
Received December 8, 2020, accepted December 12, 2020, date of publication December 17, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045443

Clifford Geometric Algebra-Based Approach for
3D Modeling of Agricultural Images Acquired
by UAVs
PRINCE WAQAS KHAN 1, YUNG-CHEOL BYUN 1, AND MUHAMMAD AHSAN LATIF 2
1Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea
2Department of Computer Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan

Corresponding author: Yung-Cheol Byun (ycb@jejunu.ac.kr)

This work was supported by the Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korean Government [Ministry
of Trade, Industry and Energy (MOTIE)] (The Establishment Project of Industry—University Fusion District) under Grant N0002327.

ABSTRACT Three-dimensional image modeling is essential in many scientific disciplines, including
computer vision and precision agriculture. So far, various methods of creating three-dimensional (3D)
models have been considered. However, the processing of transformationmatrices of each input image data is
not controlled. Site-specific crop mapping is essential because it helps farmers determine yield, biodiversity,
energy, crop coverage, etc. Clifford Geometric Algebraic understanding of signaling and image processing
has become increasingly important in recent years. Geometric Algebraic treats multi-dimensional signals
in a holistic way to maintain relationship between side sizes and prevent loss of information. This article
has used agricultural images acquired by unmanned aerial vehicles (UAVs) to construct three-dimensional
models using Clifford geometric algebra. The qualitative and quantitative performance evaluation results
show that Clifford geometric algebra can generate a three-dimensional geometric statistical model directly
from drones’ RGB images. Through peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM), and visual comparison, the proposed algorithm’s performance is compared with latest algorithms.
Experimental results show that proposed algorithm is better than other leading 3D modeling algorithms.

INDEX TERMS Clifford algebra, computer vision, geometric algebra, image processing, precision agricul-
ture, quaternions, remote sensing, 3D images, unmanned aerial vehicles.

I. INTRODUCTION
With the advent of information technologies such as com-
puter vision image processing and precision agriculture,
farmers can increase their productivity. Precision agricul-
ture allows farmers to apply necessary processing methods
more accurately by collecting various data from the land
to understand temporal and spatial changes of production
resources [1]. Remote sensing is beneficial tool for monitor-
ing and assessing yield of various crops [2]. This includes
real-time and rapid screening of crop varieties, food secu-
rity [3], social and economic stability, jobs, and environmen-
tal services [4]. Remote sensing of crops using hyperspectral
vision is first type of spectral imaging used to identify and
classify crops [5]. With the advent of drones, breakthroughs
have been made in land cover mapping and classification.
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Unmanned Aerial Vehicles (UAVs) can obtain very high
spatial and temporal resolution images at relatively low cost
than manned operated aerial systems or satellite systems [6].
However, it is not straightforward to reconstruct phenomena
based on size and topological relations. The development of
three dimensional (3D) and temporal Geographic Informa-
tion Systems (GIS) helped to analyze high dimensional data,
computational complexity, and increase scalability.

Clifford algebra, also known as geometric algebra (GA),
was developed by William Kingdon Clifford [7]. Since its
appearance, many researchers have used it to deal with time
and space issues in physics. Clifford algebra has devel-
oped into more sophisticated geometric approach. Many
researchers have applied Clifford’s algebra approach to
the field of information processing with computer tech-
nology advancement, including computer vision, robotics,
and image processing, in which remarkable results were
accomplished [8]. Sau et al. [9] applied Clifford algebra
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and quaternion approach, a sub-algebra of Clifford algebra,
to image compression by splitting image into three color
planes. In work by Jayme et al. [10], they discuss Clifford
algebra for 3D Euclidean space. They explained different
operations such as transformations of points, reflection, shear
transformation rotations, and translation from Clifford alge-
bra’s viewpoint. Liu et al. [11] proposed a method for indoor
3D reconstruction using smartphones using Clifford geomet-
ric algebra. Smartphone sensors are used to measure azimuth
and pitch angles. Then through these angles, the space of
indoors display can be adequately modeled. The indepen-
dently reconstructed patterns are then joined together to form
complete model. At the same time, isometric algebra is used
as a computational structure. Compared with other recon-
struction methods, the use of isometric geometric algebra
simplifies geometry and combines various geometric rela-
tions. Yet the biggest obstacle in integrating GIS and geo-
graphic models is that the foundations of GIS and geographic
models are geometry and algebra, respectively, making it
difficult to integrate different types of geospatial data struc-
tures [12]. For example, vector data, spatiotemporal field
data, and network data. To integrate such data types, there is
no rigidmathematical background available [13]. GA is a nat-
ural tool to connect the two. Therefore, rewriting the existing
geographic models under GA framework creates tighter inte-
gration of GIS and geographic modeling. We have integrated
the existing reconstruction model with Clifford algebra to
obtain real-world agricultural modeling system. This article
has used agricultural images acquired by unmanned aerial
vehicles to construct three-dimensional models using Clifford
geometric algebra. The main contributions of this article are

