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ABSTRACT Daily vital signs monitoring is very important for detecting diseases in early stages and for
preventive treatments. Such a task can be achieved by taking advantage of the omnipresence of cameras
in people’s personal space. As heart-related diseases are part of the leading causes of deaths worldwide,
monitoring heart-related vital signs appear to be very crucial. In this article we aim to provide a touchless
approach and propose a robust method for estimating heart rate through analysis of face videos. In particular,
we consider a challenging scenario, i.e., the user is on a video call and may often move his/her head. Existing
touchless, vision-based methods use either photoplethysmography (PPG) or ballistocardiography (BCG).
PPG methods exploit color changes in human skin during heartbeats caused by blood volume variations, but
this is very sensitive to unstable lighting conditions. On the other hand, BCG methods exploit subtle head
motions caused by Newtonian reaction to blood influx into the head at each heartbeat, thus being sensitive
to a subject’s voluntary head movements. Unlike conventional studies where either a PPG method or a BCG
method is used, we propose to combine both to overcome the weakness faced by each method. We use
BCG methods as the main approach due to their better accuracy on heart rate estimation, and PPG methods
are used as the secondary backup to improve the accuracy in cases of large and frequent voluntary head
movements. To this end, we introduce a dynamic voting system that effectively combines results of several
variants of PPG and BCG methods. Experiments conducted on 20 healthy subjects with different skin tones in
different lighting conditions show that our method has better accuracy compared to state-of-the-art methods,
well addressing large voluntary head movements. Our method had a mean absolute error of 1.23 beats per
minute (BPM) in the cases without voluntary head movements and 2.78 BPM in the cases with voluntary
head movements.

INDEX TERMS Heart rate estimation, photoplethysmography, ballistocardiography, face video, voluntary
head movement, hybrid method, dynamic voting, video call.

I. INTRODUCTION

Heart-related diseases are some of the most leading causes
of deaths worldwide as reported by the American health
association [1]. Therefore, studying heart-related vital signs
has attracted the attention of many healthcare researchers
working on healthcare applications through diverse fields.
The most efficient way to reach as many potential users
as possible is to exploit commonly and daily used devices
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such as cameras. Fortunately, the visual information for the
user obtained by cameras can be exploited to estimate some
heart-related vital signs such as heart rate. There are two
main types of approaches to estimate heart rate: touch-based
approaches [2]-[6] and touchless approaches [7]-[10].
However, touchless approaches appear to be ideal for non-
invasive heart rate monitoring where the user would not
need any uncomfortable (or unsafe) contact with any sensor.
Therefore, this article focuses on touchless approaches.

In the modern human society, online collaborative works
through video calls are becoming increasingly common.
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As one of the ideal scenarios is to measure heart rate while
subjects are doing other activities without interfering, exploit-
ing cameras to measure heart rate during video calls appear
to be advantageous. Moreover, in most of video conference
calls, the human face is the part of the body that is all the
time visible on cameras. Therefore, we aim at developing
touchless heart rate estimation methods that exploit visual
information from human face for video conference call appli-
cations (Figure 1).

FIGURE 1. Interface of the prototype system. The heart rate is measured
by combining PPG and BCG methods. Areas from eyes, forehead and nose
are tracked using region-based optical flow tracking. Circled numbers
represent tracked corners for the BCG signals. Blue rectangles (forehead
and nose) are the regions used to extract the PPG signals.

Depending on the way physiological information is
extracted, touchless approaches can be grouped into two
main categories: photoplethysmography (PPG, sometimes
called videoplethysmography) methods and ballistocardio-
graphy (BCG) methods. PPG methods such as [11]-[16]
exploit color changes on the human skin during heartbeats.
Such color changes are caused by a cyclic variation of blood
volume on arteries. As the blood volume variations coincide
with heartbeats rhythm, so heart rate information can be
extracted accurately using such information. The main way
for doing so is to track the human face throughout each
frame and compute the average of pixel intensities within
the selected regions of interest (ROI). The frequency of the
variations of pixel intensities strongly correlates with the
frequency associated with the heart rate. Hence, the heart
rate can be estimated by analyzing such variations. On the
other hand, BCG measures the recoil forces of the body when
it reacts to cardiac ejection of blood into the vasculature.
BCG methods such as [17]-[22] exploit subtle head motions
caused by the recoil forces when blood cyclically travels
from the heart to the head through the aorta and carotid
artery during heartbeats. Those blood flows cause the head
to move vertically in a cyclic way. The general way to get
such head motions is to track feature points attached to the
human face within some chosen ROIs throughout each frame.
The time series of the vertical locations of those feature
points are then considered as heartbeats related signals. Those
signals strongly correlate with the heart rate since the tracked
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head motions are mostly dictated by heartbeats. Therefore,
the heart rate can successfully be estimated by analyzing such
signals.

