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ABSTRACT In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis
of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna
elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtained from the
outputs of the trained DNN, which are amplitude and phase of the antenna elements. However, it is difficult
to determine the amplitude and phase of each antenna element from the desired pattern in an environment
where inter-element coupling exists. For this purpose, 6,859 radiation pattern samples for a 4 x 1 array patch
antenna were generated by changing the phases of the antenna elements, and those patterns were leveraged to
train the proposed DNN with low complexity. The radiation patterns of the ideal square and triangular array
shapes, which are practically infeasible to implement, were used as inputs to the DNN. It was confirmed that
the radiation pattern generated from the output signals of the DNN was very similar to the input radiation

pattern.

INDEX TERMS Antenna, deep learning, neural network, radiation patterns, synthesis.

I. INTRODUCTION

The radiation pattern of an array antenna is determined by the
amplitude and phase of the signal applied to each antenna ele-
ment [1]. In actual array antennas, there is coupling between
the various antenna elements. Consequently, it is difficult
to determine the signal amplitude and phase for each array
elements in order to obtain the desired array radiation pattern.
As a typical approach, Fourier transform or optimization
techniques can be utilized to synthesize the radiation pattern
of the array antenna [2]-[4]. However, these methods cannot
be easily implemented in practice, and the synthesis of even
a single radiation pattern requires a considerable amount of
computation time. To synthesize different types of radiation
patterns for the same antenna structure, the algorithm must be
re-operated several times for each pattern, resulting in even
longer computation time.

Recently, deep learning (DL) has been applied to vari-
ous research fields and applications, including electromag-
netic (EM) problems. The DL approach has also been utilized
to design and synthesize various types of antennas [5]-[6].
While designing the antenna structure, the simulation time
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could be reduced by replacing EM simulations with DL
methodology [7], [8]. Furthermore, to improve the antenna’s
performance, a DL approach has been studied for antenna pat-
tern synthesis, fault diagnosis, and far-field imaging [9]-[16].

From the perspective of implementation, the distortion of
the radiation pattern, due to coupling, becomes more pro-
nounced where the distance between the elements of the
array antenna become smaller. To minimize the side effects
of coupling, a neural network (NN)-based methodology was
studied for radiation pattern synthesis [5], [10]. When the
antenna elements fail in an array antenna, the radiation pattern
is changed. To diagnose the failure of antenna elements,
a convolutional NN (CNN) has been used in conjunction with
the input radiation pattern [11]. In addition, the CNN has
been used to determine the excitation signal of the antenna
element [9], [14]. As the study for antenna synthesis, based
on CNN, shed light on the feasibility of DNN as a reasonable
candidate for learning arbitrary antenna radiation patterns,
we therefore propose a DL based methodology to estimate
the excitation signal by interpreting the radiation pattern as a
corresponding image.

The main contribution of this article is to provide a DL
methodology that derives and outputs the amplitude and
phase of the antenna elements in response to an ideal input
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FIGURE 1. Array antenna structure used for radiation pattern simulations.

radiation pattern. While the previous work was to seek the
amplitude and phase of an antenna for the attainable radia-
tion pattern, the proposed methodology is utilized to search
for the signals to provide the desired radiation pattern. The
proposed methodology can also be directly applied to deter-
mine the amplitude and phase for various radiation patterns
once these have been learned via DNN training and vali-
dation. In Section II, the structure of the array antenna is
described. Section III presents the radiation pattern data for
deep learning. Section IV describes the deep neural network.
The applications of the deep learning outcomes are described
in Section V. The conclusions are presented in Section VI.

Il. ARRAY PATTERN STRUCTURE

Fig. 1 describes the antenna structure for the simulation of
the radiation pattern corresponding to the input signal of the
antenna element. A 4 x 1 array antenna was designed, and a
patch antenna was used as the antenna element. An FR4 sub-
strate with a dielectric constant of 4.3 and a thickness of 1 mm
was used. The patch antennas had the same length and width
(28 x 28 mm). The feeding point was 5 mm to the left of
the center of the patch antenna. The operating frequency of
the antenna was 2.4 GHz. To investigate the effect of deep
learning, a high coupling between the array antenna elements
was chosen with the distance between antennas being equal
to 0.28 A (35 mm). This is narrower than 0.5 A, typically used
in array antennas.

