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ABSTRACT Robot calibration of an industrial robot is of importance for those applications requiring
high positioning accuracy. The use of numerical optimization techniques to identify the accurate kinematic
parameters and tackle the residual errors for improving positioning accuracy is still challenging. The
difficulties in using the conventional optimization techniques is associated with the expensive computation
of the second derivative terms in the Hessian matrix and even more linked to the additional improvement of
the residual errors induced by the configuration and payload effects for the practical applications. A hybrid
calibration procedure, which is robust and efficient, is proposed to handle the said problems in this study.
The first step is to utilize the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm together with the
quasi-Newton method to optimize the cost function with non-smooth nature established using massive
measurement data. In the second step, two kinds of artificial neural network (ANN) algorithms are employed
to further improve the nonlinear residual errors induced by payload and configuration effects. After the
completion of the hybrid calibration, improvements of 88.1% and 80.1% have been attained, respectively,
for the mean and maximum positioning errors of the robot end-effector, i.e., the mean/maximum positioning
errors are reduced from 2.613mm/6.294mm to 0.310mm/1.255mm for 840 untrained measurement data. The
experimental results also validated the effectiveness of the proposed method.

INDEX TERMS Artificial neural network, BFGS algorithm, industrial robots, robot calibration.

I. INTRODUCTION
Nowadays, facing the megatrend for smart factories of the
future, an industrial robot plays an increasingly important role
in not only traditional pick-and-place tasks but also many
new applications such as assembling, welding, measuring,
and machining. These robots must have high accuracy and
efficiency to satisfy the requirements of precision opera-
tions. In general, the industrial robots presently available
have better performance in repeatability than in positioning
accuracy. Regarding positioning accuracy improvement, the
utilization of teaching pendant to mitigate the poor posi-
tioning accuracy is a very common practice. Such prac-
tice, however, may not be viable for the applications that
need precision processes or necessitate the use of off-line
programming for large and complex workpieces. Further-
more, the practice is also a time-consuming and inefficient
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process besides its dissatisfaction of path tracking accuracy.
Therefore, the task of improving the positioning accuracy of
industrial robots has become an active and interesting topic
of research.

The positioning accuracy of industrial robots is affected
by multiple factors such as kinematic parameter errors, joint
flexible deformation, and link deformation. The positioning
accuracy of the conventional robots usually lies in the range
of one to several millimeters, which cannot achieve the high
precision requirements. To develop an industrial robot with
higher positioning accuracy, several ways have been proposed
to enhance its performance through the applications of design
optimization, optimal control algorithm, and robot calibra-
tion. Although the positioning accuracy of an industrial robot
has been improved via the design and control approaches
in the past two decades, it is still hard to reach the goal of
attaining the required accuracy due to the following reasons:
1) the geometric effects such as small shape/size deviations
of the joints and links of robot will cause substantial errors
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at the end-effector. 2) the contradiction between the lighter
weight and higher rigidity of a link makes the link design
a compromised result evolved from the trade-off between
the link weight and rigidity. 3) the geometric deviations of
joints and links when coupled with their weight effects may
cause additional positioning errors at different robot config-
urations. However, after the design and control optimizations
have been implemented, robot calibration can play a sig-
nificantly vital role to improve the positioning accuracy of
industrial robots.

Without rearranging or redesigning the robot, robot cali-
bration can be used to improve the positioning accuracy of
an industrial robot in a sequential process which involves
the steps of modeling, measurement, identification, and com-
pensation. Roth et al. [1] divided the domain of robot cal-
ibration into three levels, i.e., level-1, level-2, and level-3.
Level-1 calibration is to identify the correct relationships
between the signal produced by the joint displacement sensor
and the actual joint displacement. Level-2 calibration is to
aim at the determination of the kinematic geometries of the
robot as well as the joint-angle relationship. Level-2 is also
termed as ‘‘kinematic’’ or ‘‘geometric’’ calibration, which
covers assembly errors, machining errors, and joint angles
offset, i.e., the deviations of nominal kinematic parameters
from the actual parameters. Level-3 calibration is defined
as ‘‘non-kinematic’’ or ‘‘non-geometric’’ calibration, which
may account for the effects of servo error, backlash and
friction of gearbox, link elastic and thermal deformations,
link compliance, and payload. It is noted that the research
issues in level-1 and level-2 calibrations have drawn close
attention in the past two decades [2]–[5]. To further enhance
the robot accuracy, some researchers [6]–[11] have attempted
to tackle the issues of the complex level-3 calibration,
which involve the parameter identification with geometric
and non-geometric errors of industrial robots, to meet the
demand for higher precision. For example, Jang et al. [6]
and Zhou et al. [9] proposed a similar method to consider
not just the kinematic model but also joint stiffness model
using linear torsional spring to compensate the positioning
errors. Meggiolaro et al. [12] explicitly decomposed mea-
sured end-point error data into generalized geometric and
elastic deformation errors. Their method, being simple in
computation, only requires determining the parameters of
which each is dependent of one variable. The works done
in the area of robot calibration have led to some improve-
ments of the positioning accuracy of industrial robots in
recent years.