The problem is that, although both the PPG and BCG
methods work well in ideal situations such as stable lighting
conditions or minimal voluntary head movements, real life
scenarios mostly happen to be non-ideal. Some recent PPG
or BCG methods [11], [19], [20] proposed mechanisms for
reducing the noises caused by lighting changes and voluntary
head movements (they will be explained in more detail in the
next section). However, none of those methods showed good
robustness to large head movements because they focused on
handling small head movements caused by facial expression
changes or breathing. In addition, since those methods are
still one of the PPG and BCG methods, thus cannot be com-
pletely free from the inherent limitations. Thus, we attempt
to combine both the PPG and BCG methods to achieve a
better accuracy than using either method alone, proposing a
dynamic voting system to combine output from each method.
In addition, we clearly show that combining the PPG and
BCG methods can effectively address issues with voluntary
head movements in a video call scenario. In this regard,
we propose a way to detect and remove such voluntary move-
ments from signals to make our method robust and stable.
Although previous attempts have been made to combine PPG
and BCG signals [23]-[25], we focus on designing several
variants of promising PPG and BCG methods and combining
them. Therefore, our method gains additional consistency
by cooperatively estimating the heart rate using the variants.
Moreover, different from the existing combination methods,
the main purpose of our study is to overcome challenges of
real-life videos in a video call scenario. This will be further
discussed in Section II-C.

In summary, our method concentrates in two key
contributions:

1) Voluntary movement detection/removal: we pro-
pose a simple yet effective way to detect large head
movements and remove portions of the signals related
to those movements. This makes our method more
robust to voluntary movements that may often occur in
real-life scenarios like a video call.

2) Combining several BCG and PPG variants through
a voting system: the combination allows our method to
be more accurate and robust than the single use of the
BCG and PPG methods.

Il. RELATED WORK

As mentioned before, vision-based, touchless heart rate esti-
mation methods can be classified into two categories: PPG
methods and BCG methods.

A. PPG METHODS

The phenomenon of PPG was first introduced in the
1940s [26]. As explained in [27], blood absorbs light more
than other surrounding tissues. Hence, the PPG approach
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is based on simply analyzing cyclic variations of light
reflectance caused by blood volume changes that occur
during heartbeats.

In 2008, Verkruysse et al. [28] introduced the first practical
remote PPG method, measuring PPG signals from subjects
within one meter using a digital camera as input sensor. They
generated raw PPG signals by averaging the pixel intensi-
ties of red, blue and green channels within the ROIs over
time. They then applied a fourth order Butterworth bandpass
filter (BPF) to refine signals and remove noises.

Poh et al. [29] proposed the first face-based PPG system for
heart rate estimation. They used a simple webcam to extract
PPG signals from subjects’ facial regions. They detected the
subject’s face using the Viola-Jones face detector [30] and
then used the whole face as the ROI. They extracted the
mean of pixels intensities for each of red, green, and blue
color channels. The time series of pixels intensities of each
channel is used as raw signals which were then normalized
and an independent component analysis (ICA) was applied
for blind source separation. After the ICA decomposition,
they selected the component that resembled a PPG signal the
most and computed the heart rate from that.

Tasli et al. [31] proposed to detect and track facial land-
marks using an improved version of the framework intro-
duced in [32]. The purpose of using facial landmarks was
to dynamically track designated ROIs despite facial expres-
sions. To obtain the raw PPG signal, they proposed to average
the intensity of pixels within the ROIs for the green channel
in each frame. After obtaining the PPG signal, they used a
detrending technique from [33] to remove noises caused by
ambient lighting condition changes. After noise removal, they
used both time domain information through peaks detection
and frequency domain information through most dominant
harmonic selection to estimate the heart rate.

Jain et al. [14] showed an additional video preprocessing
step of cropping and stabilizing the video around human face.
The cropped video is located in the facial area and has a static
defined size of M x M pixels. After generating the cropped
video, they only considered the red channel and constructed a
matrix A where each column represents a video frame. Then,
they used a principal component analysis (PCA) to obtain
a reconstruction matrix A’ and computed the reconstruction
error matrix Appg from the difference between A and A’.
Each column of A ppg was reshaped back to the original frame
size of M x M and the PPG signal was obtained by averaging
the pixel intensity in each reconstructed frame. After applying
a BPF with cut-off frequencies of 0.5 Hz and 5 Hz, they
only considered portion of the signal having good quality,
with significant visual features like peaks, foots and dicrotic
notches. Finally, they computed the heart rate relative to the
number of detected peaks within a signal duration.

Li et al. [11] introduced mechanisms to handle noises
caused by illumination changes, rigid and non-rigid facial
motions. To rectify noise caused by illumination changes,
they used background regions (i.e., regions not belonging to
the face) as references and proceeded to iteratively minimize
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the noise using a normalized least mean square so that they
could subtract it from the signal. They handled rigid noise by
correcting tracking facial feature points with a transformation
matrix computed with respect to the feature point locations
in consecutive frames. To handle the noises from non-rigid
motions, they divided the signal into smaller parts of the same
length, computed the standard deviation for each subpart, and
removed subparts having standard deviations too different
from others.

Finally, more recent studies are learning-based; they
attempted to learn the mapping from facial videos to heart
rate-related signals from a huge dataset using deep neural
networks [34], [35].

