalities follow from (38) and
Cauchy Schwarz inequality, respectively. In addition, the
fourth inequality follows from the Lipschitz continuity of Q.
By the Lipschitz continuity of the function Q,

‖Q(xk + %−1βkdk )‖ = ‖Q(xk + %−1βkdk )− Q(x∗)‖

≤ L(‖xk − x∗‖ + %−1βk‖dk‖),

Since βk ∈ (0, 1), using the boundedness of {xk} and {dk},
we can find some constants p9 > 0 such that

‖Q(xk + %−1βkdk )‖ ≤ p9. (40)

Applying the Cauchy Schwarz inequality on (13) and using
the inequality (37), it holds that ‖dk‖ ≥ p1p8. Therefore,
substituting (40) into (39) and rearranging, we have

βk‖dk‖ >
%p1

(L + σp1/c9 )

‖Q(xk )‖2

‖dk‖
≥

%p1

(L + σp1/c9 )

p28
p6
,

where the last inequality follows from (30) and (37). Taking
limit on both sides as k →∞, we have

lim
k→∞

βk‖dk‖ > 0, (41)

which contradicts (33) and hence (36) must hold. Now, since
Q is continuous and the sequence {xk} is bounded, then
there is some accumulation point of {xk} say x∗ for which
‖Q(x∗)‖ = 0. By the boundedness of {xk}, we can find
subsequence {xkj} of {xk} for which lim

j→∞
‖xkj − x∗‖ = 0.

Since it holds that {‖xk − x∗‖} converges, we can conclude
that lim

k→∞
‖xk − x∗‖ = 0 and the proof is complete. �

Remark 5: If the min
{
1, ‖Q(xk + κ%idk )‖1/c

}
= 1, then

(38) and (39) respectively become

−〈Q(xk + %−1βkdk ), dk 〉 < σ%−1βk‖dk‖2, (42)

p1‖Q(xk )‖2 ≤ L%−1βk‖dk‖2 + σ%−1βk‖dk‖2, (43)

and therefore the proof of the Theorem 1 follows.
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FIGURE 1. Performance profile on number of iterations.

III. NUMERICAL RESULTS AND COMPARISON
In this section, we demonstrate the numerical performance as
well as the computational advantages of Algorithms 1 and 2.
We implement these algorithms to solve a collection ofmono-
tone system of nonlinear equations, see Test Problems 1, and
motion control model, see Test Problem 2. The parameters
used for the implementation of Algorithm 1 (DAIS1) and
Algorithm 2 (DAIS2) are c = 2, αk = 1

(1+k)2
, r = 0.01,

σ = 0.01, κ = 1 and ρ = 0.5.
For the Test Problems 1, we compare the two proposed

algorithms with two existing competitors namely: (i) ‘‘Spec-
tral gradient projection method for monotone nonlinear equa-
tions with convex constraints’’ proposed by Yu et al. [14]
and (ii) Algorithm 2.1 of ‘‘Two spectral gradient projection
methods for constrained equations and their linear conver-
gence rate’’ proposed by Liu and Duan [23]. For convenience,
we denote the methods in [14] and [23] by SGPM and
TSGP, respectively. For the Test Problems 1, we use fourteen
different starting points, see Table 1, for all the algorithms
considered in this experiment. However, since our proposed
Algorithms 1 and 2 use two starting points, we initially set
x−1 = {x10 + ι, x20 + ι, . . . , xn0 + ι}, ι ≥ 0, and then
update them with different points subsequently. Moreover,
we solve each problem using five different dimensions, i.e.
1000, 5000, 10000, 50000 and 100000. This gives a total of
seven hundred and seventy (770) test problems. Details of the
numerical results are tabulated and can be found in the follow-
ing link https://github.com/aliyumagsu/Numerical-results-
of-DAIS1-and-DAIS-2/blob/main/Tables_DAIS.xlsx.

The numerical performance of each of DAIS1, DAIS2,
SGPM and TSGP are depicted in Figures 1 and 2 with the
aid of the popular Dolan and Moré performance profile [26].
Figure 1 is plotted based on ITER (number of iterations),
needed by each algorithm to obtain the solution of a par-
ticular problem, while Figure 2 is based on FVAL (number
of function evaluations). From Figure 1, we see that DAIS1
and DAIS2 are very competitive and clearly outperform their
main existing competitors, that is SGPM and TSGP. Specif-
ically, DAIS1 and DAIS2 recorded least ITER in about 70%
of the entire experiment. On the other hand, we see from

FIGURE 2. Performance profile on number of function evaluations.

TABLE 1. The initial points used for the problems in Test Problems 1.

Figure 2 that based on the FVAL, Algorithms 1 (DAIS1)
slightly performs better than 2 (DAIS2). Interestingly, DAIS1
and DAIS2 clearly perform better than both SGPM and TSGP
with DAIS1 and DAIS2 solving about 80% of the test prob-
lems with least FVAL. This means we may conclude that
the inertial step incorporated into the Algorithms 1 and 2
impacted positively on their numerical performances.
Test Problems 1: The followings are the list of test

problems used in our experiments where Q(x) =

(q1(x), q2(x), . . . , qn(x))T , and x = (x1, x2, . . . , xn)T :
Problem 1 [27]

q1(x) = ex1 − 1

qi(x) = exi + xi−1 − 1, i = 1, 2, . . . , n− 1,

where 3 = Rn
+.

Problem 2 [27]

qi(xi) = log(xi + 1)−
xi
n
, i = 1, 2, . . . , n,

where 3 = {x ∈ Rn
:

n∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [27]

qi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n, where 3 = Rn
+.