There are many non-geometric error sources, which can-
not be modeled correctly and completely. For instance,
in the above-mentioned joint stiffness model, only the effects
of joint deflection are taken into account. Hence, some
researchers [13]–[15] have studied other solutions to model
the overall non-geometric errors using an artificial neural net-
work (ANN) technique to reduce the robot positioning error.
For instance, Jang et al. [6] proposed a radial basis function
network (RBFN) to describe the relationship between robot

joint offset errors with end-effector positions.Wang et al. [16]
also utilized an ANN to describe the functional relation-
ship between end-effector positions and their corresponding
positioning errors. Takanashi [17] applied a multiple layer
ANN to approximate the relationship between robot joint
positions and the associated joint offset errors. These works
have given a new research direction for modeling the non-
geometric errors of an industrial robot. However, in the previ-
ous works, there remain some problems to be further solved:
1) the geometric parameter identification techniques for cost
functions with non-smooth nature under massive measure-
ments should be studied in-depth to increase the computa-
tional robustness and efficiency. 2) only a few studies have
discussed the loading effects, mostly focused on the static
weight of link and end-effector only. Payload effects, which
were not considered in most of the previous works, should
be considered in real engineering cases. 3) the positioning
accuracy is closely related to the factors of loading condi-
tion and robot configuration. Most of the previous works
did not consider these two factors simultaneously for robot
calibration.

In this paper, the enhancement of the positioning accuracy
on the PMC6VA030 industrial robot using the quasi-Newton
optimization and ANN techniques is achieved via a hybrid
robot calibration approach. First, based on the kinematic
model of an industrial robot, the geometric parameters,
definition of positioning error, and objective functions of
the optimization problem are defined. Next, a quadratic
error model is chosen for optimizing the kinematic param-
eters under extensive measurements without loading effect
at 168 different configurations. In solving the optimization
problem, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm, which is robust and efficient, is employed to
minimize the cost function with non-smooth nature. Two
artificial neural network methods with different outputs and
models are used to further improve the residual positioning
error without constraints on configuration and loading. The
proposed paper is able to make two significant contribu-
tions: One is to provide a robust calibration approach for
robot positioning accuracy improvement using the BFGS
optimization and ANN techniques to attain high position
accuracy in an efficient way; the other is to solve the
robot calibration problem of an industrial robot consid-
ering non-geometric errors, payload, and robot configu-
ration effects simultaneously for achieving high position
accuracy.

The rest of the paper is organized as follows. Section II
introduces the system kinematics, error model, and prob-
lem formulation. Section III elaborates the BFGS and
ANN-based methods used in the proposed hybrid calibra-
tion approach. Section IV describes the experimental setup
for positioning measurement of the PMC6VA030 six-axis
industrial robot. Section V is to show the experimental
results and compare the error results predicted using dif-
ferent methods. Section VI is the conclusions and future
works.
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II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
1) THE EXPERIMENTAL TESTBED
The PMC6VA030 robot, a six-axis industrial robot shown in
Fig. 1, is fabricated by PMC, Taiwan. The maximum payload
and reach are 30 kgf and 1800mm, respectively. The structure
of the robot is composed of six revolute joints and six robot
arms. Each robot arm is driven by a joint module which
consists of servo motor, reduction gear, and encoder.

FIGURE 1. The architecture of PMC6VA030 industrial robot.

2) THE KINEMATIC AND ERROR MODELS
The kinematic model of PMC6VA030 robot is based on
the modified Denavit and Hartenberg (MDH) notation [18],
four kinematic parameters (joint angle θi, offset distance di,
link length ai and twist angle αi) are used to describe the
translation and rotation between two adjacent links. The
transformation from link frame {i− 1} to link frame {i} can
be expressed by a homogeneous matrix Ai−1i . The matrix is
described as

Ai−1i = Rot (xi−1, αi−1)Trans (xi−1, ai−1) . . .

Rot (zi, θi)Trans (zi, di) (1)

To solve the problem of two consecutive joints in paral-
lel or near parallel (See 2nd joint and 3rd joint in Fig. 1),
a small rotation β1 about the y-axis must be taken into
account [19].

The kinematic scheme of the PMC6VA030 robot is shown
in Fig. 2 and its nominal kinematic parameters are listed
in Table 1.

TABLE 1. Nominal kinematic parameters of PMC6VA030 robot.

In the experimental system, a laser tracker is used to collect
the position data and the laser sensor base frame {s} is
considered as the fixed (world) frame. The laser tracker and
retro-reflector are located near the robot base and attached to

FIGURE 2. The kinematic scheme of a robot-laser tracker system.

the robot end-fffector, respectively. The robot base frame {o}
is defined by six parameters with respect to the laser sensor
frame {s} as shown in Fig. 2. The position and orientation of
the retro-reflector with respect to the sensor-base frame {s}
can be expressed as the following successive multiplications
of the transformation matrices.

AsT = As1A
1
2A

2
3A

3
4A

4
5A

5
6A

6
T =

[
RsT PsT
0 1

]
(2)

where RsT and PsT represent the orientation matrix and
position vector of the retro-reflector with respect to the
sensor-base frame {s}, respectively. No loss in generality,
hereafter, just PsT is considered as the target of this study.

