
Received November 24, 2020, accepted December 12, 2020, date of publication December 17, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045632

From Cloud to Edge: Seamless Software
Migration at the Era of the
Web of Things
CRISTIANO AGUZZI 1, LORENZO GIGLI1, LUCA SCIULLO1, (Graduate Student Member, IEEE),
ANGELO TROTTA 1, (Member, IEEE), AND MARCO DI FELICE1,2
1Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy
2Advanced Research Center on Electronic Systems ‘‘Ercole De Castro’’, University of Bologna, 40126 Bologna, Italy

Corresponding author: Cristiano Aguzzi (cristiano.aguzzi@unibo.it)

This work was supported by the INAIL within the BRIC/2018, ID = 11 framework, Project MAC4PRO (‘‘Smart maintenance of industrial
plants and civil structures via innovative monitoring technologies and prognostic approaches’’).

ABSTRACT The Web of Things (WoT) standard recently promoted by the W3C constitutes a promising
approach to devise interoperable IoT systems able to cope with the heterogeneity of software platforms
and devices. The WoT architecture envisages interconnected IoT scenarios characterized by a multitude of
Web Things (WTs) that interact according to well-defined software interfaces; at the same time, it assumes
static allocations of WTs to hosting devices, and it does not cope with the intrinsic dynamicity of IoT
environments in terms of time-varying network and computational loads. In this paper, we extend the WoT
paradigm for cloud-edge continuum deployments, hence supporting dynamic orchestration and mobility of
WTs among the available computational resources. Differently from state-of-art Mobile Edge Computing
(MEC) approaches, we heavily exploit the W3C WoT, and specifically its capability to standardize the
software interfaces of the WTs, in order to propose the concept of a Migratable WoT (M-WoT), in which
WTs are seamlessly allocated to hosts according to their dynamic interactions. Three main contributions
are proposed in this paper. First, we describe the architecture of the M-WoT framework, by focusing on
the stateful migration of WTs and on the management of the WT handoff process. Second, we rigorously
formulate theWT allocation as a multi-objective optimization problem, and propose a graph-based heuristic.
Third, we describe a container-based implementation of M-WoT and a twofold evaluation, through which
we assess the performance of the proposed migration policy in a distributed edge computing setup and in a
real-world IoT monitoring scenario.

INDEX TERMS Web of things (WoT), edge/cloud computing, service migration, software architecture,
performance evaluation.

I. INTRODUCTION
The impressive growth of the Internet of Things (IoT) in
terms of devices connected and of data produced can be
explained by the versatility of its paradigm, which applies to a
wide range of different use-cases, from digital manufacturing
to smart cities and environmental monitoring [1]. In such
domains, service mobility has gained considerable interest
for various purposes. On the one side, several large-scale IoT
applications operate in dynamic environments: consequently,
software solutions are requested to adapt to rapid changes

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

in the bandwidth/computational resources, in the number of
connected devices, and in service requirements. Several IoT
platforms like [2], [3] provide such a layer of adaptation
by supporting the seamless software mobility among the
nodes of an edge-cloud continuum. On the other side, mobile
IoT devices generating space/time-variant data streams are
further pushing the research towards flexible computational
architectures able to self-configure to meet the Quality of
Service (QoS) for the user applications [4]. This is the case of
Mobile EdgeComputing (MEC) [5] architecture (and closely
related concepts such as Cloudlet [6], Fog Computing [7],
and Follow Me Cloud [8]) that aim at running processing
tasks in the proximity of the data sources. A core component

228118 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8934-3303
https://orcid.org/0000-0002-0552-2444
https://orcid.org/0000-0002-7673-8410

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

of MEC architectures is the capability of offloading the
software services on the edge/fog servers closest to the cur-
rent user position [5], often by means of container/Virtual
Machines (VMs)mobility techniques [9], [10], and ofmigra-
tion policies driven by the physical mobility of the IoT
devices [11].

Service migration is not the only open challenge in
the IoT landscape, which comprises an uncountable num-
ber of protocols, stacks, and cloud ecosystems. Indeed,
most of the IoT environments are characterized by the
heterogeneity of hardware and software components, as
well as by the dynamicity of their interactions. Interoper-
ability issues are estimated to reduce up to of 40% the
potential revenues [12]. At the same time, novel business
opportunities can swell by enabling different IoT systems
to communicate together [12]. Although cloud ecosystems
can mitigate some of the interoperability issues by means
of Web technologies (i.e., REST APIs, JSON, Web Sock-
ets, etc.), they are often based on silos architectures with
implicit or explicit vendor lock-in [12]–[14]. Furthermore,
such solutions employ a sensor-to-cloud approach where
devices are managed through cloud-based connectivity, again
at the expense of limited extensibility. The Web of Things
(WoT) standard [15] by the W3C consortium represents a
recent and promising solution to unlock the potential of the
IoT by enabling interoperability across IoT platforms. The
interoperability support is managed at the application level
by defining a standard interface for IoT components (phys-
ical or virtual), known as the Thing Description (TD) [15],
which formally states the Web Things’ (WTs) capabilities or
affordances. Despite the recent appearance, some interesting
applications of the W3C WoT have been proposed so far on
different IoT domains [16]–[20]. At the same time, the WoT
reference implementation [21] does not support mobility of
software components among cloud/edge nodes, since the run-
time environment of a WT (called Servient in [21]) must be
statically deployed on a device.

In this paper, we address the two IoT issues previously
mentioned (i.e., service migration and service interoperabil-
ity) from a WoT perspective: more specifically, we aim at
extending the WoT potential for dynamic IoT environments
by supporting dynamic orchestration and mobility of WTs
among the available computational resources of the full IoT
spectrum (edge/fog/cloud nodes). The WT migration offers
novel opportunities compared to existing software mobil-
ity approaches in the MEC literature e.g. [5], [22]. Indeed,
since the interactions among the WTs are described through
uniform software interfaces (i.e., the TDs), fine-grained and
adaptive allocation policies can be engineered; such poli-
cies can migrate groups of WTs to meet system-wide QoS
requirements by taking into account the real-world network
and computational load conditions, and with much lower
implementation complexity for the service monitoring than
other ad-hoc solutions. At the same time, the mobility of a
WT from one node to another might impact the operations
of other WTs that were using it. Therefore, novel solutions

must be deployed tomanage theWT handoff and to guarantee
system consistency. This paper addresses research questions
related to bothWTmigration mechanisms andWTmigration
policies, i.e.:
• How to enable the seamless migration of a WT between
two nodes?

• How to optimize the performance of a WoT deployment
by orchestrating the WT allocations on a cloud-edge
continuum?

To address the issues above, we propose the Migratable
Web of Things (M-WoT), a novel architectural framework
supporting the dynamic allocation of W3C WTs to the avail-
able computational nodes. Specifically, we investigate how to
enable the statefulmigration ofWTs bymanaging the handoff
procedure on WT consumers. At the same time, we envisage
the presence of a WoT Orchestrator service, which is in
charge of monitoring the interactions among the WTs, and of
computing the optimal allocation of WTs to nodes, based on
high-level policies (e.g. data locality maximization, latency
minimization, etc). More in detail, three main contributions
are provided by this study:
• Wediscuss the advantages ofWTmigrationmechanisms
on two selected IoT use-cases, and then the components
of the M-WoT software architecture.

• We formulate the WT allocation as a multi-objective
optimization problem. Then, we propose a centralized
heuristic that aims at balancing the inter-host communi-
cation load (generated by the interactions among WTs)
and the computational load of each host.

• We validate the M-WoT operations through two
testbeds. First, we evaluate the performance of different
allocation policies on edge computing scenarios where
we vary the number of WTs and the interactions among
them. Second, we investigate the effectiveness of the
M-WoT framework on a generic IoT monitoring sce-
nario where real-time diagnostic services are dynam-
ically migrated from cloud to edge nodes based on
context conditions.

The evaluation analysis demonstrates that the proposed
heuristic can balance the inter-host communication and the
computational load in an effective manner when compared to
greedy policies. Moreover, in the IoT monitoring use-case,
the M-WoT solution is able to effectively reduce the diagnos-
tic latency compared to a state-of-art, no-migrate approach.

The remainder of this paper is structured as follows.
Section II reviews the IoT service migration approaches and
the W3C WoT architecture. Section III highlights the novel-
ties of the M-WoT framework and its suitability on selected
IoT use-cases. Section IV describes the M-WoT architecture
and its enabling components. Section V discusses the WoT
deployment as a multi-goal optimization problem and pro-
poses a graph-based heuristic for the allocation of WTs to
nodes. Section VI sketches the actual M-WoT implementa-
tion. The experimental results are presented in Section VII.
Section VIII draws the conclusion and discusses the future
works.

VOLUME 8, 2020 228119

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 1. The W3C WoT architecture proposed in [15].

II. RELATED WORKS
At the best of our knowledge, the problem of dynamic alloca-
tion and live migration of WTs can be considered relatively
new in the literature on WoT systems. At the same time,
there are plenty of scientific papers addressing the migration
of software services between edge/cloud nodes in order to
support the physical mobility of the IoT devices. For this
reason, we split the related works in two Sections. First, in
Section II-A, we briefly review the W3C Web of Things
(WoT) architecture, motivated by the newness of the standard
and by the need of introducing the terminology used along
the paper; also, we discuss the (few) tools and applications
developed so far. Then, in Section II-B we review architec-
tures and enabling technologies for service migration in the
IoT, by mainly focusing on Mobile Edge Computing (MEC)
approaches.

A. W3C WEB OF THINGS
The W3C WoT group started its activities in 2015 with the
aim of defining a reference set of standards enabling inter-
operability across different IoT systems [15]. The core of
the proposal is the definition of the Web Thing (WT), which
represents the abstraction of a physical or a virtual entity
whose metadata and interfaces can be formally described by
a WoT Thing Description (TD) [15]. The architecture of a
WT includes four building blocks of interest: the Interaction
Affordances, the Security Configuration, the Protocol Bind-
ings, and the Behaviour, as depicted in Figure 1. The first
three blocks are included in the TD: the latter can be defined
as a sequence of standardized, machine-understandable meta-
data allowing consumers to discover and interpret the capa-
bilities of a WT in order to interact with it. More in details:
• The Interaction Affordances (or simply Affordances
in the following) provide an abstract model of how
consumers can interact with the WT, in terms of prop-
erties (i.e. the state variables of the WT), actions
(i.e. commands that can be invoked on the WT) and
events
(i.e. notifications sent by the WT).