B. BCG METHODS
Balakrishnan et al. [17] introduced the first BCG method
accurate enough to be used for daily heart rate monitor-
ing. To detect the head region, they used the Viola-Jones
face detector that comes pre-installed with the OpenCV
library [36]. The face detector returns a rough rectangular
localization of the head region that does not always fit well
to the real region on the image. Hence, in order to make
sure that the facial region is selected, they used a ROI that
is the middle 50% of the returned rectangle widthwise and
90% heightwise. In order to avoid the eye blinking artifacts,
sub-rectangle spanning from 25% to 50% heightwise was
removed from the ROI. After ROI selection, feature points
within selected regions were tracked using the Lucas-Kanade
optical flow algorithm. A time-series of the vertical locations
of those feature points were considered as raw signals of head
motion related to heartbeats. After signal extraction, a fifth
order Butterworth filter with a passband of [0.75, 5] Hz was
applied to remove noises from other motions. After signal
filtering, the PCA was used to extract the most dominant
Eigenvectors within those motion signals. Finally, the most
periodic signal within the five most dominant components
was selected as the one related to the heartbeats. To obtain
the related heart rate, a fast Fourier transform (FFT) was
applied to the selected signal to find the frequency having the
highest magnitude in the frequency domain. The heart rate
was then computed in beats per minute (BPM) by converting
the frequency by multiplying it to 60. Shan and Yu [18]
improved the previous BCG method by reducing ROI to
only forehead regions in order to avoid signals noises caused
by deformable motions from voluntary or involuntary facial
expressions around cheeks or upper lip. In addition, they used
ICA instead of PCA for the latent signal extraction because
ICA had a more consistency and accuracy performance.
Haque et al. [19] used a combination of OpenCV’s good
features to track and facial landmarks detected with a super-
vised descent method (SDM) [37]. Using additional feature
points detected with SDM, they could tackle the problem of
feature points tracking loss occurring during facial expres-
sions or other rigid motions. After obtaining raw signals
using the feature point detection and tracking, they applied an
eighth order Butterworth filter followed by a moving average
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TABLE 1. PPG and BCG methods used in our method.

Method

Processing steps

Raw signal acquisition Signal filtering Heart rate-related signal extraction Heart rate computation
M1 (BCG) Tracking facial features BPF [17] + MAF Averaging raw signals Constructing an optimization tree [5]
M2 (BCG) Tracking facial features BPF [17] + MAF Averaging raw signals Adaptive peak averaging [4]
i e o ) ST Finding the most dominant
M3 (BCG) Tracking facial features BPF [17] + MAF Averaging raw signals frequency [17], [19]
Averaging intensities of Selecting the most periodic Finding the most dominant
M4 (PPG) three color channels BPF [17] + MAF independent component [29] frequency [17], [19]
M5 (PPG) Averaging intensities of BPF [17] + MAF Selecting the most periodic principal Adaptive peak averaging [4]

three color channels

component [14]

filter (MAF) in order to remove noises. Then, they computed
the PCA followed by a discrete cosine transform to find the
most periodic signal. Heart rate was then estimated similarly
to [17].

Lee et al. [38] proposed a similar method to [17]. However,
for ROI selection, they considered only forehead and nose
regions. Moreover, instead of simply selecting the fre-
quency with the most dominant magnitude as the heart rate,
they proposed to train a K-means model. They did so by
extracting trainable features from the most periodic PCA
component. The ground truth data was obtained from an
electrocardiograph.

Wang et al. [20] proposed a three-layer filtering method
to obtain a better BCG signals than previous methods, filter-
ing out the noises caused by facial expression, talking, and
breathing.

Finally, Lomaliza and Park [39] introduced the first practi-
cal BCG system working on smartphones and addressed the
hand motion artifacts caused by the non-static camera.

C. COMBINING PPG AND BCG METHODS

In recent years, several methods have attempted to com-
bine PPG and BCG signals. However, as our method uses
a single camera as input sensor to acquire both signals,
we introduce only the methods using a single camera here.
Antink et al. [23] proposed a way for fusing inputs from the
video stream recorded with a camera output and an additional
BCG sensor. They fused PPG and BCG signals acquired from
the video stream by using a Bayesian approach. As they
aimed to have a signal highly accurate in term of beat-to-beat
average time estimation, their evaluation metric was the mean
absolute interval estimation error. Such metric allows to mea-
sure beats displacements in second as compared to a ground
truth device such as an electrocardiograph sensor. Although
their full method having fusion with an additional BCG sen-
sor had a better error rate of 24.4 ms of average displacement,
their video-only variant also had a good error rate of 31.8 ms
of average displacement. Shao et al. [24] proposed another
method to simultaneously track PPG and BCG signals using
a single camera. However, unlike [23], they processed those
signals separately instead of fusing them. They aimed to
prove the feasibility of simultaneously tracking PPG and
BCG signals from a single camera. To evaluate the signal
quality, they proposed to use signal-to-noise ratio by ana-
lyzing power spectrum frequencies in the frequency domain.
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They later proposed to use a similar approach to track blood
pressure and abnormal heart rhythm monitoring [25].

Note that the existing combination methods fused directly
PPG and BCG signals or used BCG signals to obtain addi-
tional information such as stroke volume and blood pressure.
They do neither consider nor fit our scenario, i.e. video calls
with voluntary head movements. In contrast, we combine sev-
eral variants of recent PPG and BCG methods to address the
inherent weaknesses of PPG and BCG methods. Therefore,
our method can support a wider range of applications in more
challenging conditions.

lll. OUR METHOD

As mentioned before, our method is a hybrid one, combining
PPG and BCG methods. The PPG and BCG methods are
variants of the conventional ones, listed in Table 1, because
the designed variants are exclusive to each other and yields
the best performance in our voting system used for combining
PPG and BCG methods. Both types of PPG and BCG meth-
ods are usually divided into four steps: raw signal acquisition,
signal filtering, heart rate-related signal extraction, heart rate
computation. PPG and BCG are fundamentally different in
the methods for signal acquisition, but they can use the same
or similar methods in other steps. We created three BCG and
two PPG variants by choosing different methods in each step.
The variants are the same in most steps, which minimizes the
computational burden of implementing multiple methods to
estimate heart rate. Methods used in each variant and how to
combine the variants to handle voluntary head motions will
be explained in the following subsections.