Herein, the accuracy correction of industrial robots is
mainly to minimize the error between the actual position and
the nominal position of the robot end-effector point to achieve
accuracy improvement. Taylor series will be expanded at
the position calculated by the nominal kinematic parameters,
which can be approximated as

Pr ≈ Pn +1Perr = f
(
qn
)
+
(
∂f
/
∂q
)
1q (3)

where Pr is the real position of end-effector point, Pn is the
nominal position of end-effector point computed based on the
nominal kinematic parameters of the industrial robot, 1Perr
is the positioning error between Pr and Pn, q = [a α β d θ]T

is a generalized vector of kinematic parameters.
The positioning error model is expressed as

1Perr =
(
∂f
/
∂q
)
1q = Jq1q (4)

where and Jq = [JαJαJβJdJθ ] is a 3× n extended kinematic
Jacobian matrix. 1q = [1α1a1β1d1θ ]T is a n × 1 kine-
matic parameter error vector, n is the number of kinematic
parameters which will be calibrated. Its least square solu-
tion is

1q =
(
JTq Jq

)−1
JT1Perr (5)

Equation (15) is the called steepest-descent method with the
first-order derivative information. However, if the second-
order derivative is available, it can be used to represent the
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cost surface accurately, and a better search direction and
rate of convergence can be found. The second-order Taylor’s
expansion can be written as [20]

Pr ≈ f
(
qn
)
+∇f T c+

1
2
cTHc (6)

where c = ∇f denotes the gradient vector, and H is the
Hessian matrix. The search direction can be obtained

1q = −H−1c (7)

Once 1q is available, the design is updated as

q(i) = q(i−1) +1q (8)

3) MODELING RESIDUAL ERRORS OF A ROBOT WITH
PAYLOAD
The real position vector Pr of the robot end-effector can be
expressed as

Pr = Pkin +1Perr (9)

where Pkin is the command position based on nominal kine-
matic parameters built in the robot controller, and 1Perr rep-
resents the positioning error which is the difference between
the real position and command position. Here, 1Perr can be
divided into two main parts.

1Perr = Pr − Pkin = 1Pkin +1Presil (10)

1Presil = 1P joint +1P link +1Pothers (11)

In (20), 1Pkin is the positioning error caused by kine-
matic error, and 1Presil represents the residual position-
ing error caused by non-geometric factors except kinematic
error. In (21), the residual error is further divided into
1P joint , 1P link , and 1Pothers, which denote, respectively,
the errors caused by joint deflection, link deformation, and
other non-geometric error such as backlash, friction, and ther-
mal deformation. It is difficult to model them using an analyt-
ical formulation because of the nonlinearity and complexity.
Moreover, 1P joint and 1P link are not only related to robot
configurations, but also significantly affected by the payload
at the robot end-effector in real engineering applications.
In view of the above issues, the residual positioning error
of the robot under loads at different configurations can be
expressed as

1Presil,j = f (θ i,Lm) (12)

where θ i is the ith robot joint angle and Lm denotes the mth

loading condition.

B. PROBLEM FORMULATION
The goal of robot calibration is to identify the parameters
of kinematic and non-kinematic models so that the differ-
ence between theoretical and measured end-effector posi-
tions can be minimized. Given an industrial robot with n
joints and kinematic model f , the computed position Pkin of
end-effector is given by:

Pkin = f (q) , P ∈ SEG (13)

where q ∈ Ri×1 is the kinematic parameters with i being
the number of joints of the robot; SEG stands for the Special
Euclidean Group.
Here, the problem of robot calibration can be viewed as an

optimization problem such that the difference between com-
puted position Pc and measured position Pm is minimized.

min ‖Pm − Pc‖ = min ‖1Perr‖ (14)

The first step is to minimize the kinematic error, which is
formulated as, shown at the bottom of this page.
where n is the number of samples, RMS is an acronym of

root mean square.
The second step is to minimize the residual error, which is

expressed as

min RMS (1Presil) = min RMS (1Perr −1Pkin) (16)

III. TECHNIQUES FOR THE PROPOSED HYBRID ROBOT
CALIBRATION APPROACH
The flowchart of the proposed hybrid calibration approach
which adopts two-step optimization processes to address,
respectively, the kinematic error using BFGS and the residual
positioning error using two kinds of ANN-based compensa-
tion for minimizing the positioning error is shown in Fig. 3.
In this section, two core techniques, namely, BFGS algo-
rithm, single-output multi-model ANN (hereafter termed as
SOMM-ANN) technique, and classified aided SOMM-ANN
(hereafter termed as CA-SOMM-ANN) technique of the pro-
posed hybrid calibration approach will be introduced.
It is noted that in the optimization theory, the second-order

Newton method usually has higher accuracy and convergence
than the first-order Newton method, i.e., the gradient method.
But the use of the second-order Newton method is required
to calculate the second-order Hessian and its inverse matrix,
which may be computationally expensive and tedious. The
BFGS algorithm adopted herein is a quasi-Newton method
which uses an approximation (first order derivative) to com-
pute either the Jacobian or the Hessian matrix for obtaining
the efficiency and convergence. Although the use of BFGS
may induce some small accuracy loss, this accuracy loss can
be compensated when performing the ANN-based process in
the proposed hybrid calibration.

min RMS (1Perr ) = min

(
1

n− 1

∑n

i=1

√(
(1Perrx)2+

(
1Perry

)2
+(1Perrz)2

))
(15)

VOLUME 8, 2020 228995



J.-C. Hsiao et al.: Positioning Accuracy Improvement of Industrial Robots Considering Configuration and Payload Effects

FIGURE 3. The flowchart of the proposed hybrid calibration approach.