• The Protocol Bindings define the mapping between the
abstract Affordances and the network strategies (e.g. the
protocols) that can be used to interact with the WT.

• The Security Configuration defines the access control
mechanisms of the Affordances.

The TD can be encoded by means of the JSON-LD language,
hence embedding also semantic description [23]. Finally,
the Behaviour is the implementation of the WT, including
the Affordances, e.g. the code of its actions. All the blocks
above are executedwithin a software runtime named Servient,
which can indifferently act as a Server or as a Client. In the
first case, the Servient is said to host and expose Things, i.e.
it creates a run-time object serving the requests towards the
hostedWT, like accessing the exposed properties, actions and
events. In the second case, the Servient is said to consume
Things, i.e. it processes the TD, generates a run-time repre-
sentation called Consumed Thing, and makes it available to
those clients that are interacting with the remote WT.

Due to the recent appearance of the standard, the literature
on W3C WoT is still scarce and limited to few applica-
tions and supporting tools. The mapping of real-world IoT
devices to W3C WTs have been explored in [16]–[18] and
[19], respectively for the case of mobile phones, automotive
industry and wireless sensor networks. Specifically, in the
latter, the authors demonstrate how to deploy WoT-based
interoperable sensing applications able to manage heteroge-
neous sensors equipped with three different wireless access
technologies (Wi-Fi, BLE and Zigbee). Regarding the tools,
beside the ones implementing the W3CWoT Servient on dif-
ferent programming languages (e.g. Javascript in [21],
Python in [24]), we cite the WoT Store platform [20] that
supports seamless management of WTs and mash-up appli-
cations able to consume multiple, heterogeneous WTs at the
same time.

B. IoT SERVICE MIGRATION
A multitude of solutions has been proposed to enable the
seamless service migration among nodes of a distributed sys-
tem. We can classify the existing approaches into two broad
categories: static migration vs dynamic migration techniques.
In the first case, software migration is used as a synonym
for software modernization, i.e. the process of adapting the
capabilities of an existing system in order to be deployed on
a new operating environment; the reader can refer to [25]
for an exhaustive survey on the migration of legacy systems
toward cloud-based software. The second case (i.e. dynamic
migration) refers to the process of offloading the run-time
execution of software services from one node to another. We
focus on the dynamic case since it is more relevant for the
scope of the paper. For the IoT domain, we can further distin-
guish between user-induced and mobility-induced migration
approaches. The first case includes several different studies
on how to enable mobile applications to seamlessly migrate
between nodes during their normal operation [22]. The final
goal is to offer the best Quality of Experience (QoE) to
users while they switch from one device to another. To this
aim, in [26], the authors describe the TRAMP middleware
for the fine-grained mobility of multimedia applications;
the migration decision is manually defined by the users. In
mobility-induced approaches, software migration is achieved
by ensuring that the data management/processing is always

228120 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

occurring as close as possible to the current device location.
Such a conceptual model is generally denoted asMobile Edge
Computing (MEC) [5], although it presents several overlaps
with other state-of-art architectures, such as Cloudlet [6],
Follow Me Cloud (FMC) [8], and Fog Computing (FC) [7].
The latter has numerous different definitions: in this paper
we refer to the proposal in [27], which defines the FC as a
‘‘resource layer that fits between the edge devices and the
cloud data centers, with features that may resemble either’’.
A detailed illustration of service migration techniques and
strategies can be found in [5]; here, the unique challenges of
MEC compared to live migration for data centers and to han-
dover management in cellular networks are highlighted. Sim-
ilarly, in [28], the authors propose the concept of Companion
Fog Computing (CFC), a software architecture composed of
distributed layers, one running on the mobile device, and
another on a fog server; the latter is dynamically allocated to
nodes of a fog infrastructure in order to minimize the distance
from the current device location. Similarly, the study in [29]
proposes a cloudlet-based networking architecture including
a cooperative algorithm for workload mobility among the
nodes of the cluster. Generally speaking, MEC-related plat-
forms must address two main issues: (i) how to define the
service migration strategy, by taking into account the current
resource utilization of the nodes as well as the QoS of the IoT
application; (ii) how to implement the software mobility, by
also handling the migration of the execution state. Regard-
ing the first issue (migration policy), most of QoS-aware
service migration policies focuses on delay as the principal
performance indicator [30] and relies on multi-dimensional
Markov Decision Process (MDP) models to describe the
system evolution (i.e. the device mobility and consequen-
tial service mobility actions) over time (e.g. [11]). Since
mobility patterns might be difficult to collect in advance, an
increasing number of studies is investigating the application
of Machine Learning (ML) techniques for the computation
of the optimal migration policy; an example can be found
in [3], where the usage of Deep Reinforcement Learning
(DRL) technique is proved to maximize the users’ reward,
defined as the difference between the QoS and the migra-
tion cost. Among the non-delay oriented studies, we cite the
self-organizing service management platform for smart-city
proposed in [31], wherein the ETX (Expected Transmission
Count) metric is used to determine the optimal allocation of
IoT services to the fog nodes. Regarding the second issue (i.e.
software mobility), Virtual Machines (VMs) and containers
are the most investigated techniques to implement stateless
or stateful service migration. Proactive migration of VMs
according to predicted device mobility is considered in [9];
moreover, in order to reduce the network overhead induced
by theVM transfer, a container synthesis technique is applied,
allowing a fog node to quickly resume the VM execution by
applying deltas over a base image. The possibility to perform
horizontal (roaming) and vertical (offloading) migration of
IoT functions based on Docker containers is demonstrated
in [10]. From a performance perspective, the container-based

FIGURE 2. The M-WoT migration environment.

implementation is often considered more suitable for the vir-
tualization at the network edge than the VM-based [32]. This
is confirmed by several experimental studies, including [33]
that investigates the implementation of Docker-based virtu-
alization mechanisms for IoT data management and demon-
strates that the energy impact on single-board computers is
negligible. An alternative to the usage of VM/containers is
constituted by the migration of active code: to this purpose,
the ThingMigrate framework [34] enables the migration of
active JavaScript processes between different machines
by employing injection mechanisms to track the local state of
each function. With respect to the studies cited so far, the WT
migration addressed in this paper can be considered a special
instance of dynamic, agent-based [35] migration; at the same
time, it presents novel opportunities as well as novel technical
challenges which are discussed in detail in the Section below.

III. M-WoT: PRELIMINARY DEFINITIONS AND
MOTIVATIONS
We consider a distributed scenario composed of a set of com-
puting nodes distributed in the full stack of the IoT spectrum
(from edge to cloud), as depicted in Figure 2; each node is
W3C WoT enabled, i.e. it can host one or more Servients
(i.e. the run-time environment of theW3CWoT architecture),
and each Servient contains one single WT in running state.
We define the WT migration as the capability of dynamically
offloading a WT between different nodes, by stopping the
execution on the source node and re-spawning it on the
destination node. The migration process is assumed stateful,
i.e. the internal state of a WT and its TD should be moved
and updated together with the code. In particular, all the
current values of its Properties and the information describ-
ing the current computational context of the WT should be
considered as part of its state and hence migrated. Com-
pared to classical migration approaches (VM/container/agent
based) previously reviewed, the WT migration presents
unique advantages as well as novel research challenges to be
addressed:

• Challenge: Thing handoff management. The W3C WoT
allows seamless interactions among heterogeneous soft-
ware through the operations of WT consuming; if a WT
migrates to a different node, all the other WTs that were
consuming it must be notified in order to update their

VOLUME 8, 2020 228121

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 3. Two possible M-WoT use-cases: the data processing service migration (Figure 3(a)) and the Digital Twin migration (Figure 3(b)).

Consumed objects and point to the new TD address. The
case is depicted in Figure 2, where bothWTsA andB are
consuming WT C; the latter is migrated from Host 1 to
Host 2 at some future instant. As a result, a proper signal-
ing procedure must be employed in order to informWTs
A and B of when the activation of WT C at Host 2 has
been completed, so that they could consume again the
TD of WT C. Also, the migration process introduces an
handoff interval, during which WT C might not be able
to process remote invocations from WTs A and B; the
duration of such handoff is clearly a critical parameter
affecting the system performance.

• Advantage: Support to Edge-cloud continuum. Although
our implementation is based on the referenceW3CWoT
run-time [21], Servients might have been designed with
minimal requirements in terms of CPU/memory in order
to be executed also on edge servers or even on the
extreme edge (i.e. small devices, micro-controllers etc.).
As a result, an edge-cloud computing continuum can
be devised by allowing WoT software to be seamlessly
deployed and dynamically moved over all the nodes of
the continuum, in order to guarantee system goals such
as delay minimization, workload balancing, network
traffic reduction, privacy maximization.

• Advantage: Support to Group migrations. As followup
of the previous point, aWoTMigration framework could
support the mobility of groups of software components
(rather than of a single service like it occurs in MEC
approaches [5]) as a consequence of the active data
dependencies (i.e. interactions) among the WTs, beside
of the physical mobility of the IoT devices. Indeed,
each WT exposes its Affordances through the TD in
a standardized way; as a result, it is possible to build
a real-time dependency graph among all the WTs of a
distributed WoT system (as further detailed in Section
V) and consequently envisage allocation policies that
determine group migrations of interacting subsets of
WTs in order to maximize the data locality. Clearly,
group-based migration policies could be deployed also

on top of other micro-services architectures; however,
for the case of M-WoT, this feature could be supported
in a general, protocol-agnostic way since the interactions
among the WTs occur according to a standardized inter-
face, and hence they could be easily accounted through
the M-WoT monitoring layer described in Section IV-C.