A. RAW SIGNAL ACQUISITION

Using facial landmarks [37] that come with contribution
modules of the OpenCV library, we created four ROIs as
shown in Figure 1. These were used to obtain BCG raw
signals while only forehead and nose ROIs are used to obtain
PPG raw signals. To obtain the raw signals from ROls, all
the conventional PPG and BCG methods track feature points
frame to frame using optical flow. However, such a technique
introduces noise artifacts in the signal due to tracking loss
of some feature points usually located on underexposed or
overexposed regions. Therefore, instead of tracking feature
points, we track regions using the median flow (MF) algo-
rithm that comes with the OpenCV contribution modules.
The region-based tracking approach offers better tracking
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FIGURE 2. Sensitivity of different tracking methods to eye movements. In (a) to (c), pink and green
rectangles represent the regions tracked by MF and KCF, respectively. In (e) to (g), pink and blue rectangles
represent the regions tracked by MF and MOSSE, respectively. KCF and MOSSE often fail to track eye regions.

accuracy and robustness while reducing signal noises. As the
MF algorithm tracks rectangular regions, we use top-left and
bottom-right vertical locations of those rectangle to get the
BCG raw signals.

Note that the OpenCV library contains several track-
ing algorithms, such as MIL, KCF, TLD, MOSSE, and
CSRT [36]. So, we have fully tested whether each algorithm
can be used for our purposes. In our preliminary experiments,
MF appeared to be the best for our method. Table 2 shows the
computation time in ms of each algorithm for each frame in an
ordinary PC. Only three algorithms (KCF, MF, and MOSEE)
had a speed fast enough to be used in real time. In addition,
after conducting intensive experiments, we found out that
KFC and MOSSE are very sensitive to eye movements while
MF is robust (Fig. 2). As a result, MF achieves a good
trade-off between accuracy, speed, and reliability.

TABLE 2. Per-frame computation time (in ms) of each tracking algorithm.

Boosting MIL KCF TLD MF MOSSE  CSRT
126.45 168.35  8.72  263.04 16.07 3.59 122.25

For the PPG signals, we average intensities of the red,
green, and blue channels of pixels within the forehead and
nose regions.

B. SIGNAL FILTERING AND HEART RATE-RELATED SIGNAL
EXTRACTION
Raw PPG and BCG signals still contain noises that may
compromise the accuracy of heart rate estimation. Therefore,
we apply signal processing techniques to remove the noise,
but use different sequences of processing for each PPG and
BCG method, as shown in Table 1.

For the PPG signals: At this stage, we have three PPG
raw signals representing each of the red, green and blue color
channels (Figure 3-(a)). We first apply a normalization with
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mean equal to 0 and variance equal to 1 (Figure 3-(b)). After
that, we apply a fifth order Butterworth filter with a passband
of [0.75, 2.5] Hz and a MAF with a window size of 5 to each
signal (Figure 3-(c) and Figure 3-(d)). Then, we decompose
the obtained signals using both PCA and ICA to end up
with six signals in totals (Figure 3-(e)). For both decomposed
principal and independent components, we select the most
periodic ones that are expected to contain heartbeat-related
information. Inspired by the approach in [17], we quantify
the periodicity as the percentage of total spectral magnitude
accounted for by the frequency with the most dominant power
and its harmonic. Finally, we apply a MAF to the selected
signals again.

For the BCG signals: Similarly to the PPG signals,
we apply normalization and a MAF to the obtained raw
signals. However, as the BCG signals describe the same head
trajectory from different locations on the face, we found that
simply averaging those signals is sufficient to capture the
essential information. After averaging, we sequentially apply
a Butterworth filter and a MAF similar to those applied to
the PPG signal. The process flows of M1, M2, and M3 are
represented in Figure 4.

For all the PPG and BCG methods in Table 1, we used both
the Butterworth BPF [17] and MAF in the signal filtering step
because recent methods, such as [19], [20], [38], saw a clear
improvement by using several filters together.

C. VOLUNTARY HEAD MOVEMENT DETECTION

In realistic scenarios such as a conference video call, the user
should be able to freely move his/her head. Such free and
voluntary head movement may introduce artifacts to the PPG
and BCG signals that would decrease the accuracy of heart
rate estimation. The effect of such head movements is shown
in Figure 5 where both the PPG and BCG signals are greatly
distorted. For PPG signals, when the lighting conditions are
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FIGURE 3. Process flows of the PPG methods (M4 and M5) in Table 1. M4 is represented by processes from (a) to (e1) and (f1). M5 is

represented by processes from (a) to (e2) and (f2).
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FIGURE 4. Process flows of the BCG methods (M1, M2, and M3) in Table 1. (f1) is the optimization tree [5], (f2) is the adaptive peak averaging [4],
and (f3) is the method that finds the most dominant frequency in the power spectrum [17], [19]. M1 uses (a) to (f1), M2 uses (a) to

(f2) and M3 uses (a) to (f3).

stable and diffused, voluntary head movements tend to have
negligible impact on the extracted signals. However, in a
realistic scenario where there might be several light sources
with some being specular, voluntary head movements do
influence the pixel intensities.