The positioning error can be decomposed to three axial
error components in, respectively, the X, Y, and Z direc-
tions. It is noted that the use of the traditional ANN using
a single model to train the input and output relationship
may encounter difficulty for predicting optimal parame-
ters. Herein, the multi-model SOMM-ANN and CA-SOMM-
ANN techniques established on the basis of the axial error
components are used to perform the training process for
predicting optimal parameters.

A. BFGS ALGORITHM FOR IDENTIFICATION OF
KINEMATIC PARAMETERS
The BFGS algorithm is an iterative procedure to seek a sta-
tionary point of the cost function (preferably to be twice con-
tinuously differentiable). It can have acceptable performance
even for non-smooth optimization problems. The steps for the
stationary point search are summarized in the following [20]:

Step 1: Estimate an initial design point for DH parameters,
x(0). Choose a symmetric, positive, and definite n× nmatrix,
H (0) as an estimate for the Hessian of the cost function
(mean squared error). In the absence of more information,
let H (0)

= I . Choose a convergence tolerance parame-
ter, ε. Then set k = 0 and compute the gradient vector as
c(0) = ∇f (x(0)). The cost function, f (x) is defined as the
error between the forward kinematic position values of DH
parameters at different fixed angle configurations, 2 and the
measured positioning errors in (15).

f
(
x(k)

)
= RMS (1Pkin) , for AsT (x

(k),2) (17)

Step 2: Calculate the norm of the gradient vector as ||c(k)||.
If ||c(k)|| < ε, stop the iterative process; otherwise, continue.
Step 3: Solve the following linear system of equations to

obtain the search direction:

H (k)d (k) = −c(k) (18)

Step 4: Compute the optimum step size:

αk = α to minimize f
(
x(k) + αd (k)

)
(19)

Step 5: Update the design as

x(k+1) = x(k) + αkd (k) (20)

Step 6: Update the Hessian approximation for the cost func-
tion as

H (k+1)
= H (k)

+ D(k)
+ E(k) (21)

where the correction matrices D(k) and E(k) are given as

D(k)
= y(k)y(k)T

/(
y(k) · s(k)

)
(22)

E(k)
= c(k)c(k)T

/(
c(k) · d (k)

)
(23)

where

s(k) = αkd (k)(change in design) (24)

y(k) = c(k+1) − c(k)(change in gradient) (25)

c(k+1) = ∇f (x(k+1)) (26)

Step 7: Set k = k + 1 and go to Step 2.

B. SINGLE-OUTPUT MULTI-MODEL ANN (SOMM-ANN)
FOR COMPENSATING THE RESIDUAL ERROR
As well known, it is difficult to model the non-geometric
error sources such as link stiffness, gear backlash, and others
correctly and completely. To tackle this difficulty, an arti-
ficial neural network has been proposed to compensate the
robot positioning errors in the previous studies [16], [17].
The model-based optimization method using DH-parameters
can reduce the overall positioning error of industrial robots
down to a reasonable value. For some precision applications,
however, the achieved positioning errors of the robot are
still considered to be relatively large. The DH-parameters
based kinematic model only takes the geometric errors into
account and fails to capture the loading effect as well as other
nonlinear errors. Some studies [13]–[15] utilized ANN-based
method to reduce the overall positioning error by taking both
geometric and non-geometric errors into account. Herein,
the individual axis error of the positioning error with the con-
sidering of non-geometric effects will be predicted using the
aforementioned SOMM-ANN technique. The architecture of
the SOMM-ANN model used for modeling load effect is
shown in Fig. 4. By comparing with the previous work [13],
the proposed SOMM-ANN model can provide better gener-
alization of the error for the trained axis because the model
only learns the error of one axis as a function of payload and
joint angles.

In the training of the SOMM-ANN model, the con-
trol angles θd [θ1, θ2, θ3, θ4, θ5, θ6] and the effective load-
ing Ld [w] at the end-effector are treated as the input data.
The output variables are considered as the positioning errors
pe [xe, ye, ze] for each axis. The SOMM-ANN models of X,
Y and Z axes consist of 6, 2 and 4 hidden layers, respec-
tively. The hyper-parameters and training parameters of the
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FIGURE 4. SOMM-ANN architecture used to model non-geometric
positioning errors with loading and configuration effects.

TABLE 2. Hyper-parameters of SOMM-ANN model.

proposed models are listed in TABLE 2 and TABLE 3,
respectively. The numbers of hidden layers, neurons in each
layer and the activation functions are obtained via the ‘Tree
of Parzen Estimators’ [21] approach provided in the Hyper-
opt/Python library [22].

We use mean squared error as our loss function to train
the above SOMM-ANN model and the first-order gradient-
based optimizer Adam [23] to optimize the model. An early
stopping method is adopted to stop training if the training
loss doesn’t improve for 5 consecutive training epochs. The
maximum number of epochs is set to be 50.

IV. THE IMPLEMENTATION OF ROBOT CALIBRATION
FOR PMC6VA030 ROBOT
A. THE MEASUREMENT SAMPLES
In the robot calibration process, the first step is to generate a
large set of different configurations and applied loads. The
experiment testbed is a PMC6VA030 industrial robot with
30 kgf payload and 1800 mm reach in this case. Totally
168 measurable poses except singularity were selected out
of 225 robot configurations of which each positioning point
was 200 mm apart from any neighboring positioning point
along any axis inside the robot workspace: X (800, 1600)mm,
Y (−800, 800)mm, Z (600, 1400)mm.