• Introducing more simplified and unified data structures
for Geo-computing based on GA;

• Building an expressive, complete, and accurate data
model for real-world agricultural modeling;

• Providing a significant demonstration and application of
UAVs in agriculture.

The remainder of the article is composed as fol-
lows: Section 2 introduces relevant publications and arti-
cles. Section 3 describes proposed Clifford geometric
algebra-based 3D modeling approach, including data col-
lection process. We have compared the presented approach
results with the other approaches in section 4, and
Section 5 concludes the article.

II. RELATED LITERATURE
UAV systems offermany benefits in variousmapping applica-
tions, such as tilt mapping and geographic disaster investiga-
tion. Cahyono et al. [14] focused on rotor drones because the
rotor unit is stable and easy to capture images. According to
the aerial photography program, 60 photographs were taken
with striped aerial photographs. Auxiliary data from ground
control points using GPS geodetic surveys and checkpoints
set using total station technology. Calibrate digital camera
using short-range photogrammetry software and use restored

camera calibration parameters for digital image processing.
It uses digital photogrammetry software to process all aerial
photographs and output them in orthogonal format. Combin-
ing the aerial survey function of unmanned aerial vehicles
with unmanned ground vehicles’ target intervention function
can greatly improve automation systems’ efficiency applied
to precision farming. It is important to set up and update
common domain map, but it is not easy in this case. Maps
generated by different types of robots show differences in
size, accuracy, and scale, and the relevant geographic location
data may be inaccurate and biased. However, in an agri-
cultural environment, it seems obvious. Both iterations of
engineering structure defeated the classic map fusion tech-
nique. Potena et al. [15] solved the problem of coopera-
tive UAV environment reconstruction and unmanned ground
vehicle environment reconstruction in agricultural fields by
proposing an effective method for aligning non-uniform
three-dimensionalmaps. Their method representsmultimedia
environment using target domain semantics, geometry, and
data linking strategies. They reported comprehensive tests
proving that their method is superior to the standard method.
Computer vision has been successfully used to destroy weeds
between crops mechanically. Assuming known locations of
crop rows and assumption that plants growing outside these
locations are weeds can be used in this system. However, for
many crops, automatic weeding of continuous or crop groups
with mixture of weeds and plants is not resolved randomly.
The purpose of Piron et al.’s study [16] was to measure
that plant’s height is the difference between early-growing
crops and weeds because weeds and crops grow at differ-
ent rates. Plant height uses active holographic technology
based on multi-emitter code modulator illumination devel-
oped for small scene features. There were several kinds of
hubs at the point of data collection. Considering ground’s
non-uniformity, a new parameter called ‘‘corrected plant
height’’ is calculated to represent plant height accurately. This
parameter is the distance between observed pixel and the
actual ground level below it.