The radiation pattern of an array antenna, without cou-
pling, can be expressed simply as the product of the radiation
pattern of a single antenna and an array factor. However,
in the case of the array antenna, with coupling, the radia-
tion pattern is distorted by the coupling. Fig. 2 compares
the simulated radiation patterns with and without coupling.
The amplitude and phase of the input signals of the antenna
elements in Fig. 1 are as follows: antenna #1: 1/0°, antenna
#2: 1/60°, antenna #3: 1/120°, and antenna #4: 1/180°.

The simulations were performed using ANSYS and HFSS
(commercial three-dimensional EM software). The radiation
pattern, without coupling, was obtained by multiplying the
radiation pattern of a single patch antenna by an array fac-
tor. The radiation pattern, with coupling, was simulated by
directly inputting a signal with a phase difference of 60° to
each antenna element. As shown in the simulation results,
the coupling distorts the radiation patterns. Therefore, it is
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FIGURE 2. Comparison of radiation patterns with or without coupling.

TABLE 1. Amplitude and Phase of Antenna Input Signals for the

Training Set.
Amplitude Phase Number
of cases
Antenna #1 1 0° 1
Antenna #2 1 0°, 20°, 40°, 60°, ... 340°, 360° 19
Antenna #3 1 0°, 20°, 40°, 60°, ... 340°, 360° 19
Antenna #4 1 0°, 20°, 40°, 60°, ... 340°, 360° 19

necessary to find the amplitude and phase of the signal to
obtain a radiation pattern without the effects of coupling.
This can be obtained by using various algorithms. A DL
methodology is used to determine the amplitude and phase of
the signal required to synthesize the antenna radiation pattern
for the case where the coupling exists.

Ill. EXTRACTION OF RADIATION PATTERN DATA

The radiation pattern was mainly determined by the phase
of the signal that excited the antenna element. The radiation
patterns were acquired while the phase of the signals were
varied. The relative phase difference was more important than
the absolute phase value of each antenna. Therefore, the phase
of antenna #1 was fixed at 0°, and the phase of the other
antennas were compared with it. The radiation patterns of
the training data were acquired by increasing the phase by
20°. As shown in Table 1, the number of cases created per
antenna is 19; thus, the total number of radiation patterns is
1 x 19 x 19 x 19 = 6,859. To verify whether the deep
neural network is properly trained, validation data should not
overlap with the training data. Table 2 lists the validation
data. The initial phase started from 10°, increased by 40°,
and stopped at 130°. Because the number of cases made per
antenna was four, the total number of radiation patterns was
1 x4 x4x4=064.

The radiation patterns were extracted with MATLAB
and HFSS. In MATLAB, the amplitude and phase of the
signals were specified as variables and the values given
in Tables I and II were assigned to the variables. The antenna
structure shown in Fig. 1 was simulated and saved once using
HESS. The previously simulated HFSS file was opened with
MATLAB. The amplitude and phase variables of the antenna
were input to HFSS, and the radiation pattern was extracted.
These patterns were two-dimensional, and their values were
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TABLE 2. Amplitude and Phase of Antenna Input Signals for the

Validation Set.

Amplitude Phase Number of cases
Antenna #1 1 0° 1
Antenna #2 1 10°, 50°,90°, 130° 4
Antenna #3 1 10°, 50°, 90°, 130° 4
Antenna #4 1 10°, 50°, 90°, 130° 4
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FIGURE 3. Architecture of the deep neural network.

extracted in units of 1° according to the 8 value in Fig. 1.
The starting point was 0°, and the maximum value was 180°.
The radiation pattern corresponds to the E-plane of the patch
antenna.