Figures 3(a) and 3(b) show two possible use-cases of theWoT
migration, related to slightly different conceptual models of
WTs: the data processing service migration (Figure 3(a)) and
the Digital Twin migration (Figure 3(b)). More specifically,
Figure 3(a) depicts a Structural Health Monitoring (SHM)
application based on IoT/WoT technologies [36], [37], as
proposed among others by the MAC4PRO project [38]. We
assume that the monitoring system can work in two modes:
Normal and Critical, denoting two different QoS require-
ments for the risk detection. On the extreme edge there are the
sensors (e.g. accelerometers) monitoring the vibrations of the
building over time. The sensor data is made available through
the Sensor Web Things (SWT) providing functionalities of
data querying, and device status querying and updating. The
sensor data processing is handled by migratable WTs T1, T2,
T3 and T4 that implement respectively the functionalities of
data fusion, data cleaning, data alerting, data forecasting. In
Normal mode, T1, T2 are executed on a shelter/fog node in
proximity of the monitored structure, while T3 and T4 are
hosted on the remote cloud; this introduces some network
latency in detecting anomalous/dangerous situations (com-
puted by T3) but at the same time it minimizes the load on fog
nodes. At one point of the system execution, we assume that
consecutive data anomalies are detected on the row data (T2),
and hence themonitoring system switches its mode fromNor-
mal to Critic; this action might also request an higher degree
of responsiveness for the diagnostic system. In the M-WoT
environment, the mode change can be automatically handled
by migrating the T3 service from the cloud to fog nodes (or
vice-versa when themode switches again toNormal), without
any manual need of configuration, and without introducing
any explicit signaling mechanism among the involved WTs
(i.e. T2 and T3).

228122 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

Figure 3(b) depicts the second M-WoT use-case where the
migration involves WoT digital twins. The latter is defined in
the W3C standard as a virtual representation of a device or
a group of devices that resides on a cloud or edge node (. . .)
they can model a single device, or they can aggregate multiple
devices in a virtual representation of the combined devices’’
[15]. To this purpose, we consider a WoT application for the
automotive industry like the one proposed in [17]; a WT is
associated to each in-vehicle component in order to enable
seamless access and interaction to car signals. Similarly to
[17], the Sensor Web Things (SWTs) are in charge of acquir-
ing the data from the hardware of the vehicle. In addition, we
assume the presence of a Vehicle Web Thing (VWT), defined
as the digital twin of the vehicle as a whole; the VWT is
the unique point of access to a subset of the SWTs prop-
erties/actions/events, but it also exposes new Affordances
derived from the processing and fusion of multiple sensor
data, e.g. for real-time vehicle diagnostic. Due to the energy
overhead, the VWT is hosted externally to the vehicle, on fog
nodes owned by the municipality. While the vehicle moves
within the scenario, its VWT is dynamically spawned on the
closest fog node, similarly to the MEC applications [28],
[30], although here the physical mobility of a device induces
the mobility of a WT digital twin. In addition, we conceive
a city-wide scenario with many and heterogeneous VMTs,
associated to different vehicle types (e.g. cars, bikes, buses,
etc); the VMTs are in turn consumed by cloud-based City
Web Things (CWTs) that provide advanced mobility-related
services, such as smart parking, traffic monitoring, multi-
modal routing, etc. We highlight that the number of VMTs
can be highly dynamic over time, i.e. new Things might
be created or disposed, as an effect of the ground mobility;
similarly the computational load needed for the execution of
the VMTs and CWTs might vary over time. In our M-WoT
environment, the VMTs are dynamically allocated among
the cloud/fog nodes as they appear in the system; moreover,
multi-goal load-balancing policies can be used, i.e. to mini-
mize the distance from the data source (i.e. the vehicle) while
maximizing the utilization of the computational resources of
the fog/cloud nodes.

IV. M-WoT: ARCHITECTURE
TheM-WoT software architecture is depicted in Figure 4. We
assume a set of W3C WoT Servients, deployed on different
nodes; each Servient hosts exactly one WT. Differently from
a legacy W3 WoT deployment, which is assumed static,
the M-WoT enables WT mobility between different nodes.
To this aim, the M-WoT features two novel components,
respectively the Orchestrator and the Thing Directory; these
modules do not migrate and can be deployed either on the
edge (if the computational requirements are met) or on cloud
servers. In addition, a Monitoring Layer has been added to
the Servient’s stack. In the following, we detail the internal
structure of the three modules, while in Section IV-D we
clarify themodules’ operations when aWTmigration process
occurs.

FIGURE 4. The M-WoT software block diagram and main interactions.

A. THING DIRECTORY
The Thing Directory (TDir) serves as registry of the M-WoT
resources, i.e. of the active Thing Descriptors (TDs). More in
details, we assume two types of TDs, one associated to WTs,
and one to Servients; the latter describes the capabilities of
the run-time environment, and it is used to enable the func-
tionalities of theMonitoring Layer described in Section IV-C.
Once activated, each Servient registers its TD and the TD
of the hosted WT on the TDir. The TDir itself plays two
main roles. First, it serves as discovery service, i.e. when
queried by clients, it returns the list of TDs meeting the
query parameters; as a result, the Orchestrator module can
be aware of the list of Servients currently available in the
WoT scenario. Second, it supports generic push notifica-
tions towards WTs/Servients once specific system events
are detected, for instance a WT handoff completion. To this
purpose, let us assume that WT T1 has been consumed by
T2, which is periodically accessing one of its properties. In
case T1 is migrated on a different node, the actual data-
pipeline is broken unless T2 is notified about the mobility
event and the new service location. The notification process is
illustrated in the sequence diagram of Fig. 7, discussed later
in Section IV-D. Alternatively, a polling mechanism might be
employed (involving T1 and TDir in our example). However,
this approach might introduce significant network overhead
with consequent bandwidth wastage. Therefore it has not
been considered in our solution.

B. WT ORCHESTRATOR
The Orchestrator constitutes the core component of the
M-WoT architecture. As explained before, it exploits the TDir
to retrieve the list of active Servients (i.e. of their TDs).
Then, it periodically queries each Servient through its WoT
interface in order to collect live statistics, like the utilization
of the CPUs and the network traffic generated by the WT
interactions. Based on the received metric values and on the
optimization policy in use, the Orchestrator determines the
proper allocation of WTs/Servients to nodes. The allocation

VOLUME 8, 2020 228123

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 5. The internal structure of the Orchestrator.

plan is then transferred to an underlying layer (external to
M-WoT), generically called here Migration Substrate which
is in charge of implementing the physical software mobility
between the source and destination nodes. The steps above
are continuously executed by the Orchestrator during the
system lifetime; as a result, the dynamicity of the IoT/WoT
environment concerning the WT creation/disposal, network
bandwidth variation, policy update at run-time, is fully sup-
ported. Moreover, in order to favour the platform extensibil-
ity, the structure of the Orchestrator has been split into the
three main submodules of Figure 5, reflecting the internal
data pipeline:

1) ThingManager: it periodically polls data from the TDir
to manage the list of the active Servients/WTs and their
TDs. The list is used to gather periodic reports from
each Servient.

2) Optimizer: it runs the WT/Servient allocation policy.
At the current stage of implementation, the module
hosts the graph-based optimization algorithm defined
in Section V and the other greedy policies evaluated in
Section VII; however, we remark that any user-defined
policy implementing the interface towards the upper
(i.e. the Thing Manager) and lower (i.e. the Migration)
layers can be installed and used.

3) Migration: it receives the deployment plan from the
Optimizer, and it implements the WT handoff events.
First, it stops the execution of the WTs to migrate at
their actual nodes; then, through specific connectors,
it issues actions towards the Migration Substrate to
enable the physical transfer of the Servients (and of the
hosted WTs) from the source to the destination nodes.

The M-WoT architecture does not depend on any specific
software mobility technology. Instead, we have introduced
an abstraction layer - called the Migration Substrate- which
can employ any state-of-art solution (via proper migration

FIGURE 6. The M-WoT Servient internal structure. The new Monitoring
API module is highlighted in solid green.

connectors), such as Docker containers, VMs, or Javascript
processes [5], [34]. Those connectors will actuate the Opti-
mizer output plan received as input. Concretely, the current
implementation relies on Docker Swarm as a default migra-
tion connector, as better detailed in Section VI.

C. M-WoT SERVIENT
Finally, the M-WoT framework introduces light modifica-
tions to the Servient runtime [21] in order to feed the Opti-
mizer with real-time data about system performance. More
specifically, a Monitoring API layer has been introduced
between the WT application and the Scripting WoT runtime
as depicted in Figure 6. The layer is in charge of intercept-
ing the invocations to the Scripting API and of generating
periodic Thing Reports (TRs). The latter can be considered
a snapshot of the current Servient/WT execution, and it con-
tains the metrics’ values (both for the Servient and WT)
required by the Optimizer; in the Appendix (Section IX) we
report a fragment of the TR structure in use. The Monitoring
layer exposes all the data collected through a proper Affor-
dance action, which has been added to the Servient TD; by
invoking it, the Orchestrator can issue a new request of TR
generation to the Servient.

D. MIGRATION EXAMPLE
To summarize the operations of the three components pre-
sented so far, we provide an example of WT migration pro-
cess.We consider twoWTs/Servients, respectively TA/SA and
TB/SB (with TA running on SA and TB on SB), hosted on
nodes N1 and N2. We also assume that TB has consumed TA
and it is periodically reading some of its properties. At time
instant t , the Thing Manager queries SA and SB in order to
collect the TRs; this is implemented by consuming the TDs
of the Servients and issuing a retrieveReport command
(details in SectionVI). Then, theOptimizer is executed; a new
allocation is produced where TA must be moved to N2. The
sequence of operations performing the migration of TA from
N1 to N2 are shown in Figure 7. First, the current execution of
TA is stopped: this is performed by the Orchestrator (andmore

228124 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 7. Sequence diagram of a WT migration event.

specifically by the Migration submodule) by invoking the
stop action on SA which, in sequence, stops the WT appli-
cation, cleans the system resources, retrieves the application
data context (i.e. the current state) and returns it. Hence, the
application context of TA is stored as metadata inside the
TDir for later use. Next, the Orchestrator (through a proper
Connector) issues a request to the Migration Substrate (e.g.
Docker Swarm) in order to move TA/SA to the destination
node (N2). After SA has been respawned, it register its new
TD (with the updated network addresses of its Affordances)
in the TDir. Consequently, it queries the TDir to retrieve the
TA’s context; the latter is deserialized and injected as a global
object inside the TA’s application script. Finally, TA starts
the initialization process and exposes itself by triggering the
registration of its TD on the TDir. At this point, TA resumes in
the same state of when it has been stopped and it is considered
fullymigrated. The TDir pushes a notification to TB regarding
the handoff process; TB retrieves the new TD of TA from the
TDir and consumes it again in order to point to the updated
service location. Finally, TB restarts interacting with TA and
accessing its affordances.

