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ABSTRACT In this work, an output feedback controller based on adaptive backstepping technique is
considered for a class of transport information switched systems. A modified adaptive neural network
control method is successfully built by combining the general approximation capability and dynamic surface
control technique with the improved mean discrete time scheme. More specifically, a switched observer
is constructed to reduce the conservatism caused by the use of a common observer, and by adopting the
common coordinate transformation of all subsystems, it is proved that the overall closed-loop system is
stable in the sense of semi-globally uniformly ultimately bounded in mean square, and steers the output to a
small neighborhood of the origin. Finally, mass-spring-damping systemwith controller switching simulation
studies are provided to demonstrate the validity of the proposed control format.

INDEX TERMS Neural networks structure, average dwell time, Internet of Things, transport information
systems, mass-spring-damping.

I. INTRODUCTION
In recent years, latest trends in communication technolo-
gies have brought a rapid increase in the internet of things
[1], [5], [11]. There has been considerable study interest
in transport information systems from many researchers,
because of many logistical systems such as networked sys-
tems [3], circuit and power systems [4] and robot systems [2]
can be modeled as such systems. Switched transport systems
constitute a special class of hybrid systems, which contain
both continuous dynamics and discrete dynamics. The anal-
ysis and the synthesis of switched systems have drawn con-
siderable attention in control and computer community in the
past period of time [6]–[10]. The control theories of switched
systems have been seen much progress of robotic, mecha-
tronic and mechanical systems, gene regulatory networks,
and switching power converters [12]–[14]. The widespread
applications of switched systems are also motivated by the
better performance via using a controller switching strategy.
However, due to the inter action between continuous or dis-
crete subsystems, switched dynamic may have a very com-
plicated behavior [12], [15]–[17]. For example, switching
between unstable subsystems can give rise to stability, while

The associate editor coordinating the review of this manuscript and

approving it for publication was Po Yang .

switching between stable subsystems may lead to instabil-
ity [12] and [15]. In all dynamic behaviors, there may be
either good performance, bad performance or even unstable
dynamics on the premise of ensuring the stability of the
system, this work attempts to design an appropriate control
strategy to make the system achieve better switching effect
and optimized performance index. Hence, as for the switch-
ing systems, its motion pattern is richer and more complex
than the previous single model, and it is also a challenging
topic.

The controller design for stochastic switching systemswith
uncertain triangles has become a hot topic. Many relative
results have been achieved by using the famous backstepping
technique (see [18]–[20] and their references). The backward
step design can effectively solve the stability and reliability
of the tracking control of the lower triangular nonlinear
systems [17], [21]–[32]. Dead zone and output constraints
of the controller [31] were constructed for the uncertain
stochastic system. An adaptive algorithm based on neural
networks and tracking controller were established for the
nonlinear problem of single input and single output. Recently,
the stability analysis and global stability problems, have been
extensively studied in [9], [33]–[35]. Stochastic switched sys-
tems can be effectively modeled as exchange systems in var-
ious fields [36], [37], etc. However, a switched system does
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not necessarily inherit the attributes of a single subsystem
[38]–[40], for any switching signal, even if all subsystems
have such properties, it is not necessarily establish the asymp-
totic stability of the switching system. For instance, sev-
eral adaptive backstepping approaches have been presented
for uncertain switched systems with lower-triangular form
[41]–[44]. Among them, Tong et al [42], Long and Zhao
[43], [44] presented adaptive neural output feedback
controller. It should be noted that the aforementioned adap-
tive algorithms are only limited to the switched uncertain
deterministic systems, they cannot be directly used in those
switched ones with stochastic forms, this kind of problem has
not been studied in depth. Therefore, how to design a stable
scheme for switched stochastic systems is our main purpose.

In order to achieve the stability or certain performance,
switching systems need to stay on each subsystem for a
period of time before switching to another subsystem. These
running times will form a switching sequence, which is the
dwell time problem. For a class of continuous time switching
systems with stable subsystems, Morse [45] first proposed
the concept of dwell time. The minimum dwell time (MDT)
was defined as the minimum of all dwell times. The average
dwell time (ADT) was quantified when the average time
interval was not less than τa in [46]. Zhai et al. [47] combined
ADT technology with Lyapunov function and obtained the
stability conditions of switching systems for unstable sub-
systems. The authors used ADT method to give switching
rates for hybrid switching systems in [48]. Research has
shown that the ADT scheme is an effective tool of designing
stable switching signals [49]–[53]. All of the above work has
obtained exponential stability, ADT reduces conservativeness
and enhances flexibility of switching rules compared with
dwell time(DT) and MDT. However, the above achievements
were concentrated on linear systems, and most of the switch-
ing subsystems were fully stable. Less work has been done on
lagging, time delay, including unstable subsystems, internal
and external disturbances and pulses. To the best of our
knowledge, no effort has been devoted to ADT control for
switched systems in lower-triangular form with disturbances.
Therefore, this work attempts to use ADT technology to deal
with the switching problems of unstable subsystems, so as
to obtain a control format with less conservativeness and
more flexible switching strategy. In the process of controller
design, a neural networks system is used to approximate
unknown nonlinear function and a common coordinate trans-
formation is chosen to avoid coordinate transformation of
different subsystems. An output feedback scheme based on
decentralized adaptive approximation is proposed. Compared
with the existing design methods, the main advantages of this
paper are as follows:
(i) By using ADT method and neural network tracking

technique, sufficient conditions for adaptive output feedback
scheme of switching system are given. A neural network
output feedback controller based on adaptive backstepping is
proposed for the lower triangular uncertain switched stochas-
tic system.

