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ABSTRACT This article presents a synchronization control method based on poles’ placement, disturbances,
and uncertainty estimation (DUE) for a pair of Takagi-Sugeno fuzzy systems. First, a 3-D chaotic system
was completely converted into a Takagi-Sugeno (T-S) fuzzy model by applying the nonlinearity sector
method, which consists of if-then rules and sub-linear systems. Second, two identical T-S fuzzy systems
with different initial conditions were synchronized by applying the linear matrix inequality (LMI) to
place the eigenvalues of the state error equations in the stable region. Third, the sum of the time-varying
disturbances and uncertainties of two nonidentical T-S fuzzy systems were deleted by a disturbance and
uncertainty estimation. The given output signals confirmed that the proposed method is suitable and ideal for
synchronizing T-S fuzzy systems. The ideas of control theory were implemented by using two experimental
scenarios in MATLAB Simulink for two computers connected via an internet router and an electronics
circuit’s communication.

INDEX TERMS Disturbance and uncertainty estimation, linearmatrix inequality, synchronization, T-S fuzzy
systems.

I. INTRODUCTION
In recent years, industrial production has been rapidly grow-
ing to adapt to the 4.0 industry revolution’s requirements,
and the database is one of the most important keys to the
success of this revolution. Following the development of data
transmission techniques, the security of the data is critical.
However, the data are not just transmitted as a box of data;
sometimes, the data need online transmission, and because
of this requirement, the synchronization of transmission com-
munication is a potential job for many engineers and scien-
tists. Data-secure communications also offer potential jobs,
as the secure communication of a data transmission based
on a chaotic system is a reality. Chaotic systems influence
secure communications and information science due to the
potential of the chaotic system to be unpredictable, sensitive
to the initial conditions, and nonperiodic [1]. Huang et al. [2]
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presented the applications and the synchronization method
of 4-D chaotic systems with an application to image encryp-
tion. Mobayen and Tchier [3] proposed a synchronization
for the chaotic system with Lipschitz nonlinearity by using
a linear matrix inequality. The synchronization of network
systems appeared in [4]–[9]. The field of data science with
encrypted images also has many papers that deal with
chaotic systems. Liu et al. [10] proposed the method of
image encryption using complex hyper-chaotic systems by
injecting the impulse parameter method. Wang et al. [11]
used a chaotic map to encrypt an image on the bit level.
Yang et al. used the fractional order chaotic system to achieve
color image compression [12]. The application of chaotic
system synchronization to the electronics circuit has been
revealed in [13]–[16]. The synchronization of the chaotic sys-
tem application of computer-to-computer communications
via internet devices was presented by Chen et al. [17].
Their paper proposed the synchronization methodology for
the multiscroll Chen chaotic system based on computer
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communication via a local network. With the motivation of
these previously published papers, this article discusses the
synchronization of the chaotic system based on the Takagi-
Sugeno fuzzy model, which has had minimal investigation.
Furthermore, disturbance and uncertainty are complications
of the chaotic system, and they were deleted mostly by apply-
ing the time-varying disturbance observer in this article.

The Takagi-Sugeno fuzzy modeling method was revealed
in 1985 [18]. The method plays the role of a nonlinear system
in mathematical modeling by if-then fuzzy rules and sub-
linear systems. Due to the rapid development of computer
speed, the T-S method has been studied by many papers
[19]–[27]. To take advantage of the T-S fuzzy system, the syn-
chronization of the chaotic system has been reconstructed in
the form of a T-S system [28]–[33]. To the best of the author’s
knowledge, there are few synchronizations of two nonidenti-
cal systems that use the T-S fuzzy systemwith the disturbance
observer, and the implementation of this complication on
the real system has not been executed. Lendek et al. [34]
presented the methodology of constructing the T-S fuzzy
system, and there are a few options, such as sector nonlin-
earity and linearization. This study used sector nonlinear-
ity to convert a 3-D fan-shaped chaotic system into a T-S
fuzzy model, where the 3-D chaotic system was proposed
by Liu et al. [35]. The advantages of the 3-D chaotic system
are difficult to realize in secure encrypted signals, and they
are sensitive to disturbances in the constant term. However,
the constant term in the range of existence will maintain the
system phase portraits in the chaotic maps, as paper [35]
shows. The disadvantage of the constant term is that it is
easily affected by disturbance. When a disturbance in the
third state of the system cannot be cancelled completely,
the third state will be changed greatly, which the reason to
use a disturbance and uncertainty observer. Due to the form
of the chaotic system, the disturbance and system parameter
variation are difficult to calculate directly. The form of the
T-S fuzzy system could render it easier to interfere with
these terms. The disturbance and uncertainty rejection impact
control theory, which causes the system to be more stable.
In the nonlinear disturbance observer proposed by Chen [36],
the time derivative of the disturbance is assumed to be equal
to zero. In fact, whereas the first derivative of a disturbance
with a low frequency goes to zero, this behavior does not
occur with a high-frequency disturbance. This distinction
motivated us to propose the new mathematical mode of a
disturbance observer for both low and high frequencies. The
model of the disturbance observer is based on input control
and output response signals. To stabilize the master and slave
systems of the communication, the control algorithm should
be perfectly designed. This study took advantage of the linear
matrix inequality that was proposed by Chilali et al. [37] and
Mahmoud and Pascal [38] to design the controller, which
applied theD-stability to seek feedback gains when the eigen-
values of the system can be found in perfect locations with a
small rise time, small overshoot, small damping ratio, etc. For
computer-secure communications, the gains are not limited;

however, for electronic circuits, the gains need to be small to
be suitable for electronic components’ functions.