V. M-WoT: MIGRATION POLICY
In the following, we formally characterize the operations
of the Optimizer as a multi-objective optimization prob-
lem. For the purpose of this study, we consider a
twofold optimization process which takes into account

the load-balancing issue (i.e. how much each host1

is loaded), and the network communication overhead
(i.e. how much data is exchanged among hosts). The opti-
mization problem is formally defined in Section V-A. Next,
a graph-based heuristic is proposed in Section V-B; its com-
putational complexity is calculated in Section V-C. Table 1
reports the list of variables introduced in Section V-A.

A. PROBLEM FORMULATION
Regardless of the target use-case, we consider a generic WoT
deployment with NWT active WTs. The system evolves over
ordered time-slots T = {t0, t1, . . . }; each slot has a duration
of tslot seconds and is equal to the interval between consecu-
tive executions of the migration policy. LetWT = {wt1,wt2,
. . . ,wtNWT } be the set of WTs, which can be heterogeneous
in terms of data model (e.g. the Affordances). Without loss
of generality, let Ai = {a1i , a

2
i , . . . , a

NAi
i } be the Affordances

exposed by wti in its TD; each Affordance can represent a
property, an action or an event. The set Ai is assumed static,
i.e. wti cannot update its TD at run-time (e.g. by defining
new properties). Let H be the set of hosting nodes, with
H = {h1, h2, . . . , hNH } and assumed heterogeneous in terms
of hardware. Indeed, each node may have a different com-
putational power; without loss of generality, this is modeled
through a generic computational power index γ (hl),∀hl ∈ H
which abstracts from the hardware details, and is defined

1The terms hosts and nodes are used interchangeably in this paper.

VOLUME 8, 2020 228125

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

TABLE 1. List of variables and parameters introduced in Section V-A.

as the maximum number of Things that can be executed
on that host. The allocation of WTs/Servients2 to hosts is
defined by the policy function P : WT × T → H ; for each
WT wti, the value P(wti, tk) = hm specifies the machine
(i.e. hm) which is hosting it at time slot tk . Based on the
output of the allocation policy, the set PTm,k ⊆ WT denotes
the list of WTs that are hosted by host hm at time-slot tk ,
i.e.: PTm,k = {wti ∈ WT | P(wti, tk) = hm}. According
to the W3C WoT architecture surveyed in Section II, each
WT wti can interact with another WT wtj by first consuming
it. This is modeled by assuming that, at each time-slot tk ,
wti can issue a list of requests Ri,j,k = {r1i,j,k , r

2
i,j,k , . . .} on

the consumed wtj; each request ryi,j,k refers to an Affordance
of wtj, and it consists in: a property reading/writing, action
invoking or event processing. It is worth highlighting that the
notation above assumes that the same Affordance axi might
be activated multiple times by wti during the same time-slot,
although they are considered different requests (e.g. WT wti
reads twice the same property axj on WT wtj during time-slot
tk). The implementation of each request ryi,j,k involves some
data exchange between WTs wti and wtj; let B(r

y
i,j,k) be the

data exchanged (in bytes) between the two WTs, including
both the eventual parameters passed from wti to wtj as well as
the eventual return values from wtj to wti. The B(r

y
i,j,k) value

is included in the TR message, which is periodically sent by
each WT to the Optimizer as previously described in Section
IV. We denote with B(i, j, k) =

∑
B(ryi,j,k) ∀r

y
i,j,k ∈ Ri,j,k

the total communication load occurring betweenWTswti and
wtj at time slot tk . Clearly, B(i, j, k) = 0 whether wti is not
consumingwtj at time tk , or no interaction occurs among them
(i.e. Ri,j,k = ∅).

2For ease of disposition, we refer to WT migration in the following by
meaning also the migration of the Servient hosting it. We do not model the
Servient in the theoretical framework, since we assume that each Servient
hosts exactly one WT.

The goal of the Optimizer is to determine the policy which
computes - at each time-slot tk - the optimal trade-off between
computational resource utilization (i.e. load balancing over
the hosts) and data locality (i.e. how much data is transferred
among the hosts). To this purpose, we define the Network
Overhead (NO) metric as the total inter-host communication
load (in bytes) occurring due to interactions among WTs
hosted by different nodes. More formally:

NO(tk) =
∑

wti∈WT ,wtj∈WT ,P(wti,tk)6=P(wtj,tk)

B(i, j, k) (1)

We clarify that the NO(tk) metric above quantifies the end-to-
end, application-layer, communication traffic between nodes
of the M-WoT cluster, generated by the interactions among
different WTs; it does not include the network-layer over-
head (e.g. caused by multi-hop message forwarding among
the routers) since the M-WoT framework is implemented at
application layer and the knowledge of the topology of the
underlying network infrastructure is not assumed.

Similarly, we introduce the Host Fairness (HF) metric
defined as the difference between the most loaded and most
unloaded host of the cluster, i.e.:

HF(tk) = maxhm∈HL(hm, tk)− minhm∈HL(hm, tk) (2)

here, L(hm, tk) defines the computational load ratio of hm at
time-slot tk , and it is related to the number of WTs hosted by
it over its computational power, i.e.:

L(hm, tk) =
|PTm,k |
γ (hm)

(3)

Let ptkwti,hm be the binary variable indicating theWT alloca-
tion, defined ∀tk ∈ T , ∀wti ∈ WT , and ∀hm ∈ H as follows:

ptkwti,hm =

{
1 if P(wti, tk) = hm
0 otherwise

(4)

228126 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

Through the NO and HF metric introduced above, the migra-
tion problem can be formally defined as follows:

min
p
tk
wti,hm

NO(tk) (5)

s.t. L(hm, tk) ≤ 1 ∀hm ∈ H (6)

HF(tk) ≤ 1 (7)

Constraint 6 ensures that the allocation on each host
does not exceed the computational capabilities of that host
(γ (hm)). In Constraint 7, 1 is a user-defined parameter,
which quantifies the trade-off previouslymentioned. It is easy
to notice that the HF and NO metrics are tightly coupled:
minimizing the network load can be achieved by a policy
which allocates all the WTs to the same host. However, this
constitutes the worst case for the load fairness. Hence, two
extreme scenarios are possible:
• The system goal is to minimize the data exchanged over
the network, regardless of the service latency; this might
the case of a edge-cloud IoT scenario, where the stake-
holder is interested in minimizing the amount of data
transferred toward a remote infrastructure for privacy
reasons. In this case, 1 = ∞.

• The system goal is to minimize the service latency, by
avoiding the presence of performance bottlenecks, i.e.
overloaded hosts, while still mitigating the amount of
inter-host communications. In this case, 1 = 1.

All the intermediate situations are modeled through a proper
tuning of the 1 parameter, which is assumed as input of the
optimization problem.

B. PROPOSED HEURISTIC
We propose a graph-based heuristic that ensures the con-
straint 7, while relaxing the constraint 6 and addressing the
goal function (Equation 5) through a greedy approach. The
solution relies on the construction of a WT dependency
graph G(V ,E,W ,L) which models the interactions among
the WTs:
• V is the set of vertexes; each vertex represents a WT,
hence V = WT and vi = wti ∀wti ∈ WT .

• E is the set of edges; each edge el(vi, vj) connects two
vertexes vi, vj ∈ V and models the interaction between
the two WTs. More specifically, there exists the edge
el(vi, vj) only if B(i, j, k) > 0 or B(j, i, k) > 0.

• W : E → R is a weight function, assigning a cost to
each edge el(vi, vj) ∈ E . Here, the value W (el(vi, vj))
quantifies the total data exchanged among WTs, in case
wti is consuming wtj or vice versa, i.e. W (el(vi, vj)) =
B(i, j, k)+ B(j, i, k).

• L : V → R is a load function, assigning a cost
to each vertex v ∈ V . If we assume to know the
CPU load (C(r)) induced by each request received by
wtj, then L(vj) can be defined in a fine-grained way
as L(vj) =

∑
wti∈WT

∑
r∈Ri,j,k C(r). In this paper, we

do not assume such knowledge, hence we generally set
L(vi) = 1 ∀vi ∈ V , i.e. all WTs are assumed to produce

the same load, while the total load of host hm (denoted
as L(hm) in the following) is simply the number of WTs
hosted.

The graph G is built and continuously updated by the Opti-
mizer by processing the TR messages received by each
Servient. At the beginning of each time-slot (e.g. tk), the
Optimizer visits the graph and allocates the WTs to hosts
according to the policy output (i.e. the PT (hi, tk) values);
since the policy is computed once for each slot, we omit the
temporal notation (i.e. the tk) in the rest of this Section.