IV. NEURAL NETWORK MODELING AND TRAINING

A DNN was constructed, as shown in Fig. 3. It is very impor-
tant to determine the type of input and output of the DNN.
This is because learning results can be completely dependent
on the type of input and output data. The radiation patterns
were extracted in units of 1° according to the 6 value ranging
from 0° to 180°. In general, the intensity of the radiation
pattern was expressed in dB; however, as the input data must
be normalized, the dimension of the radiation pattern was
converted to a scalar value. The number of input data was
181, and their values ranged from zero to one.

When the phase of the signal was set as the DNN output
data, there were two different outputs for one input due to 0°
and 360° being equivalent values. As this may result in poor
learning, the DNN output data, amplitude and phase, were
expressed as complex numbers. For example, using real and
imaginary values to output data, a signal with an amplitude of
one and a phase of 45° can be expressed as 1¢/™/* = 0.707 +
j0.707. The output of the DNN has a real part of 0.707 and an
imaginary part of 0.707.

The configuration of the DNN is shown in Fig. 3. The
DNN consists of five layers. The activation function of the
last layer is the “linear” function with the remaining layers
using the “rectified linear unit (ReLU)” function to overcome
the vanishing gradient problem. Each layer uses a dense layer
that fully connected both input and output neurons. As the
depth of the network increased, the number of output neurons
was reduced. The loss function used to compile the DNN was
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FIGURE 5. Deep learning data verification using one sample of the
validation set.

used in conjunction with a mean squared error. The Adam
optimizer was used. For training, 6,859 radiation patterns
corresponding to Table 1 were used. In Table 2, 64 radiation
patterns were used as validation data. The epochs were set
to 500 for training 500 times. The batch size was set to
100. TensorFlow 2.0 was used for the simulations. The loss
according to the epoch is shown in Fig. 4. It can be observed
that the value converges as the epoch increases. The final
converged train loss was 0.00022, and the validation loss was
0.00026. It took approximately 3 min to train the DNN when
using the hardware specification of Intel(R) Xeon(R) CPU @
2.30 GHz with a memory of 16 GB.

V. SIMULATION RESULTS

To validate the DNN output data, one of the validation sets
was selected and compared. The phase of the array antenna
in the validation data was selected as follows: antenna #1:
120°, antenna #2: 1/50°, antenna #3: 1/10°, and antenna #4:
1/90°.

For the above data, the radiation pattern (‘‘validation data”
in Fig. 5) was obtained through simulation with HFSS. The
pattern was then used as the input dataset of the DNN, and
the output data were obtained. The output data are as shown
in Table 3.

It is observed that the DNN output data are almost similar
to the output data of the validation set. The radiation pattern
(““after deep learning” in Fig. 5) was obtained through HFSS
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TABLE 3. Output Data of DNN for the Validation Sample.

Real Imaginary Amplitude/Phase
Antenna #1 1 0 120°
Antenna #2 0.64042646 0.7917143 1.02 £ 51.0302°
Antenna #3 0.99693894 0.21536693 1.02 £12.1902°
Antenna #4 —0.00635789 1.0284995 1.03 £90.3542°.

TABLE 4. Output Data of DNN for the Square Pattern.

Real Imaginary Amplitude/Phase
Antenna #1 1 0 120°
Antenna #2 —0.95035845 —0.71866751 1.19 £ —142.9032°
Antenna #3 0.69105726 —1.4455540 1.60 £ —64.4495°
Antenna #4 —1.3081744 —0.063080259 1.312-177.2393°

TABLE 5. Output Data of DNN for the Triangular Pattern.

Real Imaginary Amplitude/Phase
Antenna #1 1 0 120°
Antenna #2 —1.2710851 0.82223773 1.51 2 147.1020°
Antenna #3 0.67788279 0.052280359 0.67 £4.4101°
Antenna #4 —0.98690575 —0.34272450 1.04 £ —160.8493°

simulations by using the DNN output data. The two radia-
tion patterns are compared and presented in Fig. 5. It can
be observed that the two radiation patterns appear almost
identical. In other words, the phase value of the array antenna
obtained by inputting the radiation pattern is appropriate.