On the other hand, as BCG signals are also motion-based,
voluntary head movements have a significant influence on the
trajectories of tracked features. Moreover, heartbeat-related
movements tend to be overshadowed by large movements
within a relatively short period of time. Therefore, to handle
such movements, we first introduce a simple way of detecting
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them. The whole process is illustrated in Figure 6. First,
we normalize and average BCG signals into one as shown
in Figure 6-(b) and Figure 6-(c) respectively. Next, we apply
a MAF with a large window, 25 in our case, to flatten the high
frequency peaks as shown in Figure 6-(d). Then, we apply
a curve approximation to convert the signal into simplistic
line segments as shown in Figure 6-(e). The obtained line
segments are then used to detect and remove portions corre-
sponding to rapid head movements. Such portions are defined
in this article as segments forming an angle greater than
45 degrees with the horizontal axis. Those portions are shown
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BCG signals

PPG signals

FIGURE 5. The impact of voluntary head movements on signals. Key frames with numbers correspond to
timestamps on signals on the bottom. Voluntary head movements occurred in the segments between

1 and 2 and those between 3 and 4; the segments will be removed from the processed signals for both
PPG and BCG methods since they form an angle greater than 45 degrees with the horizontal axis.

as red rectangles in Figure 6-(a) and red line segments in
Figure 6-(e). Finally, we remove such portions for both PPG
and BCG signals. The signal portions that are considered
as not having rapid head movements are recombined to
construct the final signals. It is also important to mention
that, when such head movements happen, we conduct more
tracking to reach the predefined signal length.

D. HEART RATE COMPUTATION WITH A DYNAMIC VOTING
SYSTEM

Each PPM or BCG method computes heart rates from the
heart-related signals using different methods, such as opti-
mization tree construction [5], adaptive peak averaging [4],
and most dominant frequency computation [17], [19], and
then their resulting heart rates are combined together. Basi-
cally, the BCG methods are the main algorithms used in this
article because of their better accuracy (this will be shown
in Section IV-B). When there is no large voluntary head
movement detected, we may only use those BCG methods
(M1, M2, and M3). However, when some large movements
are detected, we consider using PPG methods (M4 and M5)
together. Nevertheless, the PPG methods are used only when
the estimated heart rates from those methods are similar to
those of the BCG methods. In our experiments, we used
a threshold distance of 5 BPM for the difference between
the PPG and BCG results. That means, to be used, a PPG
method’s estimation should be at most 5 BPM away from
one of the BCG method’s estimations. Finally, after selecting
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the methods to be used, we use a dynamic voting system
that takes advantage of all them. The idea of our system is
to select a heart rate that falls within the range of all heart
rates estimated by methods in Table 1. To do so, we create
a table of heart rates ranging from 45 BPM to 150 BPM.
At the initial step, each heart rate in the table is associated
with O votes. Then, when a heart rate is estimated by one
of the methods, we use a 1 x 5 mask to vote over heart
rates. In our experiments, the mask [1 2 5 2 1] appeared to
be the optimal to capture the best heart rate estimation. It is
important to mention that the mask is centered around the
estimated heart rate on the voting table. Finally, the heart
rate value having the largest number of votes is determined
to the final estimation. An illustration of the voting system
is shown in Figure 7. In this example, all the five methods
are used since head movements were detected. Masks were
placed around estimations from each method and the heart
rate related to 60 BPM received the largest number of votes.

IV. EXPERIMENTS AND ANALYSIS

Our method was implemented to run on desktop platform.
An Apple MacBook Pro with Intel core i7 processor was
used to run the experiments. The Logitech C922 webcam
was used as input sensor with an image resolution of
1280 x 720 and the Polar chest belt H7 [40] was used as
ground truth measuring device (The ground truth heart rates
are obtained by averaging the measurements collected every
1 s). To test the accuracy of our method, we recorded videos
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—featlires =—featiire( =——feature 7 ———feature8 (a) — feaflires =—feafiire( =——feature7 =———teature8 (b)
Average signal of normalized BCG signals Flattened signal after applying a MAF
0.04 0.04
0.02 0.02
0 0
-0.02 -0.02
-0.04 -0.04
-0.06 (c) || -006 (d)
Simplified signal with curve approximation
0.04
0.02
0
-0.02
-0.04
-0.06 (e)

FIGURE 6. Our method for detecting voluntary head movements that are not related to heartbeats. (a) The raw BCG signals where voluntary
head movements occurred in the portions marked with red rectangles, (b) BCG signals after normalization to a mean of 0 and a variance of 1,
(c) averaged signal from normalized signals of (b), (d) flattened signal after applying a MAF with a large window, (e) curve approximation to
divide the signal into line segments. Red segments in (e) represent areas having an angle bigger than 45 degrees with the horizontal axis and

are removed from the raw signals.

of 20 subjects of different ethnicities and skin tones, and also
different ages ranging from 25 to 40, with a duration of 24 s
for each video and in JPEG2000 lossless video compressing
format. The intended measurement length of our method is
set to 20 s corresponding to 500 frames at 25 fps. However,
the FFT implementation used in some steps of our method,
such as most dominant frequency computation, requires the
signal size to be a power of 2. Therefore, we chose to use
512 frames for each measurement. Subjects were asked to
stay still without any movement while recording the first set
of videos. After that, they were asked to behave like they
were in a video call with natural movements while recording
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the second set of videos. As some subjects were recorded
a couple of times for each condition, both sets consisted
of 25 videos, respectively. However, videos with head move-
ments were recorded longer (thus, with a duration of 50 s)
to make sure that, after removing the portion regarding head
movements, we still have enough signal lengths to meet the
required length of our method. Although all recordings were
done in front of the laptop to which the camera was attached,
different light conditions were considered. We recorded in
daytime indoors, daytime outdoors, nighttime indoors, and
nighttime outdoors. All subjects were asked to stay at most
1.2 meters away from the camera.
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TABLE 3. Mean absolute errors (in BPM) of each method with or without voluntary head movements.