(ii) In order to avoid the coordinate transformation of
different subsystems, the common coordinate transformation
of different subsystems is adopted in the backward operation
of each step. By using the constructed switching observer,
the unmeasurable state of the switching system is success-
fully estimated, which reduces the conservatism of the control
design caused by the use of one general observer in each
subsystem. The dynamic surface control (DSC) technique
is successfully extended to switched stochastic systems by
introducing a first-order filter in each step of the traditional
backward extrapolation method.
(iii) The traditional ADT method in [41], [43] cannot be

directly used to deal with the problem of adaptive neural net-
work output-feedback controller design of switched uncertain
stochastic nonlinear system since mathematical expectation,
which is one of the important digital features of random
variable, should be exerted in the proof process. To solve this
challenging problem, we successfully expand the traditional
ADT method in the deterministic case to the one in the
stochastic case.

The rest of this work is composed as follows: We intro-
duced some assumptions and preliminaries and described
problem statements in section II, as well as output Feed-
back DSC Design and stability analysis were listed in this
section III. Simulation results can been found in section IV,
with concluding in section VI.

II. PROBLEM FORMULATION
We consider the switched systems by:

dηi(t) = (ηi+1(t)+ fσ (t),i(η̄i(t))+ gσ (t),i(η(t)))dt
+ hσ (t),i(y(t))dω, 1 ≤ i ≤ n

dηn(t) = (uσ (t) + fσ (t),n(η(t))+ gσ (t),n(η(t)))dt
+ hσ (t),n(y(t))dω

y(t) = η1(t) (1)

where ηi(t) = [η1(t), η2(t), · · · , ηi(t)]T ∈ Ri, i =
1, 2, · · · , n−1, η(t) = [η1(t), η2(t), . . . , ηn(t)]T ∈ Rn denote
state vectors of the system; uσ (t) ∈ R and y ∈ R are the
system input and output. Where σ (t) : [0,+∞) → M =
1, 2, . . . ,N is the piecewise constant switching signal. For
k ∈ M, when σ (t) = k , we say that the k subsystem is
jump and the other subsystems are not, fk,i(·) are assumed
to be unknown and locally Lipschitz nonlinear functions,
and gk,i(η) (i = 1, 2, · · · , n, k = 1, 2, · · · ,m) are external
disturbances. For ∀i = 1, 2, · · · , n, k = 1, 2, · · · ,m, assume
that hk,i(y(t)) = yϕk,i(y(t)), and ϕk,i(y(t)) is a known smooth
functions satisfying Local Lipschitz condition. ω stands for a
standard Wiener process satisfying E{dω(t)} = 0.

Some definitions and lemmas needed in the research pro-
cess will be described below.
Lemma 1 (Young’s Inequality): For ∀(x, y) ∈ R2 the fol-

lowing inequality holds

xy ≤
εp

p
|x|p +

1
qεq
|y|q

where ε > 0, p > 1, q > 1, and (p− 1)(q− 1) = 1.
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Definition 1 [54]: For a switching signal σ (t) and any t >
τ > 0, denote by Nσ (τ, t) the number of switchings of σ (t)
on the interval (τ, t). We say that σ (t) has an ADT τa if

Nσ (τ, t) ≤ N0 +
t − τ
τa

(2)

holds for N0 ≥ 0. τa > 0, here N0 is called the chatter bound.
Assumption 1: The external disturbances gk,i(η(t)) are

bounded and satisfy gk,i(η(t)) ≤ ḡi, where ḡi (i =
1, 2, · · · , n, k = 1, 2, · · ·m) are unknown constants.

A. STOCHASTIC STABILITY
Consider the stochastic system

dη(t) = f (η(t))dt + h(η(t))dω (3)

where η ∈ Rn is the system state, ω is r-dimentional standard
Wiener process, and f : Rn → Rn, h : Rn → Rn are locally
Lipschitz functions and satisfy f (0) = h(0) = 0.

B. NNs APPROXIMATION
In this paper, approximation-based NNs will ba used to
approximate the unknown nonlinear function.
Lemma 2 [55]: For any continuous unknown smooth non-

linear function f (x) over a compact set � ⊂ <n, there exists
NNs W T S(x) such that for a desired level of accuracy ε

f (x) = W T S(x)+ δ(x), | δ(x) |≤ ε (4)

where x ∈ � ⊂ <
n is the input vector, W =

[ω1, ω2, · · · , ωl]T is the weight vector, l > 1 is the number
of the NNs nodes and S(x) = [s1(x), · · · , sl(x)]T , with
si(x) being chosen as the commonly used Gaussian functions,
which have the form

si(x) = exp[
−(x − µi)T (x − µi)

$i
2 ], i = 1, 2, · · · l (5)

whereµi = [µi1, µi2, · · · , µin]T is the center of the receptive
field and$i is the width of the Gaussian function.

III. OUTPUT-FEEDBACK ADAPTIVE CONTROLLER DESIGN
With the aid of radial basis function (RBF) NNs, we will
obtain the main result of this paper, adaptive output-feedback
neural tracking control is achievable by designing adap-
tive output-feedback controllers of subsystems and giving a
class of switching signal with average dwell time, for the
system (1).