3D tree structures play an important role in many scien-
tific fields, such as study of forests and agriculture. Laser
ground view scanning can effectively display 3D spatial
locations and tree structures in point clouds. Several meth-
ods have been proposed in literature to restore 3D trees in
ground-based laser scanning point clouds. However, in gen-
eral, it is not possible to review incomplete laser scanning
data. To address such incomplete terrestrial laser scanning
data sets, a new method based on structure-aware global opti-
mization approach is proposed by Wang et al. [17] The pro-
posedmethod first estimates tree skeleton in shortest time and
uses tree skeleton to determine the extension direction. The
proposed method laser scanning point can retrieve missing
data in clouds based on these frequency ranges. They reap-
plied the distance minimum spanning tree, obtained refined
tree skeleton from tree-borne data, and used Laplace function
to simplify tree skeletons. To rearrange 3D tree model, they
estimated each branch’s radius and then added leaves to create
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crown shape. This advanced method was extensively evalu-
ated using laser scan point maps of 10 different tree species on
earth. The qualitative and quantitative indicators’ evaluation
shows that 3D method effectively formed tree model without
an incomplete full laser scanning point cloud. The 3D mor-
phablemodel is low-dimensional parameter of 3D objects and
provides an effective way of bringing 3D geometry together
with two dimensional (2D) images. However, because cur-
rent transformation models are based on 3D scans, it is not
feasible economically in budget category of general cate-
gories such as animals. Cashman et al. [18] have shown that
models can be constructed from 2D images. They indicate
that collecting 2D images of particular object category has
enough information to create a 3D model with minimally
distorted user manipulation, even without surface’s texture.
The main limitation is that the category needs to be empha-
sized in budget category, not providing an accurate model
very close to average measure’s first estimate. The model
was represented by linear combination of subdivisions on
the surface, and subdivision surfaces can be monitored. They
presented results using various natural object classes and
showed that very high-quality models could be obtained from
this limited information. Laser scanning is a new technology
that enables high-density, and accurate 3D measurements of
objects. The development of scanners and laser technolo-
gies has led to many successful land and forest surveying,
industrial design, and urban planning. However, pneumatic
laser scanners are expensive and accurate enough not to
penetrate farming or careful planning. On the other hand,
tripod ground-based laser scanners are impractical to use.
However, low-cost laser scanners could be installed in future.
The purpose of the study by Lumme et al. [19] was to verify
the use of scanners and laser spot data in agriculture and
precision agriculture. They have developed an algorithm that
can automatically determine and estimate ear size based on
laser scanner data. This result is also related to grain yield, but
finding suitable parameters for algorithms that give relative
results rather than absolute grain yield is problematic. Glen-
dell et al. [20] compared ground-based laser scanning with
ground-based imaging structures of drones and moving ter-
rain. They have used terrestrial laser scanning as benchmark
and compare cost-effectiveness and accuracy of two types
of structural exercise techniques for conducting investiga-
tions into highland landscape erosion. Besides, digital surface
models derived from each technique were used to quantify
expected soil loss in highland trenches. These estimates of
gully overall erosion rate suggest that gully total erosion rates
for floors and walls were three times higher than the previous
estimates, the latter being primarily gullied walls characterize
wind and raindrop erosion.

UAV photogrammetry technology has opened many new
applications in different domains, providing an inexpensive
alternative to traditional manned aerial photogrammetry tech-
nology for large-scale topographic maps and detailed 3D
images. Jutzi et al. [21], proposed a new way to improve
drone-based 3D mapping by combining laser and optical

scanner data. They proposed installing two sensors on an
unmanned aerial vehicle. First, used equipment is calibrated
by camera’s geometric calibration. Feature detection is then
performed from series of images, considering the extracted
points of interest and projected 3D laser points. These 2D
results are fused with measured laser distance and added to
beam for simultaneous positioning and 3D mapping. How-
ever, the derived photogrammetric product may be more
accurate. In Nagai et al.’s research [22], an unmanned aerial
vehicle (UAV) survey and mapping system was developed
to obtain broader remote sensing coverage and advanced
land survey details and accuracy at low cost. They have
proposed a newmethod of direct georeferencing using bundle
block-matching and Kalman filtering. This will automati-
cally create detailed shapes and textures for drone-generated
objects at low altitudes. Another study by Ilci et al. [23]
aims to study drones’ role in 3D mapping of archaeological
locations. For this reason, two measurements were made
at two different archaeological sites. Based on this study’s
results, field aeronautical charts and 3D models were cre-
ated quickly and cost-effectively, and drone measurements
were performed with cm to dm accuracy. Khanna et al. [24]
described a framework for estimating crop height using
data collected from an array of easily accessible monoc-
ular cameras and UAVs. This algorithm can automatically
post-process point clouds created with crop height estimates
using off-the-shelf photogrammetric software. The segmen-
tation algorithm that separates plants from soil is essentially
index-independent, but it is impossible to study multiple
indexes’ effectiveness for segmenting soil plants. There are
different methods for segmenting and extracting the desired
object from the image [25]. The results show that proposed
method is superior to manual measurements.