B. THE DESIGN OF EXPERIMENT CONSIDERING PAYLOAD
EFFECT
It has been shown that different locations of retro-reflector on
a link can produce different link deformations [7]. Therefore,
it is necessary to design an experiment to consider the pay-
load effect in the robot calibration process. Herein, several
experiment-used loading blocks, i.e., 1kg, 2kg, 3kg, 5kg,
and 10kg, were designed to attach to the robot end-effector

for meeting the experimental plan requirements as shown
in Fig. 5.

FIGURE 5. The experiment-used loading blocks used for different
experiment combination.

C. THE SETUP OF MEASUREMENT SYSTEM
The measurement system consists of two main subsystems,
i.e., the robot subsystem and laser tracker subsystem. The
PMC6VA030 robot with repeatability of 0.05 mm is cali-
brated in this case. Its motion command was programmed
using an EtherCAT-based robot controller, namely iRUBY,
which was also developed by PMC. An apparatus is used to
measure the position data of the robot end-effector, which is
a FARO VANTAGEE laser tracker. Its measuring accuracy is
(16 + 0.8/m) µm within 50 m.
In order to investigate positioning error of the robot,

an end-effector, which can be connected to the loading blocks
and hold the retroreflector, is designed and setup for obtaining
the measured samples as shown in Fig. 6.

FIGURE 6. Experimental setup integrates the PMC6VA030 robot and Faro
laser tracker.

D. THE PREPARATION FOR KINEMATIC CALIBRATION
There are two ways to implement the kinematic calibration:

a) In the case of without considering the effects of loading
and configurations, each joint angle of the 168 measurements
was obtained via the inverse kinematic computation using the
nominal DH parameters, as shown in Fig. 7.

b) In the case of without loading effects but with the consid-
eration of configuration effects, the 168 poses were randomly
divided into two parts: 112 configurations were used for
calibration while the other 56 configurations were used for
cross validation as shown in Fig. 8.
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TABLE 3. Hyperparameters of SOMM-ANN model used to predict errors on x-y-z axes.

FIGURE 7. The joint angle of 168 configurations used for kinematic
calibration.

FIGURE 8. The 112 configurations used for fitting and 56 unfitted
configurations used for cross validation.

E. THE PREPARATION FOR ANN-BASED CALIBRATION
The training, validating, and testing data have to be prepared
for artificial neural network calibration with the considera-
tion of loading and configuration effects. Besides the nom-
inal kinematic model, the parameters in the transformation
matrix, As0 and the translation matrix A6

T of the robot-laser
tracker measurement system should be calibrated together
with the kinematic parameters in order to obtain better per-
formance during the parameter identification process. The
experimental design is used to establish the configuration-
loading datasets for training, validating, and testing the ANN
model used in this paper is shown in Fig. 9.

a) Group A: Case with partially untrained loading condi-
tions and without untrained configurations. It is noted that as
shown in Fig. 9, for this group the applied loads are divided
into two parts, i.e., GA10 and GA20. The GA10 dataset

FIGURE 9. The experimental design for configuration-loading datasets
used for training, validating, and testing of ANN model.

used for training can totally produce 1680 combinations from
the collection of 112 robot configurations and 15 loading
conditions; GA20 dataset used to test the trained ANNmodel
can totally produce 672 combinations from the collection
of 112 trained robot configurations and 6 untrained loading
conditions.

b) Group B: Case with partially untrained loading condi-
tions and untrained configurations: For Group B in Fig. 9,
the applied loads are divided into three parts, i.e., GB10,
GB20, and GB30. This group mainly tries to further under-
stand the untrained robot configuration effects. The GB20
dataset is used to validate the ANN model, which pro-
duces 336 combinations from the collection of 56 untrained
configurations and 6 trained loading conditions; GB10 and
GB30 are used for testing the trained ANN model, which
produces totally 840 combinations from the collection
of 56 untrained configurations and 15 loading conditions
including 9 trained and 6 untrained.

V. RESULTS AND DISCUSSIONS
A. KINEMATIC CALIBRATION USING BFGS OPTIMIZATION
APPROACH
1) WITHOUT LOADING AND CONFIGURATION EFFECTS
Because different applied loading conditions will cause the
deviation of positioning error for certain kinematic model,
the nominal kinematic parameters should thus be identified
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FIGURE 10. The deviation of positioning error on X-Y-Z axis at different
configuration before kinematic calibration.

without considering the loading effects in the identification
process. We firstly identify 34 parameters, which include
25 geometric parameters listed in TABLE 1, six base coordi-
nates, and three tool position coordinates, from the 168 robot
configurations using the aforementioned BFGS optimization
algorithm. The solution of the BFGS optimization produces
the following results: Root mean square error (RMSE) after
base alignment 3.704 mm, standard deviation 1.351 mm, and
maximum error 7.909 mm. Hence, the positioning error of
the PMC6VA030 robot without payload is about 3.704 mm
before calibration.