A. OUTPUT FEEDBACK DSC DESIGN
Now, we will give the design procedure of a switched
observer to estimate system state since state variables of the
system (1) are not available. Design the switched observer as{
˙̂ηi(t) = η̂(t)i+1 − lσ (t),iη̂1(t), i = 1, 2, · · · , n− 1
˙̂ηn(t) = uσ (t) − lσ (t),nη̂1(t)

(6)

where η̂i(t)(i = 1, 2, · · · , n) are the estimates of ηi(t) with
η̃i(t) = ηi(t)−η̂i(t), for ∀k ∈M, uk is the system input of (6),

the switching signal σ (t) is the same as defined in (1), and
lk,i i = 1, 2, · · · , n, k = 1, 2, · · ·m are the design parameters
such that the matrices

Ak =

−lk,1... In−1
−lk,n · · · 0

 , k ∈ M (7)

Then combining (1) with (6), one gets

d η̃(t) = (Aσ (t)η̃(t)+ Fσ (t) + Gσ (t))dt + Hσ (t)dω (8)

where Fk = [fk,1 + lk,1y, . . . , fk,n + lk,ny]T , Gk =
[gk,1, . . . , gk,n]T and Hk = [hk,1(y(t)), . . . , hk,n(y(t))]T =
y[ϕk,1(y(t)), . . . , ϕk,n(y(t))]T . Ak is a strictly Hurwitz, which
means that for any given positive definite symmetric matrices
Qk > 0, there exist some matrices Pk > 0 satisfying

AkTPk + PkAk = −Qk . (9)

Therefore, the switched system can be rewritten as

d η̃(t) = (Aσ (t)η̃(t)+ Fσ (t) + Gσ (t))dt + Hσ (t)dω
dy(t) = (η̂2(t)+ η̃2(t)+ fσ (t),1(η1)+ gk,1(η(t)))dt

+ hσ (t),1(y(t))dω
d η̂i(t) = (η̂i+1(t)− lσ (t),iη̂1(t))dt, i = 1, . . . , n− 1
d η̂n(t) = (uσ (t) − lσ (t),nη̂1(t))dt (10)

where y(t), ηi(t), lk,i,Ak ,Pk , and Qk are available for control
design.

In order to avoid the problem of explosion of complexity.
DSC approach is introduced in this part, based on the change
of coordinates, as follows:{

e1 = y(t)
ei = η̂i(t)− αi, i = 2, 3, · · · , n

(11)

αi is the output variable of a designed first-order filter with the
intermediate virtual control αi−1 and uσ (t) = αn is specified
in the final step. In addition, zi = αi − αi−1 is defined to
denote the boundary layer error.

Similar to the traditional backstepping technique,
the recursive design procedure contains n steps to steps n−1,
the virtual controllers αi of subsystems are constructed at
Step n. Meanwhile, at each step, the RBF NNs W T

ik Si(Zi) is
employed to approximate the unknown nonlinear function,
unknown control signal α̂ik (Zi). Before proceeding with the
adaptive output-feedback neural tracking control, define first
constants as

θi = max{‖Wik‖
2
: k ∈M}, i = 0, 1, 2, · · · , n (12)

θi is an unknown constant because of ‖Wik‖ being unknown
constants, i = 0, 1, · · · , n, k ∈ M. Moreover, let θ̃i = θi −

θ̂i (i = 1, 2, · · · , n), where θ̂i is the estimation of θi. In what
follows, we will propose the backstepping-based DSC design
procedure.

Step 1: For any k ∈M, it follows from (10) and (11) that

de1 = (e2 + α1 + z2 + η̃2(t)+ fk,1 + gk,1)dt + hk,1dω

(13)
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Construct the stochastic Lyapunov function candidate as

Vk,1 =
1
4
e41 +

b̄k1
2r21

θ̃21 (14)

where r > 0 is a design parameter. According to(9) and (10),
one has

V̇k,1 ≤ e31(e2 + α1 + z2 + η̃2(t)+ fk,1 + gk,1)

+
3
2
e21hk,1h

T
k,1 −

b̄k1
r
θ̃1
˙̂
θ1. (15)

Afterwards, the NNs systems W T
k,iS(Z ) is used to approx-

imate the unknown nonlinear functions fk,i + lk,iy(t)
(i = 1, · · · , n, k ∈M) such that for ∀εi > 0

fk,i + lk,iy(t) = W T
k,iS(Z )+ δk,i(Z ), | δk,i(Z ) |≤ εi (16)

where Z = η(t) and δk,i(Z ) are the approximation error.
Further, according to the definition of Fk , we get

Fk (Z ) = W T
k S(Z )+ δk (Z ), |δk (Z )| ≤ ε0 (17)

where Wk = [W T
k , · · · ,W

T
k,n], δk (Z ) = [δk,1(Z ), · · · ,

δk,n(Z )]T , and ε0 > 0 is a constant.
Therefore, according to Young’s inequality and the

definition of η̃2(t), we have (18)

e31e2 ≤
3
4
e41 +

1
4
e42

e31z2 ≤
3
4
$

4
3
11e

4
1 +

1

4$ 4
11

z42

e31η̃2(t) ≤
3
4
$

4
3
12e

4
1 +

1

4$ 4
12

‖η̃2(t)‖4

e31gk,1 ≤
3
4
$

4
3
13e

4
1 +

1

4$ 4
13

ḡ41

3
2
e21hk,1h

T
k,1 =

3
2
e41ϕk,1ϕ

T
k,1 ≤

3
2
e41ϕ1ϕ

T
1 (18)

where $1i(i = 1, 2, 3) are positive design constants, ϕ1 is a
known smooth function satisfying ϕ1 ≥ ϕk,1(k ∈M).
By substituting (18) into (15), one has