Lan et al. [26] have used Clifford algebra’s subalge-
bra, quaternion, as a local descriptor of color images. They
suggested local descriptor called quaternion local ranking
binary mode for color photos. Unlike traditional descriptors
extracted individually from each color channel or vector rep-
resentation, quaternion local ranking binary is well suited for
quadrant representations of color images that use quaternions
to encode color pixels. The binary mode quaternion process
all color channels directly from quad domain and include
their relationships simultaneously. The Clifford transform is
applied to the quaternary ionic representation of color images.
The local quadruple sort binary pattern uses a reference
quadrupole to sort a quaternionic representation of two-color
pixel and perform local binary coding in resulting phase to
create color image for local descriptor. Experiments have
shown that the binary position of local quadrant is better than
some modern methods.

III. MATERIAL AND METHODS
i Remote sensing platform is extensively practiced in agri-
culture due to its numerous advantages, such as implement-
ing new research techniques and data-rich assistance for
crop identification and modeling. Remote sensing platform
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FIGURE 1. Structure of the proposed Clifford algebra-based 3D modeling.

also has benefits of wide coverage, compact revisits,
comparatively inexpensive purchase costs, and novel role
in surveying, evaluating, observing, and managing exten-
sive farmland [27]. Stud based on unmanned aerial vehi-
cles (UAV) have begun to gain momentum in recent years
due to their advantages over traditional remote sensing plat-
forms [28]. The proposed research consists of three stages.
The first stage is to collect data using UAVs. The second stage
is converting RGB image acquired from UAV into quaternion
image, then the third stage is 3D modeling of that image.
Figure 1 explicates the overall structure of suggested Clifford
based 3D modeling.

A. DATA COLLECTION
RGB image data of agricultural land for simulation purposes
is collected using quadrotor phantom. The image sensor was
mounted on UAV to acquire the data.

1) STUDY SITE DESCRIPTION
Image data were collected at Faisalabad University Agri-
cultural Farm in mild, sunny weather conditions. Faisalabad
city is classified as a warm desert climate zone according to
Köppen-Geiger classification system [29]. The research site
was a 35m × 18m land with 17 different plants on different
subplots. Each subplot’s length was 18m × 1m, and distance
between adjacent sites was one meter. Each lower panel
consists of four rows of plants, with a row spacing of 0.3 m
for each plant. Eight images were taken every two weeks.
The above ground level (AGL) elevation was 50 meters, with
two centimeters ground sampling distance. From January 1st

to April 15th. We acquired images of size, i.e., 4000 ×
3000 px. However, during simulation, size was reduced while
preserving aspect ratio. Various images were taken at varying
times, and Figure 2 is presented here for further testing and
simulation purposes. The image file size is 5.25 MB, and the
format is JPG. The research locality is an agricultural farm
maintained by the University of Agriculture Faisalabad in
Pakistan.

FIGURE 2. Original image acquired from UAV.

2) UNMANNED AERIAL VEHICLE
The quadrotor Phantom 4 is used as an unmanned
aerial vehicle to acquire images from above ground level.
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TABLE 1. Specifications of unmanned aerial vehicle.

The Phantom 4 drone maintain and record all places of
interest in flight. It also records complete flight route, flight
time, flight area, and format assigned to images and record
for future use [30]. Simultaneously, propelled flight recorder
continually records information on all internal components
of Phantom-4. Table 1 shows different attributes and their
respective values for UAV. The flying was performed around
mid-day to evade influence of shadows. Before the first flight,
inertial measurement unit (IMU) and compass were cali-
brated only once as a set and did not require calibration later
in operations. The Phantom 4 platform was integrated with
custom payload consisting of multispectral camera, FirePoint
TM100 GPS, and battery, as shown in Figure 3. The ADC
microsensor is multispectral sensor with three fixed bands
(red-green-NIR) compatible with LandState TM2, TM3,
and TM4 functional bands. The GPS module and battery
are directly connected to the basement of UAV. The ADC
microsensor was housed in lightweight aluminum alloy frame
with downward direction.