Problem 4 [14]

qi(x) = exi − 1, i = 1, 2, . . . , n, where 3 = Rn
+.
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Problem 5 [27]

q1(x) = x1 − ecos(h(x1+x2))

qi(x) = xi − ecos(h(xi−1+xi+xi+1)), i = 2, . . . , n− 1,

qn(x) = xn − ecos(h(xn−1+xn)), where h =
1

n+ 1
, 3 = Rn

+.

Problem 6 [13]

qi(x) = xi − sin(|xi − 1|), i = 1, 2, . . . , n− 1,

where 3 = {x ∈ Rn
:

n∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 7 [28]

qi(x)=exi+
3
2
sin(2xi)− 1, i=1, 2, . . . , n, where 3=Rn

+.

Problem 8

q1(x) =
5
2
x1 + x2 − 1,

qi(x) = xi−1 +
5
2
xi + xi+1 − 1, i =, 2, . . . , n− 1,

qn(x) = xn−1 +
5
2
xn − 1, where 3 = Rn

+.

Problem 9 [11]

q1(x) = 2x1 − x2 + ex1 − 1,

qi(x) = −xi−1 + 2xi − xi+1 + exi − 1, i =, 2, . . . , n− 1,

qn(x) = −xn−1 + 2xn + exn − 1, where 3 = Rn
+.

Problem 10

q1(x) = x1 + sin(x1)− 1,

qi(x) = −xi−1 + 2xi + sin(xi)− 1, i =, 2, . . . , n− 1,

qn(x) = xn + sin(xn)− 1, where 3 = Rn
+.

Problem 11 [27]

qi(x) =
i
n
exi − 1, i = 1, 2, . . . , n, where 3 = Rn

+.

Test Problems 2: Consider the motion control of a two-
joint planar robotic manipulator. We implement Algo-
rithms 1 and 2 to solve the following motion control model.
As described in [29], the discrete-time kinematics equation
of two-joint planar robot manipulator at a position level is
given as

q(θk ) = zk . (44)

The function q(·) is the kinematics mapping with the following
structure

q(θ) =

[
`1c1 + `2c2

`1s1 + `2s2

]
, (45)

where `j, (j = 1, 2), is the length of the jth rod, c1 = cos(θ1),
s1 = sin(θ1), c2 = cos(θ1 + θ2) and s2 = sin(θ1 + θ2). The
vectors θk ∈ R2 and zk ∈ R2 represent the joint angle vector
and the end effector position vector, respectively. In view

FIGURE 3. DAIS1: Manipulator trajectories.

FIGURE 4. DAIS1: End effector trajectory and desired path.

FIGURE 5. DAIS1: Tracking errors on the horizontal x-axis.

of robotic control, we need to solve following minimization
problem at each computational time interval tk ∈ [0, tf ]

min
qk∈R2

1
2
‖qk − qdk‖2 , (46)

where qdk is the end effector controlled track and tf denotes
the end of task duration,.

Following the approach in [30], in the course of the motion
control experiment, we take the length of the rod `1 = `2 = 1
and the end effector is controlled to track a Lissajous curve,
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FIGURE 6. DAIS1: Tracking errors on the vertical y-axis.

FIGURE 7. DAIS2: Manipulator trajectories.

FIGURE 8. DAIS2: End effector trajectory and desired path.

which is expressed as

qdk =

[
1.5+ 0.2 sin(π tk5 )

√
3
2 + 0.2 sin( 2π tk5 +

π
3 )

]
, (47)

For both Algorithms 1 and 2, we set tf = 10 seconds and use
the parameters ρ = 0.2 and σ = 0.08.We set the initial point
θ0 = [0, π

3 ]
T and divide the task duration [0, 10] into 200

equal parts. The numerical results generated by Algorithms 1
and 2 are depicted in Figures 3–10. Figures 3 and 7 show
robot trajectories synthesized by Algorithms 1 and 2, respec-
tively. Figures 4 and 8 plot end effector trajectory and desired
path by Algorithms 1 and 2, respectively.Moreover, Figures 5

FIGURE 9. DAIS2: Tracking errors on the horizontal x-axis.

FIGURE 10. DAIS2: Tracking errors on the vertical y-axis.

and 6 show the error recorded by Algorithm 1 on x−axis and
y−axis, respectively. Lastly, Figures 9 and 10 show the error
recorded by Algorithm 2 on x−axis and y−axis, respectively.
It can be easily seen from Figures 3, 4, 7 and 8 that both
Algorithms 1 and 2 completes the task at hand, successfully.
In addition, we see from Figures 5, 6, 9 and 10 that the
error recorded by each algorithm is as low as 10−5. Hence,
Algorithms 1 and 2 can be successfully implemented to solve
real world problems.

IV. CONCLUSION
This paper presented two derivative-free methods that uti-
lized inertial step based on projection techniques. Under the
monotonicity and Lipschitz continuity assumptions on the
underlying mapping, the convergence analyses of the two
methods have been established. The two proposed algorithms
have been successfully implemented on a collection of system
of nonlinear equations as well as motion control problem.
Considering the fact that the main differences between the
proposed Algorithm 1 and SGPM as well as Algorithm 2 and
TSGP is the inertial step, the good numerical performance
recorded by both the Algorithms 1 and 2, on the collection
of system of nonlinear equations, may be attributed to the
inertial effect. Finally, the experiment on the motion control
problem have shown that the Algorithms 1 and 2 can be
applied to solve practical problems. Future work include
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applying the proposed algorithms to solve time-varying non-
linear equations.
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