V̇k,1 ≤ e31(α1 + fk,1 +
3
4
e1 +

3
4
$

4
3
11e1 +

3
4
$

4
3
12e1

+
3
4
$

4
3
13e1 +

3
2
e1ϕk,1ϕTk,1)+

1
4
e42 +

1

4$ 4
11

z42

+
1

4$ 4
12

‖η̃2(t)‖4 +
1

4$ 4
13

ḡ41 −
b̄ik
r
θ̃1
˙̂
θ1

= e31(α1 + f̄k,1(Z1))+
1
4
e42 +

1

4$ 4
11

z42

+
1

4$ 4
13

ḡ41 −
b̄ik
r
θ̃1
˙̂
θ1 (19)

where f̄k,1(Z1) = fk,1 + (3/4)e1 + (3/4)$ (4/3)
11 e1 +

(3/4)$ (4/3)
12 e1+ (3/4)$ (4/3)

13 e1+ (3/2)e1ϕ1ϕT1 with$1i > 0
(i = 1, 2, 3) being positive constants. Furthermore, by virtue

of Lemma 2, an NNsW T
k,1S1(Z1) can be employed to estimate

f̄k,1(Z1), and then f̄k,1(Z1) can be rewritten as

f̄k,1(Z1) = W T
k,1S1(Z1)+ δk,1(Z1), | δk,1(Z1) |≤ ε1 (20)

where δk,1(Z1) denotes the approximation error, and ε1 > 0
is a positive design parameter. Consequently, based on (12),
we can get

e31 f̄k,1(Z1) ≤ e31(W
T
k,1S1(Z1)+ δk,1(Z1))

≤
1

2a21
θ1e61S

T
1 (Z1)S1(Z1)+

1
2
a21

+
3
4
e41 +

1
4
ε41 (21)

where a1 > 0 is a design parameter.
Therefore, we can obtain

V̇k,1 ≤ e31(α1 +
3
4
e1 +

1

2a21
θ1e31S

T
1 (Z1)S1(Z1))

+
1

4$ 4
11

z42 +
1

4$ 4
13

ḡ41 −
b̄ik
r
θ̃1
˙̂
θ1 +

1
4
e42

+
1

4$ 4
12

‖η̃2(t)‖4 +
1
2
a21 +

1
4
ε41. (22)

Define the intermediate virtual control α1 and the adapta-
tion law ˙̂θ1 as follows

α1 = −ξ1e1 −
3
4
e1 −

θ̂1

2a21
e31S

T
1 (Z1)S1(Z1)

−
3(n− 1)

4
e1(ϕ1ϕT1 )

2 (23)

˙̂
θ1 =

r

2a21
e61 − %1θ̂1 (24)

where %1 is a positive design parameter. Then, substituting
(23) and (24) into (22) yields

V̇k,1 ≤
1
4
e42 +

1

4$ 4
11

z42 +
1

4$ 4
13

ḡ41 +
1
2
a21

+
1
4
ε41 +

1

4$ 4
12

‖η̃2(t)‖4 − ξ1e41

−
3(n− 1)

4
e41(ϕ1ϕ

T
1 )

2
+
b̄k1%1
r

θ̃1θ̂1. (25)

Step i (2 ≤ i ≤ n − 1): In order to avoid repeatedly
differentiating αi−1, a new state variable αi is introduced, and
let αi−1 pass through a first-order filter with time constant
κi−1 to obtain αi as

κi−1α̇i + αi = αi−1, αi(0) = αi−1(0). (26)

Then, we can get the dynamic equation of boundary layer
error zi as follows

dzi = (−
zi
κi
− α̇i−1)dt −

∂αi−1

∂y(t)
dω (27)
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with

α̇i−1 =
∂αi−1

∂y(t)
(η̂2(t)+ η̃2(t)+ fk,1 + gk,1)

+

i−1∑
j=2

∂αi−1

∂η̂j(t)
˙̂ηj(t)+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj

+
1
2
∂2αi−1

∂y2(t)
hk,1hTk,1 +

i−2∑
j=1

∂αi−1

∂αjf

˙̂αjf . (28)

Hence, from (10) and (11), we can obtain

dei = (ei+1 + αi + zi+1 − lk,iη̂1 +
zi
κi
)dt. (29)

Consider a stochastic Lyapunov function candidate in the
form

Vk,i = Vk,i−1 +
1
4
e4i +

1
4
z4i +

b̄k1
2r
θ̃2i . (30)

Then, we have

V̇k,i = V̇k,i−1 + e3i (ei+1 + αi + zi+1 − lk,iη̂1 +
ei
κi
)

+ z3i (−
zi
κi
− α̇i−1)−

b̄k1
r
θ̃i
˙̂
θi

+
3
2
z2i (
∂αi−1

∂y(t)
)2hk,1hTk,i. (31)

Similar to (18), we can infer

e3i ei+1 ≤
3
4
e4i +

1
4
e4i+1

e3i zi+1 ≤
3
4
$

4
3
i1 z

4
i +

1

4$ 4
i1

z4i+1

3
2
z2i (
∂αi+1

∂y(t)
)2hk,1hTk,1 ≤

3
4
(
∂αi−1

∂y(t)
)4z4i

+
3
4
e41(ϕ1ϕ

T
1 )

2. (32)

Furthermore, we obtain

V̇k,i ≤ e3i (ei + αi +
3
4
$

4
3
i1ei − lk,iη̂1 +

ei
κi
)

+

i∑
j=2

z3j (−
zj
κj
− α̇j−1 +

3
4
(
∂αj−1

∂y(t)
)4zj)