Fig. 10 shows the deviation of positioning errors in X-Y-Z
coordinate system at different measurement configurations
before kinematic calibration. In view of Figs. 7 and 10,
a significant positive relationship between joint angle {θ1, θ6}
and in particular, prominent positioning errors in Y-direction
have been observed in Fig. 10. The deviations of the posi-
tioning error for different numbers of configuration between
before and after kinematic calibrations are shown in Fig. 11.
After the kinematic calibration has been done, the mean
RMSE is improved to 0.383 mm, standard deviation reduced
to 0.161 mm, and maximum error reduced to 0.556 mm.
The improvement percentage of the mean RMSE is 89.7%
when compared with the condition before calibration. This
improvement percentage coincides with that obtained in the
previous research [24], which illustrated that approximately
90%of the positioning error of the industrial robot was caused
by kinematic parameters. Furthermore, the small difference
between the present mean RMSE of 0.383 mm and the
RMSE of 0.399 mm obtained using the commercial soft-
ware ‘‘Spatial Analyzer’’, which is developed by FARO, also
validates the accuracy of the proposed BFGS optimization
approach. After using the BFGS optimization algorithm for
calibration, the updated values of the geometric parameters
listed in TABLE 1 is listed in TABLE 4.

The above case used the totally 168 configurations to fit
for obtaining optimal parameter set proved the effectiveness.
However, it’s hard to collect all possible robot configurations
for optimization fit within the robot workspace, using specific
samples for fit in order to predict unfit ones are the fact
in practical applications. To discuss this kind of case is of
necessity.

FIGURE 11. The comparison of RMSE between before and after kinematic
calibration.

TABLE 4. The identified kinematic parameters of PMC6VA030 robot.

2) CONFIGURATION AND LOADING EFFECTS
The previous results did not consider the applied loading and
configuration effects. The experimental design described in
the sub-paragraph D of the previous section will be used
to study the configuration effects on the BFGS kinematic
calibration with. Herein, in the first stage, 112 configurations
were used in the BFGS kinematic calibration to determine the
optimal geometric parameters. In the second stage, the opti-
mal geometric parameters were used to predict the position-
ing errors of the rest (56) configurations.

Fig. 12 shows comparative results of RMSEs before and
after BFGS kinematic calibration, in which the positioning
error after calibration was uniformly reduced to an acceptably
small value in the first segment and second segment appeared
randomly deviation; The mean RMSEs with configuration
effects involved in the second segment would be larger than
those without configurations effects in the first segment. It is
also observed that the positioning error could be significantly
affected by the robot configurations during the calibration
process.

It is noted that loading effect was not included in the above
kinematic calibration process. To consider loading effect,
the identified kinematic parameters listed in TABLE 4 were
substituted into robot controller to compute the robot position
with applied loadings. The result is shown in Fig. 13. From
the figure, it is obvious that the mean RMSE increased as
applied loading increased. The mean RMSE increased to
0.94 mm as the payload lied in its maximum value.

3) ERROR RESULTS AND ANALYSIS
In view of the above results, it seems worthy to analyze and
discuss the following key issues:
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FIGURE 12. The comparison of RMSE between before and after kinematic
calibration, as well as cross validation.

FIGURE 13. The deviations of RMSE under different applied loadings
within maximum payload.

(1) The comparisons of the residual position errors in the
X, Y, and Z directions before- and after BFGS kinematic
calibration using the testing dataset are obtained as shown
in Fig. 14. Some brief conclusions can be drawn:

a) Residual positioning error in Y direction is the largest
error after BFGS calibration and is also getting larger as the
loading is increased; the values are still largely up to 1.5 mm.

b) Residual positioning error on Z axis is the smallest
error among X, Y, and Z axes errors after BFGS kinematic
calibration. It is no significant effect in this case due to the
specific configurations for measurement.

c) Residual positioning error on X axis shows a minor
effect of loadings. Some values are still large up to 1 mm.

(2) Fig. 15 is the relationship between residual positioning
error on Y-axis with joint angle {θ1,θ6}. It is obvious that
the residual errors were highly positive correlation with joint
angle {θ1} and negative correlation with joint angle {θ6}.
It can be effective to train and compensate the positioning
error according to the function of joint angle.

(3) Fig. 16 is the bi-variate kernel distribution, histogram
and scatter plot of X, Y, and Z axes’ residual positioning
errors after BFGS kinematic calibration, in which existed two
significant phenomenon:

a) The residual positioning errors of X, Y, and Z axes
were highly uncorrelated for one another, the result using
traditional MOSM-ANN to model the three-axis error was
not satisfied.

b) A bi-model distribution existed on X-axis error, and this
will be difficult to model it.

FIGURE 14. The positioning errors on X, Y, and Z axes (a)before- (b)after-
BFGS kinematic calibration using testing data.

FIGURE 15. The relationship between residual positioning error on Y-axis
with joint angles after BFGS kinematic calibration.

4) AN INTERIM SUMMARY
The above results can lead to the following points:

(1) The kinematic calibration using the BFGS algorithm
can significantly reduce the mean RMSE error to 0.403 mm
with the consideration of configuration effects.

(2) The mean RMSEs increased as the applied loading
increased, which will up to 0.94 mm as the payload lied in
the maximum value.

(3) After kinematic calibration, the use of the identified
parameters to predict the position of the industrial robot with-
out considering configuration effects but considering loading
effects still produces relatively large position error.

(4) When payload effect is not included in the kinematic
calibration, the positioning accuracy is not enough for the pre-
cision positioning applications. A further step for improving
the non-geometric errors involving configuration and payload
effects becomes essential.
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FIGURE 16. The bi-variate kernel distribution, histogram and scatter plot
of X, Y and Z axes errors.