FIGURE 3. Payload attached with the Unmanned aerial vehicle.

3) SENSORS DESCRIPTION
We used Canon S95 with a 12-megapixel CCD sensor
and an ISO range of 100-200 as UAV’s RGB camera to
acquire images. Inside the camera was Bayer RGB filter
array with an Aptina CMOS sensor and a checkerboard pat-
tern. The specifications of sensor are explained in Table 2.
The ultra-lightweight sensor operates in wavelength range

TABLE 2. Specifications of the image sensor.

of 520 nm to 920 nm and is suitable for remote agricultural
sensing applications.

B. QUATERNION FILTERING METHOD
The quaternion is the sub-algebra of Clifford algebra.
A quaternion is a number in multi-dimensional space [31].
It has one real scalar part and three imaginary parts Vec-
tor,Bivector and Trivector as expressed in Equation 1. The
quaternion Q can be expressed as Equation 2:∣∣∣∣∣∣∣∣

scalar = 1,
Vector = e1, e2, e3,

Bivector = e1e2, e2e3, e3,
Trivector = e1e1e2e3 ≡ I

∣∣∣∣∣∣∣∣ (1)

Q = a0 + a1(Ie1)− a2(Ie2)+ a3(Ie3) (2)

where Ie1 is equal to a1e2e3, Ie2 is equal to a2e3e1 and
Ie3 is equal to a3e1e2. a represents real numbers that are
used to represent complete multiple vectors. The quaternion
representation of color images is generally used in the litera-
ture [32]. Let the three imaginary components of quaternion
represent the three primary color components of red, green,
and blue (RGB). The real part is 0, so quaternion function
q(x, y) can be expressed as Equation 3

q(x, y) = qR(x, y)+ qG(x, y)+ qB(x, y) (3)

where qR(x, y), qG(x, y),and qB(x,y) represents pixel values of
red,green and blue respectively. The x and y here represent
position of the specific pixel on x and y coordinates [33].
In geometric algebra, a rotor R, is an even-grade element of
algebra which satisfies RR̂ = 1, where R̂ stands for conjugate
of R.

Using quaternion filtering method, colors can be repre-
sented and analyzed as a single entity. The colors can be
processed as one unit instead of three separate channels: red,
green, and blue [34]. The color texture model must consider
each three-color channel’s spatial interaction and interaction
between the different color channels.

The process of converting RGB to quaternions begins
with reading test image into an array. Algorithm 1 shows
pseudo code for converting RGB to quaternion image. Since
test image is color image, the array has three dimensions.
A 3 × 3 mask is created and applied to test image that is
converted to a quaternion. Quaternion mask consists of two
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Algorithm 1 Pseudo Code for Converting RGB to Quater-
nion Image
1: im= read image(I )
2: mu = x+ y+ z/

√
3

3: R = S
{
cos π4 + µ sin π4

}
4: left = [R R R; quaternion(zeros(1, 3)); conjugate([R R

R])]
5: right = conjugate(left)
6: qI = convolution(im)
7: Output = vector(qI )
8: Display the result in an image window

parts, as explained in Equation 4. Where RR̂ is a conjugate
of R [35]. The left part contains R in the first row, RR̂ in
the last row, and right part is repositioned. The equation
for R is explained in Equation 5 whereas conjugate of R is
obtained using Equation 6 Where r represents total number
of components and variable i is used to count these numbers
in a loop. ∣∣∣∣∣∣

R R R
0 0 0
R̂ R̂ R̂

∣∣∣∣∣∣×
∣∣∣∣∣∣
R̂ R̂ R̂
0 0 0
R R R

∣∣∣∣∣∣ (4)

R = S
{
cos π4 + µ sin π4

}
(5)

R̂ =
r∑
i=0

(−1)
i(i+1)

2
Ri (6)

µ =
x+ y+ z
√
3

(7)

Referring to Equation 5, S denotes scale factor SF, and we
use it to be

√
6. For a pixel distance value of one, scale factor

will be
√
1, µ is a pure quaternion unit which is obtained

by using Equation 7. This mask operator for quaternion RR̂
discovered by Hamilton [36] defines how to rotate around
axis. The conjugate of R reverses direction of rotation, i.e., R̂.
The upper row of the masked pair rotates pixel values by
angle positive π/2, and lower row of the mask rotates pixel
values by the angle negative π/2. After applying quaternion
mask, we then save the output image. The last step of the first
stage is converting the array to pure quaternion matrix and
include RGB components in the w, x, y, and z components of
quaternion matrix.