+
1
4
e4i+1 +

i∑
j=1

1

4$ 4
j1

z4j+1 +
1

4$ 4
12

‖η̃2(t)‖4

−

i−1∑
j=1

xje4j +
i−1∑
j=1

(
1
2
a2j +

1
4
ε4j )

+

i−1∑
j=1

b̄k1%j
r

θ̃jθ̂j −
b̄k1
r
θ̃i
˙̂
θi

+
1

4$ 4
13

ḡ41 −
3(n− i)

4
e41(ϕ1ϕ

T
1 )

2

= e3i (αi + f̄k,i(Zi))+
1
4
e4i+1 +

i∑
j=1

1

4$ 4
j1

z4j+1

+

i∑
j=2

z3j (−
zj
κj
− α̇j−1 +

3
4
(
∂αj−1

∂y(t)
)4zj)

+
1

4$ 4
12

‖η̃2(t)‖4 −
i−1∑
j=1

xje4j +
i−1∑
j=1

b̄k1%j
r

θ̃jθ̂j

+

i−1∑
j=1

(
1
2
a2j +

1
4
ε4j )−

b̄k1
r
θ̃i
˙̂
θi

+
1

4$ 4
13

ḡ41 −
3(n− i)

4
e41(ϕ1ϕ

T
1 )

2 (33)

where f̄k,i(Zi) = ei+ 3
4$

4
3
i1ei− lk,iξ̂1+(

zi
κi
with$i1 > 0 being

a positive constant.
What is more, by virtue of Lemma 3, we can employ an

NNs W T
k,iSi(Zi) to estimate f̄k,i(Zi) can be rewritten as

f̄k,i(Zi) = W T
k,iSi(Zi)+ δk,i(Zi), | δk,i(Zi) |≤ εi (34)

where δk,i(Zi) denotes the approximation error and εi > 0
is a positive design parameter. Consequently, based an (12),
we can get

e3i f̄k,i(Zi) ≤ e3i (W
T
k,iSi(Zi)+ δk,i(Zi))

≤
1

2a2i
θ2e6i S

T
i (Zi)Si(Zi)+

1
2
a2i

+
3
4
e4i +

1
4
ε4i (35)

where ai > 0 is a given design parameter. Now, choose
the intermediate virtual control αi and the adaptation law θ̂i,
respectively, as

α1 = −ξiei −
3
4
ei −

θ̂i

2a2i
e3i S

T
i (Zi)Si(Zi) (36)

˙̂
θi =

r

2a2i
e6i − %iθ̂i (37)

where %i is a positive design parameter.

V̇k,i ≤
i∑

j=2

z3j (−
zj
κj
− α̇j−1 +

3
4
(
∂αj−1

∂y(t)
)4zj)

+
1
4
e4i+1 +

i∑
j=1

1

4$ 4
j1

z4j+1 +
1

4$ 4
12

‖η̃2(t)‖4

+

i∑
j=1

ξje4j +
i∑

j=1

(
1
2
a2j +

1
4
ε4j )+

1

4$ 4
13

ω̄4
1

−
3(n− i)

4
e41(ϕ1ϕ

T )2 +
n∑
j=1

b̄ki%j
r
θ̄jθ̂j. (38)

Step n: In the final step, αn is obtained by letting αn−1
pass through the following first-order filter with the design
parameter κn > 0

κnα̇n + αn = αn−1, αn(0) = αn−1(0). (39)
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Then, we have

dzn = (−
zn
κn
− α̇n−1)dt −

∂αn−1

∂y(t)
dω (40)

where

α̇n−1 =
∂αn−1

∂y(t)
(η̂2(t)+ η̃2(t)+ fk,1 + gk,1)

+

n−1∑
j=2

∂αn−1

∂η̂j(t)
˙̂ηj(t)+

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj

+
1
2
∂2αn−1

∂y2(t)
hk,1hTk,1 +

n−2∑
j=1

∂αn−1

∂αjf

˙̂αjf . (41)

According to (11), we have

den = (uk − lk,nη̂1(t)+
zn
κn

)dt. (42)

Consider a stochastic Lyapunov function candidate in the
form

Vk,n = Vk,n−1 +
1
4
e4n +

1
4
z4n +

b̄k1
2r
θ̃2n . (43)

Using the inductive argument above, we can construct an
actual control an actual control input uk for different subsys-
tems and the adaptation law θ̂n as

uk = αn = −xnen −
3
4
en −

θ̂n

2a2n
e3nS

T
n (Zn)Sn(Zn) (44)

˙̂
θn =

r
2a2n

e6n − %nθ̂n (45)

where %n > 0 is a given design parameter.
Therefore, we can verify that

V̇k,n ≤ −
n∑
j=1

ξje4j +
n−1∑
j=1

1

4$ 4
j1

e4j+1 +
n∑
j=2

z3j (−
zj
κj

− α̇j−1 +
3
4
(
∂αj−1

∂y(t)
)4zj)+

n∑
j=1

(
1
2
a2j +

1
4
ε4j )

+
1

4$ 4
13

ḡ41 +
n∑
j=1

b̄k1%j
r

θ̃jθ̂j. (46)

Furthermore, let−(zj/κj)− α̇j−1 + 3/4(∂αj−1/∂y(t))4zj =
Bj(·), and it can be deduced from [51] thatBj(·) is a continuous
function satisfying | Bj(·) |≤ Dj, Dj is a positive constant.
This, we further get

n∑
j=2

z3j Bj ≤
3
4

n∑
j=2

ζ
4
3
j z

4
j +

n∑
j=2

1

4ζ 4j
D4
j (47)

where ζj > 0 is a constant. Moreover, appropriate parameter

κj, ζj and $j−1,1 are chosen such that −( 1
4$ 4

j−1,1
−

3
4ζ

4
3
j ≥

ζj > 0(j = 2, · · · , n)).