[11] [17] [19] [20] [24] [38]  Our method
Without movements ~ 3.58 3.71 3.44 2.93 3.11 3.05 1.23
With movements 572 1323 12,57 1405 11.70 11.71 2.78
Average 4.65 8.47 8.05 8.49 7.40 7.38 2.01
TABLE 4. Pearson’s correlation coefficients of each method with or without voluntary head movements.
111 [17] [19] [20] [24] [38]  Our method
Without movements 099 099 099 099 099 0.99 0.99
With movements 098 08 087 082 088 0.87 0.99

57 63

Ml 1 0
M2 0 0
M3 0 0
M4 0 1
M5 1 0
Total votes 2 1

FIGURE 7. Voting system example where the ground truth value is
60 BPM. Each method’s estimation is where the mask value is 5.

A. COMPARISON TO THE CONVENTIONAL METHODS

We compared our method with six conventional methods
[11], [17], [19], [20], [24], [38]. As our method mainly
depends on BCG methods, most of the methods chosen for
the comparison were BCG methods. We added the only PPG
method [11], since it also introduced an approach for handling
head movements. We also added the method [24] that pro-
vides a framework for simultaneously tracking reliable PPG
and BCG signals, to show that simply using PPG and BCG
signals together (without providing an effective solution to
how to combine them or explicitly handling voluntary head
movements) is not the solution to our scenario. However,
since the method does not provide a specific method for com-
puting heart rate from both signals, we computed the most
dominant frequencies (having the highest magnitude in the
power spectrum) in both signals and averaged them. To mea-
sure the estimation accuracy of each method, mean absolute
errors (MAE) and Pearson’s correlation coefficients (PCC)
are computed as follows.

1 N
MAE:N;: p-
1=

S (Hizy = Bor) (W, — Fi)
. [ 2 . —_— 2 ’
\/ Zf'vzl (hlGT — her ) \/ Zf\;l (hfm - hEst)

where N is the number of measurements, hiGT is the i
ground-truth value and h%st is the /" estimation in BPM.
Table 3 and Table 4 show the MAE and PCC values of each
method and Figure 8 shows the Bland-Altman plots for the
estimation errors.

i
- hEst

)

PCC =
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For the first set of videos without voluntary head move-
ments, most of the conventional methods had good accuracy
(MAE < 4 BPM and PCC > 0.99) especially when lighting
conditions were good. It is also shown with blue circle sam-
ples of the Bland-Altman plot in Figure 8 that most conven-
tional methods perform within an acceptable margin of error.
However, our method showed much higher accuracy and had
an estimation error of 1.23 BPM. For the second set of videos
that contained voluntary head movements, all related BCG
methods had a large decrease in accuracy (estimation errors
increased by 9.61 BPM on average). In contrast, the PPG
method [11] showed less sensitivity to voluntary head move-
ment (PCC > 0.98) but the estimation errors were not small
(5.72 BPM). Using PPG and BCG signals together [24] did
not improve the results and the estimation errors were much
higher than the PPG method. Clearly, our method showed the
least sensitivity to voluntary head movements (PCC > 0.99)
and had still a low estimation error of 2.78 BPM. Our method
showed better responses regardless of the existence of head
movements with the smallest errors in Table 3 and the densest
samples on plots in Figure 8.

We also proceeded to analyze the accuracy of each method
for heart rates of different ranges, from 55 BPM to 100 BPM.
Figures 9 and 10 show the estimation errors of each method
for different ranges of heart rates without and with voluntary
head movements, respectively. Generally, all the BCG meth-
ods showed a decrease in accuracy as the heart rate ranges
increased. This is the same even when using PPG and BCG
signals together. However, the PPG method did not result
in a decrease in accuracy for cases both with and without
voluntary head movements. Our method also maintained high
accuracy when there was voluntary head movements. Without
head movements, the errors of our method increased as the
heart rate increased. This will be because our method mainly
depends on BCG methods. However, our method still had
much lower errors than the PPG method at the high ranges
of heart rates. The phenomena of decrease in accuracy at
higher heart rate ranges is also shown in Figure 8 where the
distribution of samples of BCG methods get sparse as the
heart rates increase.

Finally, as the main concern of this article is to handle
the voluntary head movements, we plotted the errors of each
method against the percentage of the signal having the head
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FIGURE 8. Bland-Altman plot for estimation errors of each method. For each graph, blue circle and orange rectangle points are samples for
measurements without and with voluntary head movements, respectively.

movements. The percentage ranges from 5% to 50% of the increased. Even the errors of the PPG method increased
signal as shown in Figure 11. As expected, the errors of in proportion to the percentage. The combination of PPG
the BCG methods increased significantly as the percentage and BCG signals could not mitigate the increase in error
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Without voluntary head movements
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FIGURE 9. The mean absolute errors over different heart rate ranges.
Cases without head movement where subjects stayed still.

With voluntary head movements
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FIGURE 10. The mean absolute errors over different heart rate ranges.
Cases with head movement where subjects moved naturally like they
were in a video call scenario.