C. 3D MODELING
The 3D modeler of our proposed method first divides quater-
nion image into different areas based on dark edges. A 3D
extension grid is created for each area. The original image
texture is attached as stylized shadow to get 3D model of
image. The proposed system later joins texture model with
original image. The system supports affine transformations
such as rotation, translation, and scaling. Algorithm 2 shows
the pseudo-code for 3D modeling of image. It initializes
by reading quaternion image and resizing that image. After
that, different operations are applied to that image, such as

FIGURE 4. Output image of quaternion filtering method.

Algorithm 2 Pseudo Code for 3D Modeling of Image
1: im= read quaternion image(q)
2: resizedim = rows, y×rowsx
3: BW = imbinarize (resizedim)
4: rgn = label matrix(BW)
5: filled = imfill(BW,’holes’)
6: mask = create boundary mask(BW)
7: B,L,N,A = bwboundaries(BW,’noholes’)
8: for k 1:N do
9: boundary = Bk

10: if nnz(A(:,k)) > 0 then
11: boundary = Bk
12: for l find(A(:,k)) do
13: boundary = Bl
14: end for
15: end if
16: end for
17: Calculate distance map
18: Apply Circular Smoothing
19: Create Mesh Grid
20: x = 1:size(H,1)
21: y = 1:size(H,2)
22: [X,Y] = meshgrid(y,x)
23: Texture Mapping
24: h = warp([X X],[Y Y],[H H])
25: show 3D figure

converting into a binary image, filling holes, applying mask,
region separation, and creating a mesh grid. These steps are
explained further in the subsections.

1) REGION SEPARATION
The quaternion filtering method’s output image is passed to
the 3D modeling part. The proposed process first extricates
regions from image. Every region surrounded by dark edges
forms an area and gives the initial segmented image. This
method calculates curve points by applying non-maximum
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suppression to second derivative of original image and then
connects them to form structural curve. For some agricultural
images, aforementioned process can immediately extract
available contours. Though, if the input image contains noise,
result will not be neat to process further.

2) FINDING IMAGE BOUNDARY
Using these segmented regions, the system expands them
to remove edge pixels and then finds contour. Then extract
region boundary from segmentation result. If there are holes
or uneven borders, they will be repaired by system. Figure 5
shows the result of applying a boundary mask.

FIGURE 5. Result of applying boundary mask.

3) DISTANCE MAP AND MESH GRID
To detect the final contour from initial results, the system
executes seed filling algorithm to find closed area. Then,
it calculates Euclidean distance transform of binary image.
Distance map and circular smoothing are performed using
Algorithm 3. The distance transform will digitally assign dis-
tance between that pixel and nearest non-zero pixel for each
pixel in image. The system applies fitting constraint Delaunay
triangulation [37] to each boundary to obtain discrete domain.
Figure 6 shows the distance map obtained from test image.
Yellow color represents more height, and blue represents less
height from the ground.

Using the inflation algorithm, function f (x) corresponds
to the region’s expansion height. The resulting f (x) produces
a parabolic cross-section. Then, our system uses Equation 8
to transform it into smoother mesh. We have used these
equations from the literature [38]. Where Dmax represents
maximum distance values of regions and a can be calculated
using Equation 9. For areas that need to be kept flat, Neumann
boundary conditions can be used.

Hi,j =
√
D2
max − a2 (8)

a = Dmax − Di,J (9)

FIGURE 6. Distance map.