B. STABILITY ANALYSIS
In this section, we provide the stability analysis of the cor-
responding closed-loop system. For the sake of simplicity,
we first define

a0 = min{4xj, %j,
c0

rλ2max(Pk )
, j = 1, 2, · · · , n, k ∈M}

µ = max{
λmax(Pk )
λmin(Pl)

, k, l ∈M}. (48)

Theorem 1: Under Assumption 1, suppose that for 1≤i≤n,
k ∈ M, all the unknown nonlinear function fk,i( ¯ηi(t)) can
be approximated by NNs in the sense that the approximation
errors εi is bounded. Consider the closed-loop system consist-
ing of the switched system (1), the observer (6), the controller
(44)with the intermediate virtual control (23) (36), and the
adaptive laws (26), (39), and (47). For bounded initial condi-
tions with and every switching signal σ (t), all the signals in
the closed-loop system are in probability SGUUB, and the
output can be made arbitrarily small by choosing suitable
design parameters.

Proof: The proof is divided into two parts. First of all in
part (1), we will prove that the overall closed-loop system is
semi-globally stable, and then the convergence of output will
be verified in part (2).

(1): For stability analysis, we construct the following
Lyapunov function for subsystems

Vk (X ) =
1
4

n∑
i=1

z4i +
1
4

n∑
i=2

e4i +
b̄k,1
2r

n∑
i=1

θ̃2i , k ∈M (49)

where X = (z1, · · · , zn, e2, · · · , en, θ̃1, · · · , θ̃n)T . It is obvi-
ous that we can find two function β, ᾱ ∈ κ∞, such that
β(‖ X ‖) ≤ Vk (X ) ≤ ᾱ(‖ X ‖). Further, based on (49),
we have Vk (X (t)) ≤ µVl(X (t)),∀k, l ∈M.

For the terms b̄k1%j
r θ̃jθ̂j (j = 1, 2, · · · , n) in (46), the fol-

lowing inequalities hold
%j

r
θ̃jθ̂j ≤ −

%j

2r
θ̃2j +

%j

2r
θ2j , j = 1, 2, · · · , n. (50)

Then, in view of (46) and (50), we have

V̇k ≤ −
n∑
j=1

%j

2r
θ̃2j +

n∑
j=1

(
1
2
a2j +

1
4
ε4j )

+
1

4$ 4
13

ḡ4 +
n∑
j=1

%j

2r
θ2j +

n∑
j=2

1

4ζ 4j
D4
j

≤ −a0Vk + b0 (51)

where b0 = maxk∈4{
n∑
j=1

( 12a
2
j +

1
4ε

4
j )+

1
4$ 4

13
ḡ4 +

n∑
j=1

%j
2r θ

2
j +

n∑
j=2

1
4ζ 4j

D4
j } > 0

Further, it is easy to infer that W (t) = ea0tVσ (t)(X (T )) is
piecewise differentiable along solutions of the system con-
sists of (10), (26), (39), and(47). By (51), on each interval
[tk , tk+1), one has

Ẇ (t) = a0ea0tVσ (t)(X (t))+ ea0t V̇σ (t)(X (t)) ≤ b0ea0t . (52)
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Taking Vk (X (t)) ≤ µVl(X (t))(∀k, l ∈ L) into account, one
has

W (tk+1) = ea0tk+1Vσ (tk+1)(X (tk+1))

≤ µea0tk+1Vσk (X (tk+1))

= µW (tk+1)

≤ µ[W (tk )+
∫ tk+1

tk
b0ea0tdt]. (53)

It follows immediately from integrating the inequality (53)
from k = 0 to k = Nσ (T , 0)− 1 that

W (T−) ≤ µNσ (T ,0) [W (0)+
Nσ (T ,0)−1∑
k=0

µ−k
∫ tk+1

tk
b0

·ea0tdt + µ−Nσ (T ,0)
∫ T

tNσ (T ,0)

b0ea0tdt]. (54)

For any δ ∈ (0, a0 − (lnµ/τa)), because τa > (lnµ/a0),
one has τa > (lnµ/a0 − δ). By (2), it holds that

Nσ (t)(T , t) ≤ N0 +
(a0 − δ)(T − t)

logµ
, ∀T ≥ t ≥ 0. (55)

Notice Nσ (T , 0) − k ≤ 1 + Nσ (T , tk+1), k =

0, 1, · · · ,Nσ (T , 0), it means

µNσ (T .0)−k ≤ µ1+N0e(a0−δ)(T−tk+1). (56)

In addition, since 0 < δ < a0, we have∫ tk+1

tk
b0ea0tdt ≤ e(a0−δ)tk+1

∫ tk+1

tk
b0eδtdt. (57)

Then from (54) and (57), we can obtain

W (T−) ≤ µNσ (T ,0)W (0)+ µ1+N0e(a0−δ)T
∫ T

0
b0eδtdt

(58)

which implies that

α(‖ X (T ) ‖) ≤ Vσ (T−)(X (T
−))

≤ eN0e(
lnµ
τa
−a0)T ᾱ(‖ X (0) ‖)

+µ1+N0
b0
δ
. (59)