(see the results of [24]). For our method, we tested two
different approaches for handling voluntary head movements.
One is to simply remove the portion related to voluntary head
movements and estimate the heart rate using the remaining
signal, which is Ours-1 in Figure 11. The other is to remove
the portion related to voluntary head movements but keep
the feature tracking within the ROIs to prolong the signal,
then, estimate heart rates using the prolonged signal, which is
Ours-2 in Figure 11. Both Ours-1 and Ours-2 outperformed
the conventional PPG and BCG methods. However, Ours-1
resulted in an increase in errors in proportion to the portion
of data related to head movements. The tendency was similar
to the PPG method. Nevertheless, the errors of Ours-1 were
much lower throughout all the percentages. On the other
hand, Ours-2 maintained good accuracy even with the high
percentages and worked very stably. Given that, in the real
scenarios, the percentage of head movements is rarely more
than 50%, it is no doubt that Ours-2 provides a reliable
solution for heart rate estimation during a video call.

B. MORE DETAILED ANALYSIS OF OUR METHOD

To analyze in depth the accuracy and robustness of our com-
bination method, we conducted more experiments where our

VOLUME 8, 2020

FIGURE 11. The mean absolute errors of different methods for different
percentages of voluntary head movements contained in the signals.

‘Without voluntary head movements
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FIGURE 12. The mean absolute errors of different combinations of the
variants in Table 1. Cases without head movement where subjects stayed
still.

method was compared with other combinations of the vari-
ants used in the proposed voting system and also compared
with the individual use of each variant. As shown in Fig. 12
and Fig. 13, our method showed the best results by combining
all the variants. Using subsets of the variants caused a drop
in accuracy. Specifically, the BCG variants (M1, M2, and
M3) were more accurate than the PPG variants (M4 and M5)
when there was no voluntary head movement. The combina-
tion of BCG variants alone provided an acceptable accuracy.

With voluntary head movements

- %Ml
- a-M2
M3
M4
- =M
M1 +M2 +M3
3 —a—M4 + M5
—e— M1 +M2 +M3 + M4

2 —a—MI1 +M2+M3 + M5
55 65 75 85 95
Heart rates (in BPM)

MAE (in BPM)
I

—&— Ows

FIGURE 13. The mean absolute errors of different combinations of the
variants in Table 1. Cases with head movement where subjects moved
naturally like they were in a video call scenario.
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FIGURE 14. Examples of subjects with different skin tones. From left,
dark skin, fairly dark skin, fairly bright skin, and bright skin.

For different skin tones

mM1
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[ QYN
m[11]
I I I I mOours
0
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MAE (in BPM)
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FIGURE 15. The mean absolute errors over different skin tones without
voluntary head movements.

However, using more PPG variants together has increased
accuracy. When there are large voluntary head movements,
BCG methods are usually less accurate than PPG meth-
ods. However, with our voluntary head movement handling

‘ Signal acquisition (each frame) |

method (Section III-C), the BCG variants could be robust to
voluntary head movements, thus their estimation errors were
still lower than the PPG variants. However, the combination
of BCG variants alone produced high errors. By using the
PPG variants (M4 and M5) together, the estimation errors
greatly decreased. As a result, it is evident that each variant
contributes to the accuracy of our method.

Next, PPG methods tend to be sensitive to ambient illumi-
nation and skin tone of subjects. To analyze the sensitivity
of our method, we divided the subjects into four groups:
dark skin, fairly dark skin, fairly bright skin, and bright
skin groups. Examples of each group are shown in Fig. 14.
For each group, we conducted experiments without volun-
tary head movements for different lighting conditions and
averaged the results. Figure 15 shows the estimation errors
of different methods for each group. As expected, the PPG
variants (M4 and M5) and the PPG method [11] showed high
sensitivity to skin tone while the BCG variants (M1, M2,
and M3) showed robustness. Although the estimation errors
slightly increased for the dark skin tone, our method could
also be robust to skin tone thanks to the robustness of BCG
variants. As a result, when the subjects had no voluntary head
movements, our method had an estimation error of less than
1.53 BPM regardless of the skin tone of subjects.

C. COMPUTATION TIME OF OUR METHOD

Our hybrid method uses multiple PPG and BCG methods
for each frame, which can increase the computational time
complexity. To this end, we designed the variants that are the

‘ Signal filtering (last frame) ‘

Regions tracking Pixel intensity averaging MAF Butterworth BPF PCA ICA
[Al] [A2] [B1] [B2] (B3] (B4]
26 ms 10 ms 1 ms 16 ms 3ms 13 ms

‘ Heart-related signal extraction (last frame) ‘

‘ Heart rate computation (last frame) ‘

For each frame

Most periodic signal Averaging raw signals Most dominant frequency | Adaptive peaks averaging Optimization tree
[C1] [C2] [DI1] [D2] [D3]
3 ms 1 ms 2 ms 4 ms 45 ms
(2)

For the last frame

Variant Slgn.a.I Head movement Signal filtering Slgneq Heart rate Voting Total
acquisition detection extraction computation system
Ml Bl +B2+BIl: 18 ms C2: 3 ms D3: 45 ms
—
M2 Bl1+B2+BIl: 18 ms C2: 3 ms D2: 4 ms
M3 Al +A2:36 ms Bl +B2+BIl: 18 ms C2: 3 ms D1:2 ms
M4 Bl +B2+BI+B3: 21 ms Cl: 1 ms DI1:2 ms
M5 Bl + B2 +BI1+B4: 31 ms Cl: 1 ms D2: 4 ms
4 ms 106 ms 11 ms 57 ms 0 ms 178 ms