The rationale of the proposed policy is the following. First,
we compute the set of connected components on the depen-
dency graph G. By construction, each component contains a
closed set of interacting WTs; hence, the network overhead
occurring among different graph components is equal to zero.
The load of each component is defined as the sum of loads of
its WTs; next, graph components are ordered based on their
load values, and assigned to hosts in a round-robin way. In
case the constraint 7 (load fairness) is satisfied, the algorithm
stops its execution. Otherwise, we break the connected com-
ponents computed so far (hence, introducing some network
overhead at each iteration) by iteratively migrating one WT
from the most loaded host to the most unused one, till the
constraint 7 is satisfied. The migrated WT wti is selected
in a greedy way as the one which minimizes the network
overhead, computed as the difference between: (i) the new
overhead generated when detaching wti from the source host
and (ii) the performance gain on the destination host, caused
by the fact that wti has become a local service on that host.
Algorithm 1 shows the pseudo-code of the pro-

posed heuristic. First, we build the dependency graph
G(V ,E,W ,L) and we compute its set of connected compo-
nents, denoted as GC at line 1. The load of each component
Gi (i.e. L(Gi)) is estimated as the sum of the loads of its
vertices (line 3). Then, we order the setGC based on the load
values, and the set of hosts H based on the computational
power of it, represented by the γ metric. To this purpose, at
lines 5-6, the function Sort (not reported here) is sorting a
set passed as first argument in descending order according to
the metric values given by the second argument. The loop at
lines 8-13 assigns sub-graphs to hosts in a round robin, by also
updating the load for each host as the load of its vertexes/WTs
(line 11). Next, we check whether constraint 7 is satisfied
through the CheckBalanced function (lines 30-39), which
also returns the hosts associated to the highest and lowest load
values, respectively hmax and hmin. If the load difference is
lower than the user-threshold 1, than the current allocation
is returned. Vice-versa, a greedy mechanism is implemented
through the loop at lines 15-27; here, at each iteration, a
candidate WT vs is migrated from hmax to hmin (lines 22-25)
(by consequently updating the per-host load information)
and the load balance condition is evaluated again at line 26.
The WT/vertex to migrate (vs) is selected as the one that
minimizes the overhead function at line 21. The latter takes
into account: (i) the total amount of network communications
(in bytes) between vs and any otherWT hosted by hmax , which

VOLUME 8, 2020 228127

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

Algorithm 1 The Graph-Based Heuristic
Input: Dependency graph G(V ,E,W ,L), Time-slot tk
Output: Allocation sets PT (hm, tk)∀hm ∈ H

1 GC = {G1,G2, . . . ,GNC } ← GetGomponent(G)
2 forall the Gi ∈ GC do
3 L(Gi)←

∑
v∈Gi L(vi)

4 end
5 GC ← Sort(GC,L)
6 H ← Sort(H , γ)
7 cont ← 0
8 while GC 6= ∅ do
9 Gh← Head(GC)
10 PT (cont, tk)← PT (cont, tk)

⋃
Gh

11 L(hcont)← L(hcont)+ L(Gh)
12 cont ← (cont + 1)%NH
13 end
14 〈balanced, hmin, hmax〉 ← CheckBalanced(H ,1)
15 while balanced ==false do
16 forall the vi ∈ PT (hmax , tk) do
17 loss← TotInteractions(vi,PT (hmax , tk))
18 gain← TotInteractions(vi,PT (hmin, tk))
19 overhead(vi) = loss− gain
20 end
21 vs← argmin(overhead(vi)) ∀vi ∈ PT (hmax , tk)
22 PT (hmin, tk))← PT (hmin, tk)

⋃
{vs}

23 L(hmin)← L(hmin)+ L(vs)
24 PT (hmax , tk))← PT (hmax , tk) \ {vs}
25 L(hmax)← L(hmax)− L(vs)
26 〈balanced, hmin, hmax〉 ←

CheckBalanced(H ,1)
27 end
28 return PT
29

30 Function CheckBalanced(H ,1):
31 hmin← argmin(L(hi)) ∀hi ∈ H
32 hmax ← argmax(L(hi)) ∀hi ∈ H
33 niter ← niter + 1
34 if L(hmax)− L(hmin) ≤ 1 then
35 balanced ← true
36 else
37 balanced ← false
38 end
39 return balanced, hmin, hmax
40

41 Function TotInteractions(vs, S):
42 interactions← 0
43 forall the vj ∈ S do
44 interactions← interactions+W (e(vi, vj))
45 end
46 return interactions

will now become inter-host communications and hence will
constitute a network overhead after the WT migration (the
value is stored within the loss variable at line 17); (ii) the

total amount of network communications (in bytes) between
vs and any other WT hosted by hmin, which will now occur
locally (intra-host communication) and hence will reduce
the network overhead (the value is stored within the loss
variable at line 18). The computation of gain/loss values is
performed through the helper functionTotInteractions
(lines 41-46) that returns the total number of interactions
occurring between a target vertext/thing (vs) and a set of
vertexes (S) provided as inputs, over the dependency graph G.

C. COMPUTATIONAL COMPLEXITY
The computational complexity is expressed in terms of NW
(number of WTs) and NH (number of nodes) for the worst
case scenario. At line 1 of Algorithm 1, the connected com-
ponents of graphG are computed; this operation is completed
in time O(NW) through a DFS graph visit. Then, from line
8 to line 13, the connected components are assigned to the
computational nodes; again this is performed in O(NW). The
complexity of the balancing loop (from line 15 to line 26)
depends on the 1 value and on the L function definition. We
assume that all hosts are homogeneous (γ (hm) = 1 ∀hm ∈
H), hence L(hm, tk) = PTm,k . The assumption is compliant
with the experimental analysis presented in Section VII. By
considering a totally unbalanced allocation of WTs to nodes,
the loop is executed forNW−1 times; the internal loop (lines
16-20) has complexity of O(NWNH)

2 since we visit each WT
hosted by the most used node, and for each WT we compute
the total NO with the WTs hosted on the most unused node.
Finally, the CheckBalance function loops over the NH
set hence it has complexity of O(NH). Putting all together,
the complexity of Algorithm 1 is O(NW) in case the load
balancing procedure is not executed (e.g. 1 = ∞). Vice
versa, it is dominated by the loop of lines 14-26, and it has

complexity equal to
O(N 2

W)
O(N 2

H)
+O(NW)·O(NH). Since we expect

that NW � NH , the overall complexity of Algorithm 1 is
∼ O(N 2

W).

VI. M-WoT: IMPLEMENTATION
We detail here the implementation of the architecture com-
ponents presented in Section IV. Our solution extends the
Thingweb node-wot [21] framework, the official reference
implementation of the W3C WoT Working Group, to which
we added specific primitives in order to support the WT
migration process.

A. THING DIRECTORY & ORCHESTRATOR
The TDir is implemented as a dedicated (non-migratable)
WT, which is hosted by a WoT Servient exposing a specific
API for managing TDs and contexts. Among the most impor-
tant interaction Affordances we cite: the registerThing
action that takes a TD as input, and makes it globally avail-
able to the other M-WoT components; the getThingById
and listThings actions, which respectively return one
or more TDs based on the id or on a semantic filter;
the getContextById action, which returns the context
associated to a WT, and the thingRegistered event,

228128 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

which is triggered each time aWT registers itself to the TDir,
and causes its TD to be broadcasted to all the subscribers.
The Orchestrator is implemented as a Node.js application
written in TypeScript and using theNest3 (v6) framework
in standalone application mode. The Orchestrator includes
several modules working in synergy, and corresponding to the
three components presented in Section IV-B:
• Thing Manager: it provides a TasksManager
capable of executing generic tasks at a specific
schedule; the functionality is implemented by the
@nestjs/schedule package, which in turn uses
the node-cron4 package. Among the others, we
cite the collectReports task that periodically
retrieves the list of active WTs through the TDir and
invokes the retrieveReport action on each one of
them to get the corresponding TRs.

• Optimizer: it provides the data structures representing
the current status of the M-WoT deployment. In par-
ticular, it records the live metrics of WTs (i.e. interac-
tions with other WTs) and the list of the hosting nodes.
Moreover, it provides the Policy abstract class, with
a getAllocation method that returns the planned
allocation of WTs to nodes (i.e. the PT (hm, tk) sets of
Algorithm 1). Any new policy installed in the Optimizer
must implement the method above.

B. WoT SERVIENT
The default node-wot tool [21] has been extended in two
directions: (i) the script run time has been proxied with a
monitoring module, and (ii) the default CLI implementation
has been modified to handle WT state injection and retrieval.

1) MONITOR APIs
The Monitoring API is a collection of Typescript classes
and functions collecting the data needed by the Opti-
mizer. More specifically, the Monitoring API intercepts any
invocation of the WTs to the underlying WoT scripting func-
tions, and updates the number of activations of each prop-
erty/action/event as well as the total time of completion.
Then, it stores such data inside the TR, whose structure is
reported in Section 1. The main fields of the TR include: the
id of the WT being monitored, the hostID of the node
hosting the WT/Servient, the serviceID used to map the
WT to the corresponding docker swarm service, the average
CPU and memory utilization of the node, and the Interaction
List. The latter contains statistics related to the interaction
with each consumed WT, and more specifically the number
of times a specific Affordance has been activated, and the
latency involved in the request-response.

2) CONTEXT MIGRATION
In case of active WT, the M-WoT framework supports the
migration of its context, i.e. all the information characterizing
the internal state and including: Global variables of

3https://nestjs.com/
4https://github.com/kelektiv/node-cron

the Thing Application, the Properties values and the
current State of eventual external libraries in use. Before
migration can start, all the possible running operations should
be interrupted and the context must be collected. This has
been implemented by adding the stop method to the TD of
the WT, which disables all its Affordances in order to avoid a
possible state change during the context saving. After that, it
collects the WT Context and returns it to the Servient; the
context is then stored on the TDir as described in Section IV.
After the new Servient has been deployed, and before running
the migrated WT, it makes a request to the TDir (by using
the Thing ID) for retrieving the context. The latter is then
passed to the WT to be loaded, hence restoring the state at
the time of migration. For sake of simplicity, and to ease the
programmers’ tasks, we automatized the process of adding
the auxiliary functionalities inside the WT behaviour. More
in details, the methods for stopping the WT Affordances and
returning the context are automatically injected into the code
of the WT application by the Servient before exposing it.
The Servient searches for a specific comment in the script
(/*INIT*/) to understand whether and where the M-WoT
code should be inserted. The only operation required to the
programmer in order to make a WT migration-enabled is to
add such comment to the application code.

VII. EVALUATION
In this Section, we test the performance of the M-WoT
framework via a twofold experimental evaluation. First,
in Section VII-A we compare different migration policies,
including multiple variants of the graph-based heuristic
presented in Section V, on ad-hoc edge scenarios. Then,
in Section VII-B we investigate the effectiveness of WT
migration mechanisms on the edge-cloud continuum. More
in detail, we evaluate a concrete IoT structural monitor-
ing application inspired by one of the use cases pre-
sented in Section III (see Figure3(a)). The characteristics
and parameters of each scenario are discussed separately in
Sections VII-A and VII-B.