In view of (59) and δ > 0, we can conclude that, if τα
satisfies τα > lnµ/a0, then η̃j(t) ξj, θ̃j (j = 1, · · · , n),
and ej (j = 2, · · · , n) are bounded by choosing bounded
initial values. Because θj (j = 1, · · · , n) are constants,
θ̂j (j = 1, · · · , n) are thus bounded. Furthermore, based on
Assumption 1 and (11), η̂j(t) (j = 1, · · · , n) are bounded.
Moreover, according to the definition of η̃i(t) = ηi(t)− η̂i(t),
we can infer that ηj(t) (j = 1, · · · , n) are also bounded.
Thus, we conclude that all the signals of the corresponding

closed-loop system are bounded under an arbitrary switching
signal σ (t) satisfying the ADT τa > (lnµ/a0).
(2): On the other hand, for ∀ς > 0, we can obtain that

the inequality µ1+N0 (b0/δ) ≤ (1/4)ς2 holds by suitably
choosing the matricesQk , k ∈ L, the design parameters ξj, %j,

and r sufficiently large, and aj εj sufficiently small. Further,
it follows from (59) that

1
4
|e41(T )| ≤ z

N0 lnµz(
lnµ
τa
−a0)T ᾱ(‖X (0)‖)

+µ1+N0
b0
δ
(1− z−δT ),∀T > 0 (60)

which together with τa > (lnµ/a0), indicates that

lim
t→∞
|e41(t)| ≤ 4µi+N0

b0
δ
≤ ς4. (61)

The proof of Theorem 1 is completed here.
Remark 1: What is more, the designed controller u in

(44) contains the neural networks basis functions, which
will cause cumbersome calculations in realistic applica-
tions. Nevertheless, it should be also emphasized that 0 <

STi (Zi)Si(Zi) ≤ 1 can be learned from the theories in [52].
From Remark 1, we realize that the basis functions in the

controller (44) can be easily removed to further improve the
results.

IV. SIMULATION EXAMPLE
In this section, two examples along with the respective
numerical data and simulation results are presented to demon-
strate the correctness and feasibility of the proposed control
designs as well as to illustrate the system performances that
can be achieved.

FIGURE 1. Mass-spring-damper system with controller.

Example 1: In order to prove the applicability and effec-
tiveness of our proposed method, the following mass-spring-
damping system with controller switching is considered
(see Fig. 1):

ẋ1 = x2,

ẋ2 = −
1
ρ
f (x1)−

1
ρ
g(x2)+

1
ρ
uk ,

y = x1, (62)

where f (x1) and g(x2) are unknown smooth nonlinear func-
tions with f (0) = 0, g(0) = 0, and ρ is an unknown posi-
tive constant. Further, it is supposed that f (x1) is stochastic
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processes defined by f (x1) = f̄ (x1)+ h(x1)ζ (t), where f̄ (x1)
are deterministic and ζ (t) is white noise degrading measure-
ments. Then, we have the stochastic nonlinear systems below:

dx1 = x2dt,

dx2 = (−
1
ρ
f̄ (x1)−

1
ρ
g(x2)+

1
ρ
uk )dt −

1
ρ
h(x1)dω

y = x1 (63)

Moreover, suppose that we are only allowed to apply two
prespecified candidate controllers uk = −4fk (x)+ ρvk , k =
1, 2 with 4fk (0) = 0 to the system (63) and switch between
them. Thus, we can obtain the following switched uncertain
stochastic nonlinear system:

dx1 = x2dt,

dx2 = (v2 −
1
ρ
(f̄ (x1)+4fk (x))−

1
ρ
g(x2))dt

−
1
ρ
h(x1)dω,

y = x1. (64)

Next, the following switched observer is designed:

˙̂x1 = x̂2 − lk,1x̂1,
˙̂x2 = v2 − lk,2x̂1, (65)

where the design parameters are selected as l1,1 = 2,
l2,1 = 1, l1,2 = l2,2 = 4. Apparently, the matrices A1 and
A2 are Hurwitz, and we choose Q1 = 6I2, Q2 = 8I2, Then,
we can find the positive-definite symmetric matrices

P1 =
[
3 −3
−3 9

]
, P2 =

[
5 −4

−4
21
4

]

such that the equalities ATk Pk + PkAk = −Qk (k ∈ I) are
satisfied. It follows from (64) and (65) that:

de = (Ake+ Fk )dt + Hdω,

dy = (x̂2 + e2)dt,

dx̂2 = (v2 − lk,2x̂1)dt, (66)

where Fk = [lk,1y,− 1
ρ
(f̄ (x1) + 4fk (x)) − 1

ρ
g(x2) +

lk,2y]T ,H = − 1
ρ
h(x1).

From Theorem 1, the intermediate virtual controls, actual
controller and adaptive laws are chosen as follows:

α1 = −ξ1e1 −
3
4
e1 −

θ̂1

2a21
e31S

T
1 (Z1)S1(Z1)

−
3
4
e1

1
ρ2

(ϕ1ϕT1 )
2,

v2 = ξ2e2 −
3
4
e2 −

θ̂2

2a22
e32S

T
2 (Z2)S2(Z2),

˙̂
θ1 =

r

2a21
e61 − %1θ̂1,

˙̂
θ2 =

r

2a22
e62 − %2θ̂2. (67)

FIGURE 2. The time profile of the switching signal.

FIGURE 3. The time profile of x1 and x2.