(b)

FIGURE 16. Processing time of each step used on different PPG and BCG variants of our method. Times taken (a) by sub-processes in each step

and (b) by each step.
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FIGURE 17. Processing time of signal acquisition step according to the
input video resolution.

same in most processing steps, instead of using conventional
PPG and BCG methods. This helped to minimize the com-
putational burden of implementing multiple methods, but the
computational time complexity is still high. Therefore, our
implementation uses a multi-threading scheme to parallelize
some operations. For example, we need to track ROIs for
obtaining the PPG and BCG raw signals. Since each ROI
is tracked individually, the tracking is parallelized. In our
experiment with the large image resolution of 1280 x 720,
the tracking time for each ROI is around 20 ms. However,
the total tracking time for five ROIs was reduced to 36 ms on

(9%

[ Y

o
[ I V%)

average by parallelization. Therefore, even with the process
of averaging the pixel intensity in the forehead and nose ROIs
to obtain the PPG raw signals, the parallelization allowed the
average computation time for each frame to be kept bellow
40 ms and our method can run in real time and stably at
around 25 fps. Figure 16 shows details of the computation
time for each step of our method. Since the signal acquisition
step is done within the capture time of each frame, it is not
included in the total computation time that is the sum of
computation times of the other steps only done in the last
frame. However, as the signal acquisition step takes 20.48 s
to capture 512 frames at 25 fps, the user has to wait for
20.658 (=20.48 + 0.178) s in total to read the resulting heart
rate. Nevertheless, as our method mainly targets video calls,
the whole estimation processes are implemented to run in
background. Therefore, users do not have to wait since they
would have their heart rates measured while having a video
call.

The resolution of input video may change the computation
time of our method. However, only the signal acquisition step
is influenced by the video resolution. Figure 17 shows the
computation time of the signal acquisition step according to
the video resolution. The computation time increased rapidly
as the video resolution increased. Therefore, considering the
real-time capability, 1280 x 720 was the maximum resolution
for our experimental setup.

FIGURE 18. Videos with two different facial expressions (non-rigid motions). (a) Smile and (b) eyebrows up. Both facial
expressions cause the head to move slightly upwards, resulting in sudden changes in the signals. The left-side signal is one
obtained by the region tracking, while the right-side signal is obtained by the feature point tracking.
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D. OTHER FACTORS TO BE CONSIDERED IN A VIDEO

CALL SCENARIO

In this article, we focused on addressing voluntary head
movements. However, in the video call scenario, large change
in facial expressions is another factor that decreases the
accuracy of PPG and BCG methods using face videos [11].
Therefore, we tested our method for some videos with
large changes of facial expressions as shown in Figure 18.
Unlike what was expected, the region tracking method
(Section I1I-A) did not have a clear advantage over the feature
tracking method in reducing the influence of facial expres-
sion change. However, non-rigid motions caused by facial
expressions also resulted in rapid vertical changes in the
signals representing the trajectories of facial regions or fea-
tures; the head movement detection method (Section III-C)
could successfully detect and remove such non-rigid motions.
Therefore, it was roughly confirmed that our method can also
be used to address facial expression changes.

In the video call scenario, talking actions may also create
extra noise. However, talking can be considered a similar
factor to the facial expression because it causes the non-rigid
motions in local regions. Besides, talking-related non-rid
motions are mostly observed around the mouth; to this end,
we excluded the mouth region from the ROI (Figure 1). As a
result, our method is rarely affected by talking actions.

E. LIMITATION OF OUR METHOD

In the video call scenario, lighting conditions can be locally
and dynamically changed on the face. Such challenging light-
ing conditions would negatively influence the accuracy of
our method. In this article, we did not consider challenging
lighting conditions in depth because our main concern was to
handle voluntary head movements.

In this article, we assume that voluntary head movements,
facial expressions, and talking actions do not frequently and
continuously occur. However, in the video call scenario, this
assumption may not be always valid. In other words, our
method may not be available when the assumption is not
met. This is because our method simply removes the related
portions from the signal, thus cannot obtain a signal long
enough to estimate the heart rate.

Considering users often use their smartphones or tablets in
the video call scenario, our method should also be available
on the mobile devices. However, in this article, we assumed
that the camera is static (not moving), thus our method may
not work on mobile devices where the cameras are not static
and hand motion artifacts would be a concern [39].

V. CONCLUSION

In this article, we presented a hybrid heart rate estimation
method that combined different variants of PPG and BCG
methods through a well-designed voting system. Our method
outperformed the conventional PPG, BCG, and combination
methods for different conditions of measurements. It worked
accurately and consistently even in cases of voluntary head
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movements that may occur in real environments. Detailed
analysis of the experimental results with different heart rate
ranges and different percentage of head movement noise
showed that our method can be a reliable solution for the
challenging scenarios, such as heart rate estimation during a
video call.

Future studies will focus on improving our method in more
challenging lighting conditions and developing a sophisti-
cated, dedicated method to address the facial expressions
briefly discussed in Section IV-D. In addition, we plan to
analyze in depth the advantage of handling such challenging
conditions during video calls with regards to various metrics
of cardiovascular health. We also plan to test more variants
of PPG and BCG methods on the voting system to make our
method even more robust.
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