Algorithm 3 Algorithm for Distance Map and Circular
Smoothing
1: Initialize D and rgn = label matrix
2: r = rgn1,1
3: for i sizeD,1 do
4: for j sizeD,2 do
5: if rgni,j = r then
6: Di,j = NaN
7: end if
8: end for
9: end for
10: H= D
11: M = Dmax
12: for i sizeD,1 do
13: for j sizeD,2 do
14: if rgni,j = r then
15: a = m − Di,J
16: Hi,j =

√
m2 − a2

17: end if
18: end for
19: end for

4) TEXTURE MAPPING
The original image is directly used to synthesize front texture.
The proposed approach employs a heuristic rule when the
area is far distant from the area border [39]. x, y coordinates
are used as front’s texture coordinates and directly attach
to original image. The proposed approach initially chooses
base color that contributes largest adjacent to edge in a given
area. Our system then uses watershed algorithm to apply
label-based segmentation to each area of original texture.
The algorithm starts with binarization of input image. Later
utilize distance transform to the binary image. Established
this distance image as threshold furthermore do some mor-
phological work to extricate regions from image. For each
region, the contour is extracted to create seed of the watershed
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FIGURE 7. Mesh Plot.

algorithm. Later apply watershed algorithm andmerge neigh-
boring regions. To distinguish the distance from region’s
boundary, we apply distance transformation to the entire area
and utilize this distance map to determine closest route from a
specific region to the edge. By default, the produced meshes’
centers are all positioned at the same depth at z = 0, and rel-
ativistic depth order may be undesirable. The transformation
processes backed by system include transformation, scaling,
and rotation.

5) RENDERING ON THE MESH
All meshes generated by our system are textured. Texture
coordinates u, v are assigned to each vertex to render correctly
on the mesh. For the previous, those coordinates are just x, y
coordinates of the vertex. On the rear, v element of u, v is,
however, the value of y, though u element is the aggregate
of x plus 1. Therefore, texture coordinates greater than one
indicate that the aforementioned vertex refers to a certain
back surface. During rendering the mesh, system uses this
information to determine which portion of the texture to
examine.

IV. RESULTS AND COMPARISON
For simulation, we installed Matlab R2019b version 9.7.
We tested our system on an Intel Core i7-1160G7 Processor
at 4.40 GHz with a windows operation system.

To demonstrate our method’s versatility, we select images
acquired from the UAV of a composite of different crops.
These images were captured during different stages of crop
growth. Table 3 shows the test-bed implementation environ-
ment for simulations.

TABLE 3. Test-bed implementation environment.

The effectiveness of 3D images can be evaluated using
two commonly used methods. The first method is structural
similarity index measure (SSIM) [40] and the other is peak
signal-to-noise ratio (PSNR) [41]. PSNR and SSIM indica-
tors are often used to measure image quality. These pointers
identify how good the change is after algorithm is applied to
the image.

PSNR is an index of a statistical analysis based on the gray
values of pixels in an image, an error that defines mean square
error (MSE) between first image I (i, j) and the redesigned
output image O(i, j). PSNR is defined using Equation 10 and
MSE is calculated using Equation 11

PSNR = 10× log10(
(2n − 1)2

MSE
) (10)

MSE =
1
mn

m∑
i=0

n∑
j=0

‖I (i, j)− O(i, j)‖2 (11)

where i, j shows the pixel position of input and output images
on x and y coordinates. SSIM shows the similarity between
two images. The first image is the original agricultural image
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FIGURE 8. Three dimensional view of agricultural image.

acquired through UAV, and the other image is redesigned
3D image using Clifford geometric algebra-based approach.
MSE for redesigned 3D image is calculated using the sym-
metric surface distance between the reconstructed image
O(i, j) and the original image I (i, j) [42]. Symmetric surface
distance is calculated using Equation 12. Where m and n
represent the respective number of densely sampled points
on input and output images. d(p,O) represents the distance
where p is the specific point belongs to input and output
images.

d(I ,O) =
1
m

∑
pεI

d(p,O)+
1
n

∑
p̂εI

d(p̂, I ) (12)

The similarities between I (i, j) and O(i, j) images and for-
mats of these two images are explained as Equation 13

SSIM (I ,O) = l(I ,O)α · c(I ,O)β · s(I ,O)γ (13)

where l(I ,O) represent the luminance, c(I ,O) represent the
contrast, and s(I ,O) represent the structure of image. Here α,
β, and γ are greater than 0. Equations for luminance, contrast,
and structure are presented in 14, 15 and 16 respectively.

l(I ,O) =
2µIµO + C1

µ2
I + µ

2
O + C1

(14)

c(I ,O) =
2δI δO + C2

δ2I + δ
2
O + C2

(15)

s(I ,O) =
δxy + C3

δI δO + C3
(16)

where µI , and µO represent all pixels in image I (i, j) and
O(i, j); δI and δO are the standard deviations of image pixel;

FIGURE 9. x-y View of three dimensional image.