By leveraging the learned DNN via training and validation,
a radiation pattern that is difficult to predict was input to
determine the phase of the array antenna. An ideal radiation
pattern, which could not be generated from the array antenna,
was used as an input value. Fig. 6(a) depicts an ideal square
input pattern with a gain of one within the angular range
of 100-140° and a gain of 0.001 for all other angles. When
the square-shaped radiation pattern was input, the DNN dis-
played the output as shown in Table 4. The DNN output was
used as input signals of the array antenna, as shown in Fig. 1,
and the radiation pattern was simulated. The radiation pattern
is marked as “After deep learning” in Fig. 6(a). The radiation
pattern exhibits a maximum gain at 114° and a similar wave-
shape to the input pattern of the DNN.

An ideal triangular shape was also inserted into the DNN.
The shape of the input data is shown as an “input pattern”
in Fig. 6(b). The output value of the DNN is shown in Table 5.
The radiation pattern was simulated based on the outputs of
the DNN, and the pattern is depicted as “after deep learning”’
in Fig. 6(b). This is quite similar to the input shape. Because
the input pattern is not realistic, the solution cannot match
completely. However, the DNN presented an output value that
could produce a result similar to the desired radiation pattern.
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FIGURE 6. Radiation pattern synthesis according to the input of an
arbitrary ideal pattern: (a) square and (b) triangular shapes.

TABLE 6. Comparison of the Different ML Architecture for Pattern
Synthesis.

Reference Application NN size Architecture
2D Synthesis of
1] Reflectarray 8 CNN
[14] 2D Pattern synthesis 7 CNN
[Proposed] 1D Pattern synthesis 5 DNN

Therefore, DNN can play a useful role for synthesizing
desired radiation patterns.

VI. DISCUSSION
The feasibility of radiation pattern synthesis has been shown
by several NN methodologies, such as NN and support vector
machine [5]. However, for such machine learning engines,
there is an inherent limitation on learning different antenna
radiation patterns. In other words, NNs without using deep
hidden layers might not provide antenna design parameters
for an arbitrary antenna radiation pattern. For that, the pro-
posed DNN can be utilized along with dealing with practical
issues such as the coupling effect. The determination of
whether there is a limit to using the proposed DNN in the case
of extreme coupling would be a valuable research direction
in future.

Another important aspect is that the use of the pro-
posed DNN is different from the conventional use of
the CNN. Specifically, convolution filter and max pooling
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which are main components of the CNN are not used.
In [9], [14], the radiation pattern was imaged by introducing
the well-defined CNN, and the pattern was synthesized from
this image. However, since all of the outputs are used as
phase values, there is a possibility that learning for phase
information near 0° and 360° may not work well. Moreover,
validation was performed only for the radiation pattern that
can be actually obtained.

The prominent difference of the proposed DNN from the
conventional schemes is that it utilizes real and imaginary
numbers instead of the phase value in order to enhance the
ability of learning for an arbitrary antenna radiation pattern.
By numerical validation, it was observed that reasonable
antenna parameters, for antenna synthesis, can be provided
even for an antenna radiation pattern that cannot be derived
easily in the practical sense.

VIl. CONCLUSION

A deep learning-based methodology was designed to syn-
thesize the radiation pattern of array antennas. In order to
derive the radiation patterns, including the case where cou-
pling exists between the antenna elements, a 4 x 1 array
patch antenna with a spacing of 0.28 A was utilized. A DNN
was then constructed with the input being the radiation
pattern and the output being the amplitude and phase of
the antenna. It was shown that the proposed DNN trained
(validated) by 6,859 (64) radiation pattern samples exhibits
reasonable performance in synthesizing the corresponding
radiation patterns. Based on the test results of the proposed
DNN with a low complexity, it was observed that the deep
learning is feasible for the ideal radiation patterns of square
and triangular shapes. The results validated that the radiation
pattern from the DNN outputs were quite similar to the input
radiation pattern. This demonstrated that deep learning can
be used reliably for radiation pattern synthesis. As a future
work, the feasibility of the DNN-based methodology can be
extended for strongly coupled MIMO antennas implemented
inside a mobile phone.
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