FIGURE 17. The positioning errors on X-Y-Z axes after BFGS kinematic
calibration used as SOMM-ANN output data.

B. NON-KINEMATIC CALIBRATION USING SOMM-ANN
APPROACH
1) FOR SOLVING THE UNCORRELATED ON X, Y, AND Z
AXES’ ERROR USING SOMM-ANN
After the kinematic calibration, the residual positioning errors
were still not low enough to satisfy the requirements of
precise tasks, especially when the loading and configuration
effects were presented. For overcoming the residual posi-
tioning errors of X, Y, and Z axes after BFGS calibration
with highly uncorrelated for one another, the SOMM-ANN
approach was, therefore, employed to further reduce the
residual positioning errors with nonlinear properties with
the consideration of different conditions of loading and
configuration.

According to the residual positioning error analysis,
the proposed SOMM-ANN was implemented firstly. For
training the SOMM-ANN model, in view of Fig. 9,
the applied loadings and robot joint angles based on robot
configurations in the GA10 dataset were used as the input
data; the residual positioning errors of GA10 dataset after
BFGS kinematic calibration were displayed in Fig. 17 and
were used as output data of SOMM-ANN model. The input
data and output data were then used to train the SOMM-ANN
model in order to further reduce the non-geometric errors
after BFGS calibration.

FIGURE 18. The residual positioning error of PMC6VA030 robot used for
training model (before and after SOMM-ANN calibration).

FIGURE 19. The residual positioning error of PMC6VA030 robot used for
validating the trained model (before and after SOMM-ANN calibration).

As a result, the mean RMSE of the trained SOMM-ANN
model was reduced from 0.657 mm after BFGS calibration
to 0.376 mm, up to 42.8% improvement, as shown in Fig. 18.
The trained SOMM-ANN model was then used to perform
the validation using GB20 dataset with untrained loadings
and configurations. The mean RMSE was also reduced from
0.652 mm to 0.397 mm, is shown in Fig. 19. Comparing
with training result, they are very close and give an evi-
dence to prove the effectiveness of the train SOMM-ANN
model. For testing the trained ANN model, GA20, GB10,
and GB30 datasets were used based on different loading and
configuration. The result is shown in Fig. 20. It is observed
that the residual positioning errors could remain consistent
in different datasets, whether the applied loading and robot
configurations were trained or not. The test result after com-
pensation of the trained SOMM-ANN showed that the mean
RMSE not only can be improved to 0.381 mm but also
can overcome the loading and robot configuration effect,
even if the untrained loading and configuration were applied
on it. The values of mean, standard deviation, and maxi-
mum of residual positioning errors on PMC6VA030 indus-
trial robot after SOMM-ANN compensation are also shown
in TABLE 5.

2) ERROR ANALYSIS
Comparing the residual positioning errors of before- and after
SOMM-ANN calibration from Fig. 21(a) and Fig. 21(b),
the results show that SOMM-ANN can effectively improve
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FIGURE 20. The residual positioning error of PMC6VA030 robot used for
testing the trained model (before and after SOMM-ANN calibration).

TABLE 5. The errors of PMC6VA030 robot after SOMM-ANN calibration.

FIGURE 21. The positioning errors on X, Y, and Z axes (a)before- (b)after-
SOMM-ANN using testing data.

the effects of loading and configuration, and the residual
positioning error was reduced to an acceptably small value
on Y and Z axes; but there was no obvious improvement on
the X direction due to affected by the bi-model distribution,
of which causal is described as below.

The causal for the bi-model distribution case can be
explained using the errors which were induced by the

deformation of the 2nd link and the twist of the 3rd joint
caused from the consequent link weight and applied moment.
When the joint angle A1 at 0 degree, the produced error
is located at -Y direction; as the joint angle A1 moves to
-180 degrees, the produced error will be located at -X direc-
tion; However, when joint angle A1 moves to 180 degree,
the produced error will be located at X direction; even if
the angles of A2-A6 are the same, the produced errors are
completely opposite. This is the reason why the X-axis error
has bi-model distribution, detailed as shown in Fig. 22.

FIGURE 22. The causal of bi-model distribution.

3) FOR SOLVING THE BI-MODEL CASE USING
CLASSIFIED-ADDED SOMM-ANN
In order to improve the performance of the previously pro-
posed SOMM-ANN model, a distribution analysis of the
error in the direction of each axis was performed. It is evident
that the positioning errors in the directions of X, Y and Z
axes were highly uncorrelated. Moreover, the error for each
axis was modeled with respect to robot configurations and
applied loading. Residual positioning errors on X-axis could
not be reduced to a reasonable value due to its output data
had bi-model distributions. This case would enlarge the error
when the prediction was located on the opposite side than
actual. Therefore, a classified-added SOMM-ANN (called
CA-SOMM-ANN) was investigated to solve the problem in
this article. The new concept is to divide the training data
into two classes, and then used them to train for obtaining the
classifier and two SOMM-ANN models (Model-A, Model-
B), respectively. The selected model is determined according
to the classified result of input data using trained classifier for
validating and testing datasets. The structure of CA-SOMM-
ANN is shown in Fig. 23. In this study, a histogram-based gra-
dient boosted decision tree [23] was applied as classification
model. The maximum depth of trees, maximum leaf nodes
and minimum sample leaves of decision tree is determined by
hyperparameter optimization approach using ‘Tree of Parzen
Estimators’ [21] approach provided in the Hyperopt/Python
library [22]. The hyperparameters are listed at the end of
paragraph 1 of Section V B3. Hyperparameters of this clas-
sifier were as follows; (a) Maximum depth of trees = 3,
(b) maximum leaf nodes = 60, (c) Minimum sample leaves
= 66, (d) learning rate = 0.001 and (e) maximum number of
iterations = 300. Binary cross-entropy loss as shown in (27)
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FIGURE 23. The concept and structure of CA-SOMM-ANN.

was applied for training the classifier.

loss = −ŷ log (y)+
(
1− ŷ

)
log(1− ŷ) (27)

where y is the actual class and ŷ is the predicted class by the
classifier.