A. POLICY ANALYSIS
We consider a distributed setup composed of three edge
servers (i.e., NH = 3), physically located at the DISI/ARCES
data centers of the University of Bologna, and connected
through an Ethernet LAN, at one hop distance one from
each other. Specifically, two servers are equipped with 4-core
2 GHz CPUs and 4 Gb of RAM, while the third server is
equipped with an Intel Xeon E5440 processor with 32 Gb of
RAM. Moreover, the Orchestrator and the TDir have been
installed on a different node within the same data center.
Therefore, in total, the experimental setup is composed of
4 nodes, three of which constitute the M-WoT deployment
space, and can be used to host the WTs. On this space, we
deployed NWT Servients, each hosting exactly oneWT; at the
startup, the Servients are randomly allocated over the avail-
able NH nodes. The WT interactions are modeled as follows.
We abstract from the physical meaning of the WT and the

VOLUME 8, 2020 228129

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

correspondence to specific real-world applications since the
focus is on the assessment of the migration operations and
on the evaluation of the policies’ performance. Hence, each
WT exposes exactly one action in its TD (e.g. test), which
computes a sequence of trigonometric operations (mainly tan
and atan) in order to generate some CPU load. Each WT
(e.g. wti) consumes exactly other NC WTs, chosen randomly
among the NWT available. On each consumed thing wtj, wti
issues a request for the test action every 1.5 seconds. In
order to automatically apply the test configurations on each
WTs, we implemented a Mashup application, i.e. a WoT
client that is in charge of consuming the WTs and of passing
them the proper setup (e.g. the list ofWTs to consume). Every
tf = 45 seconds, the Orchestrator collects the Thing Reports
(TR) produced by each Servient; every 190 seconds, a new
WT allocation is computed by the Optimizer according to the
current policy, and implemented through proper WT migra-
tions among the edge servers. The latter is also the duration of
one time slot (i.e. tslot = 190 seconds), in accordance with the
problem formulation presented in Section V-A. The setting
of tf and tslot parameters allows the Optimizer to collect at
least three reports from each WT and hence to estimate the
WT interactions before computing a new allocation of WTs
to nodes.

The performance analysis is based on the following
metrics:
• Network Overhead (NO): this is the performance index
defined by Equation 1 and quantifying the amount of
inter-host network communications produced by remote
WT interactions. Differently from the theoretical model,
we compute the NO in terms of number of interactions
rather than of bytes, since all the WT interactions refer
to the same affordance (i.e. the test action); this is the
equivalent to set B(i, j, k)= 1 in Equation 1, ∀wti,wtj ∈
WT , tk ∈ T .

• CPU Fairness (CF): this is the performance index
defined by Equation 2 and quantifying the fairness
unbalance in terms of max-min difference of the aver-
age CPU occupation loads among the NH nodes of the
cluster. We set γ (hl) = 1,∀hl ∈ H .

• Thing Fairness (TF): this is similar to the CF metric,
however the fairness unbalance is expressed in terms of
number of WTs hosted respectively by the most loaded
and unloaded node (rather than of average CPU values).

• Interaction Latency (IL): this is the average latency
required to perform a WT action invocation issued by
an external WT; more explicitly, this is the average time
lapsed from when wti issues a test action on wtj to
when the corresponding reply is received. Hence, it takes
into account both the processing delay and the network
delay in case wti and wtj are executed on different nodes
of the cluster.

We compared the following policies:
• NoMigrate: this is the state-of-art WoT solution, i.e. the
WTs are statically deployed on nodes and they are not
migrated during the whole system lifetime.

• Greedy NetLoad: this is a greedy policy which aims at
minimizing the NO metric. At each time slot, it selects
theWT generating the highest NO, and moves it towards
the same node of the consumer WT.

• Greedy CPULoad: this is a greedy policy which aims at
minimizing the CF metric. At each time slot, it selects
the edge node of the cluster associated with the high-
est average CPU load, detaches one WT and moves it
towards the node with the lowest CPU load.

• Graph-based, 1 = ∞: this is the WT dependency-
graph policy presented in Section V; we set 1 = ∞,
hence the policy aims exclusively at minimizing the
NO metric, while no load-balancing action is executed
(i.e. lines 16-26 of Algorithm 1 are skipped).

• Graph-based, 1 = 5: this is again the policy of
Section V, where the balance parameter is put into
action. The policy computes a minimal NO solution
ensuring that TF metric cannot exceed the 1 threshold
equal to 5.

• Graph-based, 1 = 1: this is similar to the previous
policy, however we set the maximum balancing of the
WT allocations over the nodes of the cluster.

For each configuration, we ran 10 repetitions, and then
averaged the metric values; on each repetition, a random
initial allocation of WTs to nodes, and random dependencies
among the WTs are considered.

Figure 8(a), 8(b), 8(c) and 9(a) show the metrics previously
introduced when varying the policy in use and the NWT
configuration, i.e. the number ofWTs in the scenario. TheNC
value is fixed and equal to 3, i.e. eachWT consumes exactly 3
peers, randomly selected. From the NO values of Figure 8(a),
we can notice that the amount of inter-host communications
increases with the number of active WTs, as expected. At
the same time, the Graph-based and the NetLoad policies are
more effective than the NoMigrate and the CPULoad since
they both aim at allocating interactingWTs on the same node;
the NO performance gain of the Graph-based policy can be
tuned through the1 parameter. For1 = ∞, theNO is always
zero, since theWT dependency graph is likely connected (this
is also due to NC = 3); as a result, all the WTs are moved to
the same edge node, as better highlighted below. For 1 = 1
and 1 = 5, the Graph-based policy introduces some NO
due to the load-balancing constraint, but still lower than the
NoMigrate, hence it is preferable to a random allocation. The
load-balancing capabilities of the six policies are investigated
in Figure 8(b) which shows the TF metric as a function of
the number of WTs; for the Graph-based with 1 = ∞, the
TF is always equal to the number of WTs in the scenario,
since all the WTs are allocated to the same node. Vice versa,
we can notice that, for 1 = 1 and 1 = 5, the TF value
is always lower than the required threshold, demonstrating
the effectiveness of the load-balancing mechanism. The fair-
ness in terms of WTs translates into a better utilization of
computational resources, as investigated in Figure 8(c). Here,
the CF metric is shown for the six policies; we can notice
that the Graph-based heuristic with 1 = ∞ and 1 = 1

228130 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 8. The NO, TF and CF metrics for the six policies when varying the number of active WTs are shown respectively in Figures 8(a), 8(b) and 8(c).

FIGURE 9. The average utilization of each computational node is shown in Figure 9(a). The IL metric when when varying the number of active WTs is
shown in Figure 9(b). The NO metric as a function of the WT degree is reported in Figure 9(c).

are respectively the worst and optimal cases, once again
demonstrating the versatility of our approach. By comparing
Figures 8(a) and 8(c), we can also appreciate that the Graph-
based policies (with 1 6= ∞) are able to achieve a better
trade-off between NO and CF metrics when compared to
the two Greedy policies; based on the system requirements
(i.e. data locality or resource utilization), the administrator
can achieve the wanted performance trade-off by properly
tuning the 1 parameter, whose optimal setting is clearly
scenario-dependant. Figure 9(a) provides additional insights
on the WT allocation, by showing, for the Graph-based poli-
cies and different values of 1, the average CPU utilization
of each node of the cluster (denoted by the colors on each
bar); the CPU values are normalized between 0 and 100%. It
is easy to notice that lower values of 1 correspond to more
balanced utilization of the computational resources of the
cluster, while for 1 = ∞ only one node is used. Finally,
Figure 9(b) shows the IL metric for the six policies; we
highlight that the latency is not taken into account in the
optimization framework of Section V, although delay-aware
policy can be designed and installed in the Optimizer as
future work. Nevertheless, the Graph-based with 1 = ∞
overcomes the other competitors for all the configurations of
WTs; this is due to the reduction of communication latency
since all the WT interactions occur locally on the same node.
In Figures 10(a), 10(b), 10(c) we expand the evaluation by
considering the impact of different WT interaction amounts

on the system performance. More specifically, we consider
a fixed number of WTs (NWT = 15), while on the x-axis we
vary the WT degree (NC), i.e. the number of peers consumed
by each WT, again selected in a random way. Figure 10(a)
depicts the NO metric for the six policies; as expected, the
amount of inter-host communication increases with the NC
values on the x-axis. The only exception is the Graph-based
with 1 = ∞: similarly to the previous analysis, the NO is
zero since interacting WTs are allocated to separate nodes,
however more than one connected component is found on
the dependency graph for NC = 1 and NC = 2. As a result,
the CF metric of the Graph-based with 1 = ∞ shows the
increasing trend of Figure 10(a); for NC = 1 and NC = 2, a
more balanced allocation is achieved since the graph com-
ponents are allocated to different nodes, while for NC = 3
the graph is fully connected hence the whole workload is
allocated to the same node. Comparing 9(c) and 10(a), we
can appreciate again how the Graph-based policies (with
1 6= ∞) are able to capture a better NO-CF tradeoff than
the NoMigrate and greedy policies. This translates into a
relevant performance gain of theGraph-based policies for the
IL metric in Figure 10(b); for NC = 1, the latency reduction
provided by the Graph-based policy over the NoMigrate is
up to 37% with 1 = ∞, 13% with 1 = 5.

In the analysis presented so far we considered WoT sce-
narios where the number of WTs is fixed at startup, hence
the WT discovery process can be considered static over time.

VOLUME 8, 2020 228131

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 10. The CF and IL metrics when varying the WT degree are shown respectively in Figures 10(a) and 10(b). The NO over time-slots in a dynamic
WoT deployment where the number of WTs is varied over time is reported in Figure 10(c).