When ρ = 1
4 , f = 2x21 ,4f1 = 2x31 sin(x1x2),4f2 =

1
2x2 cos(x

2
1 ), h = x22 cos(x

2
1 ), g =

1
4x1 sin(x1), ϕ1 =

1
4 sin(x1), ξ1 = ξ2 = 2, a1 = a2 = 1.6, %1 = %2 = 2,$12 =
√
2
2 , and κ2 = 0.12. The simulation is carried out under the
initial conditions [x1(0), x2(0), x̂1(0), x̂2(0), θ̂1(0), θ̂2(0)]T =
[0.02, 0.5, 0.1, 0.2, 0, 0]T , and a reasonable average dwell
time τa showing in Fig. 2. Further, the simulation results are
shown in Figs. 3-6.
Example 2: Consider the following stochastic nonlinear

system:

dx1 = (x2 + fk,1(x1)+ gk,1(x))dt + hk,1(y(t))dω,

dx2 = (uk + fk,2(x)+ gk,2(x)dt + hk,2(y(t))dω,

y(t) = x1, k = 1, 2, (68)

where

f1,1 =
4
5
x1, f2,1 = x1, g1,1 =

1
10
x31 sin(x1x2),

g2,1 = 20 sin(x1x2), h1,1 =
1
20
x1, h2,1 =

1
12
x1,

f1,2 = 4x21 , f2,2 =
1
2
x21 , g1,2 = 2 sin(x1x2), ϕ1 =

1
12
,

g2,2 =
1
100

x31 sin(x
2
2 ), h1,2 =

1
20
x1, h2,2 =

1
12
x1.
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FIGURE 4. The time profile of x̂1 and x̂2.

FIGURE 5. The time profile of x1 − x̂1 and x2 − x̂2.

FIGURE 6. The time profile of θ̂1 and θ̂2.

For the system (68), the switched observer is given

˙̂x1 = x̂2 − lk,1x̂1,
˙̂x2 = uk − lk,2x̂1, (69)

and the design parameters are taken as l1,1 = 2, l2,1 =
1, l1,2 = l2,2 = 4, then the matrices A1,A2 are Hurwitz.

FIGURE 7. The time profile of the switching signal σ (t).

FIGURE 8. The time profile of x1 and x2.

By choosing Q1 = I2, Q2 = 2I2, we can find the positive-
definite symmetric matrices

P1 =
[
250.2492 −95.6755
−95.6755 113.5835

]
,

P2 =
[
366.7314 −66.5925
−66.5925 109.8747

]
such that the equalities ATk Pk + PkAk = −Qk (k ∈ M) are
satisfied.

Based on Theorem 1, the intermediate virtual control α1,
actual controller u and adaptive laws ˙̂θi (i = 1, 2) are defined
in (23), (44) with n = 2, (26) and (47) with n = 2,
respectively. The simulation is carried out when the initial
conditions are chosen as [x1(0), x2(0), x̂1(0), x̂2(0), θ̂1(0),
θ̂2(0)]T = [0.3,−0.2, 0.1, −0.4, 0, 0]T and design param-
eters in adaptive fuzzy controller and in adaptive laws are
chosen as ξ1 = ξ2 = 2, a1 = a2 = 1.8, r = 1,
%1 = %2 = 0.1.

V. DISCUSSIONS
In the past few decades, the control of mechanical sys-
tem in internet of things, chemical production, logistics and
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FIGURE 9. The time profile of x̂1 and x̂2.

FIGURE 10. The time profile of x1 − x̂1 and x2 − x̂2.

transportation, automation control field has received great
attention. One of the major control problems which has been
well investigated in the internet of things is the velocity
regulation of the motors in a mechanical vibration. Hence,
we present a mass-spring-damper system with controller
switching shown in Fig. 1. The obtained simulation results,
which illustrated the achieved system performance of the
mass-spring-damper system in the closed loop, are shown
in Figs. 2-6. Finally, we can obtained the conclusion that all
the charts clearly show a high quality, good control perfor-
mance of the adaptive neural network control design, which
makes the mechanical system better applied in the Inter-
net of Things system. The simulation results are illustrated
in Figure 7-11, respectively. Figure 7 demonstrates the time
profile of the switching signal σ (t). Figure 8 gives the time
profile of x1 and x2. Figure 9 shows the transmission signal
time profile of x̂1 and x̂2. The observer state is asymptot-
ically stable with the change of transmission signal time.
Figure 10 shows the transmission signal time profile of x̂1
and x̂2. Figure 11 shows the transmission signal time profile
of θ̂1 and θ̂2. From comparing the transmission signal time
profile of Figure x1, x̂1 and the figure x1 − x̂1, it can be seen

FIGURE 11. The time profile of θ̂1 and θ̂2.

that all transmission signals in the closed-loop structure are
bounded and the states can track the given reference signals.
We can conclude that the proposed transmission signal time
control scheme is effective. Meanwhile, we demonstrated a
remarkable closed-loop performance.

VI. CONCLUSION
In this paper, we have presented a constructive method to
handle the controller design problem by means of an adap-
tive NNs DSC design for a class of transport information
switched nonlinear lower-triangular systems. In the design
process, the Backstepping technique for nonlinear systems
and DSC control are combined to given the design scheme
of adaptive neural network control design. According to the
ADT method to carry out the theoretical analysis, ensure
that all the signals the resulting closed-loop system remain
bounded in probability, and the output of the system con-
verges to a small neighborhood of the origin with appropri-
ate choice of design parameters. Then there are still some
interesting control issues of switched systems remaining to be
further considered. For examples, when the control direction
is unknown, how to construct the controllers for switched
systems? The question give us the inspirations and inspire us
further to explore these problems in future research.
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