For solving the bi-model distribution case, the
CA-SOMM-ANN was used. The input data were the same
with SOMM-ANN used for training data, and the output data
were the residual positioning error after BFGS calibration.
These data were divided into two classes according to the
error distribution to train the classifier and error models.
The GA20, GB10, and GB30 datasets were used to test the
trained CA-SOMM-ANNmodel. Fig. 24 shows that the mean
RMSE was further reduced to 0.296 mm for testing after the
CA-SOMM-ANN calibration.

FIGURE 24. The residual positioning error of PMC6VA030 robot for testing
(before and after CA-SOMM-ANN calibration).

The mean RMSE was further reduced to 0.296 mm
for testing after the CA-SOMM-ANN calibration. From
Fig. 25 shows the comparison of residual positioning error
on X direction before and after the CA-SOMM-ANN cali-
bration. From the width reduction of red line could obviously
appear the effectiveness of the CA-SOMM-ANN calibration
approach for solving the bi-model distribution problem.

4) AN INTERIM SUMMARY
From above results and discussions, it could be summarized
into several points:

(1) The results show that SOMM-ANN can effectively
improve the loading and configuration effects.

FIGURE 25. RMSEs in X-direction (a) before- (b) after- CA-SOMM-ANN.

FIGURE 26. The comparison of calibration results using different
approaches.

(2) The use of CA-SOMM-ANN for solving the bi-model
distribution problem on X-axis error is validated using
dataset G230. The result shows that the mean RMSE was
reduced from 0.381 mm by SOMM-ANN to 0.296 mm by
CA-SOMM-ANN under 93% classification rate.

C. THE COMPARISON OF CALIBRATION RESULTS
Here, the after calibration results obtained from BFGS
kinematic calibration and ANN-based calibration, involve
SOMM-ANN, and CA-SOMM-ANN with untrained load-
ings and configurations consideration, are compared with the
errors before calibration and with each others. The results
are expressed by histogram and probability distribution to
represent their distribution, shown in Fig. 26. The mean,
standard deviation, and maximum of positioning error after
calibrations are shown on TABLE 6. From these results,
the performance of each calibration approach is displayed and
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compared. This also can be used to validate the effectiveness
of the proposed method in this paper.

TABLE 6. The positioning errors of PMC6VA030 robot after calibrations.

VI. CONCLUSION
In this work, a hybrid robot calibration approach was
presented to compensate both kinematic and non-kinematic
errors on PMC6VA030 industrial robot for attaining high
positioning accuracy of the robot. The robot was cal-
ibrated not only with a focus on the geometric error
and non-geometric errors, but also considering the robot
configuration and applied loading effects for realistic engi-
neering applications. The first step is to adopt the BFGS
technique used to alternate the Hessian and Jacobian matrix
of second derivatives in the kinematic calibration process for
obtaining better robustness and efficiency. The second step
is to propose an ANN-based calibration, include SOMM-
ANN, and CA-SOMM-ANN for further reducing the residual
positioning error of the robot. The final results obtained
by the CA-SOMM-ANN show the mean/maximum resid-
ual positioning errors are reduced from 2.613mm/6.294mm
to 0.310mm/1.255mm on 840 untrained measurement data,
respectively; up to 88.1% and 80.1% improvement than
before calibration. The advantages indicate the effectiveness
and confirm the robustness of the proposed method. Some
conclusions can be drawn as follows:

(1) The proposed BFGS kinematic calibration is useful
to improve the positioning error on geometric error. But
the identified parameters used to predict the position of an
industrial robot with unfitted configurations and with fitted
loadings were still existing larger positioning error. The mean
RMSEs were increased as applied loadings were increased
within the maximum payload.

(2) Applied loadings and robot configurations significantly
affect the positioning accuracy of an industrial robot; just
kinematic calibration was not enough for those precise tasks.
A next step for further improving the residual positioning
errors with configuration and loading effects is inevitable.

(3) It is observed that the position of robot end-effector has
a higher effect on the axis error than the payload applied on it.

(4) The used ANN-based in this paper, includes
SOMM-ANN and CA-SOMM-ANN, can both effectively
compensate the errors caused by loading and robot config-
uration effects simultaneously.

(5) Only CA-SOMM-ANN approach is suitable to solve
for those models with bi-model distribution nature.

For future research directions, it is worthwhile to seek
further applications of the hybrid calibration approach to
real engineering, as well as other types of industrial robots.
In this study, we just considered positioning error only, did
not consider the effect of orientation error yet.We also did not
discuss the algorithm of compensating the model into robot
controller. Anyone who is interested in this area can extend
our study to the abovementioned topics based on our results.
In addition, a path experiment study to test and validate the
performance of the algorithm is also recommended.
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