In Figures 10(c) and 11(a) we analyze the performance of
M-WoT on a dynamic environment where the number of
active WTs (and hence the amount of traffic and computa-
tional loads) is varying over time. More specifically, we setup
the system with NWT = 0. Every 360 seconds, a new WT is
created and added to the scenario; eachWT consumes exactly
one peer (NC = 1). Figure 10(c) shows the NO metric over
system evolution, expressed in time-slots; we remind that
each time-slot corresponds to the execution of the Optimizer
policy, and this event occurs every 190 seconds. It is easy to
notice that the NO metric increases significantly over time
for the NoMigrate policy as a consequence of the creation of
new WTs, and hence of the additional inter-host communi-
cation introduced in the system; vice versa, the Graph-based
policies are able to adapt the WT allocation so that the NO
minimization goal is continuously met. The adaptiveness of
M-WoT to network load conditions is further demonstrated
by Figure 11(a) which shows the TF metric over time slot; for
the case of Graph-based with1 = ∞, the TF increases over
time as a consequence of the fact that -by adding new WTs
in the system- larger connected components could be created
and migrated to the same node. Vice versa, the Graph-based
policies with 1 = 5 and 1 = 2 dynamically allocate the
WTs so that the load-balancing constraint (reflected by the1
value) is continuously satisfied.

Finally, we evaluated the scalability of the proposed
solution by monitoring the CPU and RAM consump-
tion on the Orchestrator and Thing Directory node.
Figures 12(a) and 12(b) show our findings. The results were
obtained by sampling the container metrics every second, and
then averaging the results for different number of deployed
WTs. It is possible to notice that the consumption grows
linearly but it is pretty negligible even with 100 WTs.
Also, the overhead introduced by the Graph-based policy
is only slightly higher than a NoMigrate policy, although
M-WoT must execute the WT allocation procedure and the
handoff procedure detailed in Section IV-D. Clearly, despite
such positive results, the centralized Orchestrator might
still become a performance bottleneck in large-scale WoT
deployments; to address the issue, we can envisage the usage
of a federated network of Orchestrators, each controlling a

specific region of nodes. Such distributedM-WoT framework
would require proper data replication, load-balancing and
gossiping mechanisms, which we plan to investigate as future
works.

B. USE-CASE ANALYSIS
We consider an IoT monitoring application, which mimics
the operations of the SHM use-case presented in Section III.
Specifically, we assume that a W3C WoT system has been
designed to acquire and process the IoT data of a smart
building. The WoT system involves three WTs:
• A Sensing WT, which performs data acquisition from
an IoT sensor device (e.g. an accelerometer) through a
Serial connection. More specifically, we assume that the
Sensing WT can run in two modes, which differ from
the sensor query frequency (qf), respectively theNormal
mode (with 1 sample every 5 seconds) and Warning
mode (with 1 sample every second); the mode switch
(i.e. from Normal to Warning and vice versa) occurs
when the last consecutive three readings are higher or
lower than a static threshold; in other words, the granu-
larity of the monitoring system is adjusted according to
the detection of possible data anomalies.

• A ProcessingWT, which continuously receives the real-
time measurements from the Sensing and applies a sta-
tistical method (i.e. the ARIMA regression) to forecast
the next sensor values.

• A ReportingWT, which produces a notification (e.g. an
alarm) based on the output of the ProcessingWT.

We abstract from the specific physical meaning of the IoT
sensing values, while we focus on the capabilities of the WoT
system to minimize the latency of processing specially in
Warning mode, i.e. the time from when the data is acquired
to when the forecast value is produced in output. We consider
an initial setup with two nodes (NC = 2), respectively an
edge server (connected to the IoT sensor device) and a remote
cloud server on the Internet. Two scenarios are configured and
compared in the evaluation analysis:
• Migration OFF. This represents the state-of-art WoT
environment, where the WT migration is not enabled.
The Sensing and Reporting WTs are deployed on the

228132 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

FIGURE 11. The TF over time-slots in a dynamic WoT deployment where the number of WTs is varied over time is reported in Figure 11(a). The NO over
time in the IoT monitoring use-case is shown in Figure 11(b); the processing latency for the same scenario is reported in Figure 11(c).

FIGURE 12. CPU load (Figure 12(a)) and RAM consumption (Figure 12(b)) of the Orchestrator for
different numbers of deployed WTs.

edge node, while the ProcessingWT is deployed on the
cloud due to its higher computational power.

• Migration ON. This corresponds to the M-WoT environ-
ment, where the ProcessingWT is configured as migrat-
able, i.e. it can be dynamically moved on the edge or
on the cloud node based on the actual sensing mode. To
this purpose, we deployed in the Optimizer a scenario-
specific policy which checks the number of interactions
between the Sensing and ProcessingWTs at each time-
slot; in case such value is higher than a threshold (set
equal to the sf configuration in Normal Mode), the
Optimizer realizes that the Sensing WT is working in
Warningmode, and hence it migrates theProcessingWT
on the edge node, i.e. closer to the acquisition in order
to minimize the communication latency. Otherwise, the
ProcessingWT is allocated to the cloud node.

In the test-bed, the Sensing WT starts in Normal mode for
5 seconds, than it switches to Warning mode for 1 second,
then again it repeats the same sequence for other two times.
Figure 11(b) shows the NOmetric over the time-slots; for the
Migration OFF configuration, the NO value at each slot is
equal to the number of messages exchanged by the Sensing
andProcessingWTs, since they are hosted by different nodes.
The peaks correspond to intervals where the Sensing WT
switches to theWarning mode. It is interesting to notice that:
(i) the Migration ON configuration follows the same curve

of the Migration OFF when the inter-host communication
load is below a threshold; (ii) the NO of the Migration ON
is zero in correspondence of Warning periods, since the the
ProcessingWT ismigrated to the edge node, and hence all the
communication occurs locally. Such action impacts the uti-
lization of computational resources on the cloud/edge nodes
as well as the processing latency. We report only the latter in
Figure 11(c). We can notice the effectiveness of the M-WoT
framework in terms of latency reduction for the Migration
ON, which is more evident during theWarning periods since
the edge-cloud communication delay is canceled.

VIII. CONCLUSION
The W3C WoT constitutes a recent and promising approach
to devise large-scale IoT systems composed of multiple,
heterogeneous interacting components. The actual standard
addresses both physical and virtual Web Things (WTs) how-
ever it assumes a static allocation of WTs to computational
nodes, hence introducing potential performance bottlenecks
in dynamic IoT scenarios characterized by time-varying WT
interactions. In this paper, we aim at overcoming such issues
by proposing M-WoT, a novel software framework support-
ing live migration and dynamic allocation of WTs among
the computational nodes of an edge-cloud continuum. The
proposed solution leverages the presence of uniform and
well-defined WT interfaces (i.e. the TDs) in order to support

VOLUME 8, 2020 228133

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

Listing 1. Report interface definition .

stateful migration mechanisms of WTs as well as to enable
dynamic group allocation of WTs to the nodes of the contin-
uum. We proposed and implemented a centralized M-WoT
architecture with novel software components for the WT
software mobility, the WT handoff management, the context
management, the Servient monitoring and the WoT deploy-
ment optimization. Regarding the latter, we addressed the
problem of jointly maximizing the WoT data locality while
balancing the workload on the computational resources; to
this aim, a centralized heuristic computing a user-controllable
trade-off between data locality and workload fairness has
been proposed. Finally, we validated the performance gain
of the proposed policy and the effectiveness of the overall
M-WoT framework through two test-beds characterized by
static/dynamic WT densities and traffic loads. Being a pio-
neeristic study on service mobility within W3C WoT envi-
ronments, there is room for several extensions concerning
the software architecture, the policy definition and the eval-
uation analysis. Indeed, the actual centralized architecture
might suffer of single point-of-failure and scalability issues in
large-scale environments; to this aim, a straightforward solu-
tion would be to employ multiple, distributed Orchestrator
entities, each managing a subset of the available WTs and
addressing collaborative tasks such as the Servient discovery
and the context replication. Similarly, additional metrics can
be gathered at the Servients’ Monitoring API layer (e.g. the
network bandwidth), and consequently novel multi-goal poli-
cies can be defined in the M-WoT Optimizer; given the high
number of parameters potentially affecting the performance
of WoT deployments, we are interested on the application of

Machine Learning techniques (and mainly Deep Reiforce-
ment Learning approaches) for seamless, adaptive deploy-
ment of WTs on distributed WoT environments. Finally, we
plan to further test the effectiveness of WT migration mecha-
nisms on real-world SHMscenarios of theMAC4PROproject
[38], such as the monitoring of large civil and industrial
structures (e.g. bridges and pressurized vessels); here, we
will investigate the possibility to dynamically reconfigure
the workloads of edge/cloud nodes based on the Quality of
Service (QoS) requirements of the monitoring system and the
real-time data streams among the WTs.

APPENDIX
In the following, we include a subset of the Thing Report (TR)
produced by theMonitoring API described in Section VI. The
data-structure has been coded in TypeScript language.

REFERENCES
[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, ‘‘A survey on industrial Internet

of Things: A cyber-physical systems perspective,’’ IEEE Access, vol. 6,
pp. 78238–78259, 2018.

[2] F. Jalali, T. Lynar, O. J. Smith, R. R. Kolluri, C. V. Hardgrove,
N. Waywood, and F. Suits, ‘‘Dynamic edge fabric EnvironmenT: Seamless
and automatic switching among resources at the edge of IoT network
and cloud,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2019,
pp. 77–86.

[3] C. Zhang and Z. Zheng, ‘‘Task migration for mobile edge computing
using deep reinforcement learning,’’ Future Gener. Comput. Syst., vol. 96,
pp. 111–118, Jul. 2019.

[4] X. Sun and N. Ansari, ‘‘EdgeIoT: Mobile edge computing for the Internet
of Things,’’ IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[5] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘‘A survey on service migration in
mobile edge computing,’’ IEEE Access, vol. 6, pp. 23511–23528, 2018.

[6] K. Ha, Y. Abe, Z. Chen,W. Hu, B. Amos, P. Pillai, andM. Satyanarayanan,
‘‘Adaptive VM handoff across cloudlets,’’ School Comput.
Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-15-113, Jun. 2015.

[7] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, ‘‘Fog
computing for the Internet of Things: A survey,’’ ACM Trans. Internet
Technol., vol. 19, pp. 1–41, Apr. 2019.

[8] T. Taleb, A. Ksentini, and P. A. Frangoudis, ‘‘Follow-me cloud: When
cloud services follow mobile users,’’ IEEE Trans. Cloud Comput., vol. 7,
no. 2, pp. 369–382, Apr. 2019.