FIGURE 10. x-z View of three dimensional image.

and δxy is co-variance of image I (i, j) and O(i, j). C1, C2, and
C3 are constants that are employed to avoid the error when
denominator of formula.

When the PSNR value is high, it shows the image restora-
tion is good, and low PSNR shows bad results. The range
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FIGURE 11. Results of the proposed model on different images.

FIGURE 12. Visual output of (a) Ruma et al. [46], (b) Salih et al. [47], and (c) Koyuncu et al. [48].

structural similarity indexmeasure is from 0 to 1.When SSIM
value is equal to 1, it shows that structural similarity is good,
and two images are same. [49]. From the comparison Table 4,
it is clear that the proposed method performs well than the
other approaches.

TABLE 4. PSNR and SSIM comparison of proposed model.

Clifford Algebra gives a more reliable framework to
resolve the problem of image processing in frequency domain
where the image frequency is not monochrome [50]. We uti-
lize agricultural image shows in Figure 2 for the test purpose.
By applying quaternion filter, we obtained the image 4. For
fast processing, we resized this image and extracted regions
from the image. The segmentation process is used to differ-
entiate between crops and land regions. Region boundaries
are then extracted from segmentation, as shown in Figure 5.
We calculated distance map to insert each pixel’s distance
into nearest black pixel. The value of distance shows how
many pixels the plane is spread out. We created a mesh map
using distance map such as Figure 7. We merged the mesh
plot with original image to obtain a three-dimensional view
of agricultural land. Figure 8 shows the Three-dimensional
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view of the agricultural image. X-Y view is shown in Figure 9
of three-dimensional output image, and Figure 10 shows the
x-z view of output three-dimensional agricultural image.

Figure 11 showsResults of the proposedmodel on different
images acquired at different stages of crop growth. Sub-
Figure 11(a) shows the three input images acquired by UAV.
Sub-Figure 11(b) shows the mesh plot of these images and
Sub-Figure 11(c) shows the 3D output plot of these images
respectively. From mesh plots, we can clearly observe the
difference in the height of crops at different stages.

For the visual comparison, we have selected recently
published work which are using different techniques. The
last image of Figure 11 is used for the comparison with
existing techniques. Figure 12 shows the Visual output of
these techniques. Sub-Figure 12 (a) shows the output of
Ruma et al.’s proposed algorithm. [46]. Which employs the
depth hypothesis to obtain the 3D image after background
and foreground segmentation. Sub-Figure 12 (b) shows the
output of Salih et al.’s proposed 3D mesh reconstruction
technique. [47]. Sub-Figure 12 (c) shows the output of
Koyuncu et al.’s proposed method. [48].

V. CONCLUSION
3D modeling of crops performs a vital role in the field of
remote sensing. The proposed method introduces quaternary
algebra, a subfield of Clifford geometric algebra for 3D image
reconstruction. Powerful geometric algebra provides math-
ematical tools for expressing and analyzing complex things
in a multidimensional-unified framework. We have used an
unmanned aerial vehicle to get images of crops. We applied
various image processing techniques such as segmentation,
distance map, mesh grid, and texturing on the quaternion
image to obtain 3D image of agricultural land. This article
contains a comparison table of peak signal-to-noise ratios
and structural similarity indicators. A comparison table of
peak signal-to-noise ratio and structural similarity indexmea-
sure is included in this paper. We obtained a PSNR value
of 17.73 and SSIM of 0.8713 using the Clifford algebra-based
3D modeling technique. The comparison outcomes explicate
that the suggested approach has better PSNR and SSIM val-
ues. Future work will focus on designing different testing
strategies and expanding the assessment scope to include
various 3D reconstruction techniques.
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