[9] P. Bellavista, A. Zanni, and M. Solimando, ‘‘A migration-enhanced edge
computing support for mobile devices in hostile environments,’’ in Proc.
13th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2017,
pp. 957–962.

[10] C. Dupont, R. Giaffreda, and L. Capra, ‘‘Edge computing in IoT context:
Horizontal and vertical Linux container migration,’’ in Proc. Global Inter-
net Things Summit (GIoTS), Jun. 2017, pp. 2–5.

[11] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
‘‘Mobility-induced service migration in mobile micro-clouds,’’ in Proc.
IEEE Mil. Commun. Conf., Oct. 2014, pp. 835–840.

[12] J. Manyika, M. Chui, P. Bisson, J. R. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon, ‘‘The Internet of Things: Mapping the value beyond the hype,’’
McKinsey Global Inst., Tech. Rep., Jun. 2015.

[13] P. P. Ray, ‘‘A survey of IoT cloud platforms,’’ Future Comput. Informat. J.,
vol. 1, nos. 1–2, pp. 35–46, Dec. 2016.

[14] P. Desai, A. Sheth, and P. Anantharam, ‘‘Semantic gateway as a service
architecture for IoT interoperability,’’ in Proc. IEEE Int. Conf. Mobile
Services, Jun. 2014, pp. 313–319.

[15] WoT Reference Architecture. Accessed:May 16, 2019. [Online]. Available:
http://www.w3.org/tr/wot-architecture/

[16] Y. Ji, K. Ok, and W. S. Choi, ‘‘Web of things based IoT standard inter-
working test case: Demo abstract,’’ in Proc. 5th Conf. Syst. Built Environ.,
Nov. 2018, pp. 182–183.

[17] B. Klotz, S. K. Datta, D. Wilms, R. Troncy, and C. Bonnet, ‘‘A car as
a semantic Web thing: Motivation and demonstration,’’ in Proc. Global
Internet Things Summit (GIoTS), Jun. 2018, pp. 1–6.

[18] V. Charpenay and S. Käbisch, ‘‘On modeling the physical world as a
collection of things: The W3C thing description ontology,’’ in Proc. Eur.
Semantic Web Conf. (ESWC), 2020, pp. 599–615.

228134 VOLUME 8, 2020

C. Aguzzi et al.: From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things

[19] L. Sciullo, A. Trotta, L. Gigli, and M. Di Felice, ‘‘Deploying w3c
Web of things-based interoperable mash-up applications for industry
4.0: A testbed,’’ in Wired/Wireless Internet Communications. Cham,
Switzerland: Springer, 2019, pp. 3–14.

[20] L. Sciullo, L. Gigli, A. Trotta, and M. D. Felice, ‘‘WoT store: Managing
resources and applications on the Web of things,’’ Internet Things, vol. 9,
Mar. 2020, Art. no. 100164.

[21] Eclipse ThingWeb Node-WoT. Accessed: Dec. 18, 2020. [Online]. Avail-
able: https://github.com/eclipse/thingweb.node-wot

[22] P. Yu, X. Ma, J. Cao, and J. Lu, ‘‘Application mobility in pervasive
computing: A survey,’’ Pervas. Mobile Comput., vol. 9, no. 1, pp. 2–17,
Feb. 2013.

[23] JSON-LD, JSON for Linking Data. Accessed: Dec. 18, 2020. [Online].
Available: https://www.json-ld.org

[24] A. G. Mangas and F. J. S. Alonso, ‘‘WOTPY: A framework for
Web of things applications,’’ Comput. Commun., vol. 147, pp. 235–251,
Nov. 2019.

[25] P. Jamshidi, A. Ahmad, and C. Pahl, ‘‘Cloud migration research: A sys-
tematic review,’’ IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 142–157,
Oct. 2013.

[26] H. V. Hansen, V. Goebel, and T. Plagemann, ‘‘TRAMP real-time appli-
cation mobility platform,’’ IEEE Trans. Mobile Comput., vol. 16, no. 11,
pp. 3236–3249, Nov. 2017.

[27] P. Varshney and Y. Simmhan, ‘‘Demystifying fog computing: Character-
izing architectures, applications and abstractions,’’ in Proc. IEEE 1st Int.
Conf. Fog Edge Comput. (ICFEC), May 2017, pp. 115–124.

[28] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino, ‘‘Compan-
ion fog computing: Supporting things mobility through container migra-
tion at the edge,’’ in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP),
Jun. 2018, pp. 97–105.

[29] H. Jin, S. Yan, C. Zhao, and D. Liang, ‘‘PMC2O:Mobile cloudlet network-
ing and performance analysis based on computation offloading,’’ Ad Hoc
Netw., vol. 58, pp. 86–98, Apr. 2017.

[30] H. Abdah, J. P. Barraca, and R. L. Aguiar, ‘‘QoS-aware service continuity
in the virtualized edge,’’ IEEE Access, vol. 7, pp. 51570–51588, 2019.

[31] K. Kientopf, S. Raza, S. Lansing, and M. Gunes, ‘‘Service management
platform to support service migrations for IoT smart city applications,’’ in
Proc. IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.
(PIMRC), Oct. 2017, pp. 1–5.

[32] F. Ramalho and A. Neto, ‘‘Virtualization at the network edge: A perfor-
mance comparison,’’ in Proc. IEEE 17th Int. Symp. A World Wireless,
Mobile Multimedia Netw. (WoWMoM), Jun. 2016, pp. 1–6.

[33] R. Morabito and N. Beijar, ‘‘Enabling data processing at the network edge
through lightweight virtualization technologies,’’ in Proc. IEEE Int. Conf.
Sens., Commun. Netw. (SECON Workshops), Jun. 2016, pp. 1–6.

[34] K. Jung, J. Gascon-Samson, and K. Pattabiraman, ‘‘Demo:
ThingsMigrate–platform-independent live-migration of JavaScript
processes,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 356–358.

[35] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, ‘‘JADE: A software
framework for developing multi-agent applications. Lessons learned,’’ Inf.
Softw. Technol., vol. 50, nos. 1–2, pp. 10–21, Jan. 2008.

[36] L. Alonso, J. Barbarán, J. Chen, M. Díaz, L. Llopis, and B. Rubio, ‘‘Mid-
dleware and communication technologies for structural health monitor-
ing of critical infrastructures: A survey,’’ Comput. Standards Interfaces,
vol. 56, pp. 83–100, Feb. 2018.

[37] C. Arcadius Tokognon, B. Gao, G. Y. Tian, and Y. Yan, ‘‘Structural health
monitoring framework based on Internet of Things: A survey,’’ IEEE
Internet Things J., vol. 4, no. 3, pp. 619–635, Jun. 2017.

[38] (2019). Bric 2018 INAIL Mac4Pro Project. [Online]. Available:
https://site.unibo.it/mac4pro/it

CRISTIANO AGUZZI received the master’s
degree (summa cum Laude) in computer engineer-
ing from the University of Bologna, Italy, in 2017.
He is currently pursuing the Ph.D. degree with
the Engineering and Information Technology for
Structural Health and Environmental Monitoring
and Risk Management (EIT4SEMM), University
of Bologna. Furthermore, he is an Invited Expert
in the W3C Web of Things Working group, where
he is actively contributing to the Scripting API and

Discovery specification documents. His research interests include semantic
technologies, Web of things, Internet of Things protocols, system software
engineering, and software dependability.

LORENZO GIGLI received the master’s degree
(summa cum Laude) in computer science from the
University of Bologna, Italy, in 2019. He is cur-
rently a Research Fellow with the Department of
Computer Science and Engineering (DISI), Uni-
versity of Bologna, working on the MAC4PRO
project. He is also a part of the PeRvasive IoT
SysteMs (PRISM) Research Laboratory directed
by Prof. M. D. Felice and the Co-Founder of
Modal Nodes, Anyprint S.r.l., and the research and

development group of Epoca S.r.l. His research interests include IoT/WoT
technologies, distributed systems, containers, and cloud architectures.

LUCA SCIULLO (Graduate Student Member,
IEEE) received the master’s degree (summa cum
Laude) in computer science from the University
of Bologna, Italy, in 2017, where he is currently
pursuing the Ph.D. degree in computer science and
engineering. He was a Visiting Researcher with
the Huawei European Research Center of Munich,
Germany. He is also a part of the IoT Prism Lab
directed by Prof. M. D. Felice and Prof. L. Bononi.
He is also a Research Fellow of computer science

and engineering with the University of Bologna. His research interests
include wireless systems and protocols for emergency scenarios, wireless
sensor networks, IoT systems, and Web of things.

ANGELO TROTTA (Member, IEEE) received the
Ph.D. degree in computer science and engineer-
ing from the University of Bologna, Bologna,
Italy, in 2017. He was a Visiting Researcher with
the Heudiasyc Laboratory, Sorbonne Universities,
UTC, Compiègne, France, and with the Genesys-
Laboratory, Northeastern University, Boston, MA,
USA. He is currently a Research Associate with
the Department of Computer Science and Engi-
neering, University of Bologna. He is a Co-

Founder of ‘AI for People’, an international association whose aim is to use
the Artificial Intelligent technology for the social good. His current research
interests include nature inspired algorithms for self-organizing multirobots
wireless systems, reinforcement learning, and the IoT.

MARCO DI FELICE received the Laurea (summa
cum laude) and Ph.D. degrees in computer science
from the University of Bologna, in 2004 and 2008,
respectively. He was a Visiting Researcher with
the Georgia Institute of Technology, Atlanta, GA,
USA, and with Northeastern University, Boston,
MA, USA. He is currently an Associate Profes-
sor of computer science with the University of
Bologna, where he is also the Co-Director of the
PeRvasive IoT SysteMs (PRISM) Laboratory. He

has authored more than 100 articles on wireless and mobile systems, achiev-
ing three best paper awards for his scientific production. His research inter-
ests include self-organizing wireless networks, unmanned aerial systems, the
IoT, and context-aware computing. He is also an Associate Editor of the
Elsevier Ad Hoc Networks journal.

VOLUME 8, 2020 228135