In previously published papers [3], [9], and [32], the over-
shoots and settling times of the tracking error values between
master and slave systems in simulations of these proposed
methodswere still high and large, respectively. In [3], the con-
trol method is simple, which leads to larger synchronization-
error rise times and overshooting than our paper. These papers
dealt with continuous-bounded functions to cope with dis-
turbances and uncertainty, with the assumptions of a time-
varying function and a stratified Lipschitz function. Paper [9]
proposed the synchronization control and application for an
industrial internet of things, where the Lyapunov stability has
been applied to design the control synchronization. However,
this article did not investigate disturbances and uncertainty
rejections, and the conjunctions of real experimental condi-
tions were ignored. In [32], the Bessel–Legendre Inequal-
ity method was applied to synchronize the coronary artery
state time-delay system, which was a simple structure with a
good outcome. However, the paper ignored the disturbance
and uncertainty that exist in real applications. To resolve
the limitations of the previous paper, this article addresses
problems that the prior paper did not investigate, which can be
considered as the advantage of this study. The high-frequency
disturbances and uncertainties were all deleted by the new
disturbance observer and D-stability with an air gap. The
main contributions of this paper are as follows:

1) A three-dimensional chaotic system with a fan shape
has been analyzed in detail by constructing the T-S
fuzzy model.

2) The linear matrix inequality with D-stability has been
applied to determine the stable region of the error
states’ eigenvectors, which was solved by convex opti-
mization.

3) Fast-varying disturbance terms were cancelled by
applying a new disturbance and uncertainty estima-
tor, and the convergence of the proposed disturbance
observer was proven completely.

4) The experiments of two cases have been executed per-
fectly, and they consist of two computer communica-
tion systems with the use of MATLAB and electronic
circuits’ communication.

The organization of the paper is as follows: Section I
gives a brief introduction to the system and the trends
of research. Section II presents the problem formulations
and system mathematical models. Section III describes the
synchronization control method and the disturbance and
uncertainty estimator concepts. Then, Section IV gives an
illustrative example study. Finally, Section V provides the
conclusion.
Notations: The signs of A > 0 and A < 0 indicate positive

and negative matrices, respectively. I is the identity matrix,
and AT is the transposed matrix of A. In addition, A−1 is the
inverse matrix of A.Rm×n is defined as a matrix with m lines
and n rows. n10(·) and n

1
1(·) are the outer membership functions

of the fuzzy system.
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II. MATHEMATICAL MODELLING AND
PROBLEM FORMULATION
Previously, the three-dimensional fan shape system of [35]
was given as.

ẋ(t) = −ax(t)+ by(t)
ẏ(t) = −x(t)z(t)
ż(t) = cx2(t)+ x(t)y(t)− d

(1)

Alternatively, the system in Eq. (1) can be transferred to other
forms as follows: ẋ(t)ẏ(t)
ż(t)

 =
 −a b 0

0 0 −x(t)
cx(t) x(t) 0

 x(t)y(t)
z(t)

+
 0

0
−1

 d
(2)

The term d in system (1) is sensitive to disturbance and uncer-
tainty values; therefore, the disturbance and uncertainty esti-
mation has been directly constructed, and it is understood that
the term d is an unexpected term. The value of d determines
the phase portrait behaviors of the system. The parameters
of the system are now determined as a = 1, b = 2, c = 1, and
d = 3. Therefore, the disturbance and uncertainty rejection
play important roles. In fact, the disturbance observer for
system (1) is difficult to complete. Because of this weak
point, system (1) could be represented by a T-S fuzzy model,
which is achieved by applying the nonlinearity sector method
to obtain the system model in the fuzzy rules and linear
subsystems. A sector nonlinearity was applied to change the
system states’ equation from Eq. (1) to the T-S fuzzy model.
The method considered the system as the following equation:{
Ẋ (t) = f m(x(t), u(t))X (t)+ gm(x(t), u(t))u(t)+ Dd(t)
Y (t) = h(x(t), u(t))X (t)

(3)

where f m, gm and hm are smooth functions, with the assump-
tion that the disturbance Dd(t) is bounded. The scheduling
variables are selected as xj(·) ∈ [minl,maxl], and the weight-
ing functions are determined as follows: nl0(·) =

maxl −xl(·)
maxl −minl

nl1(·) = 1− nl0(·)
(4)

The functions nl0(·) and nl1(·) are positively defined, and
these values satisfy nl1(·) + n

l
0(·) = 1. Here, [minl,maxl] is

the domain of xj(·). Generally, the T-S fuzzy model can be
understood as the following equation:

δX (t) =
r∑
i=1

ωi(θ (t)){(AiX (t)+1AiX (t))

+ (Biu(t)+1Biu(t))+ Did(t)}
Y (τ ) = CX (t)

(5)

where δX (t) denotes the derivative Ẋ (t), and t can be used
to represent the continuous time. X (t) ∈ Rn×q, u(t) ∈
Rm×q, and Y (t) ∈ Rp×q are the system states, control input,

and output vectors, respectively. Furthermore, d(t) ∈ Rk×q

is the disturbance, and it consists of outside disturbance.
Ai ∈ Rn×n,Bi ∈ Rn×m, and Ci ∈ Rp×n are the state matrix,
input matrix and output matrix, respectively. 1Ai ∈ Rn×n

and 1Bi ∈ Rn×m are unknown dynamic terms of matri-
ces A and B, respectively. Di ∈ Rn×k is the matrix of the
disturbance term.

The weight
r∑
i=1
ωi(θ (t)) = 1. System (5) can be modified as

in the following equation: δX (t) =
r∑
i=1

ωi(θ (t)){(AiX (t))+ (Biu(t))+ EiL(t)}

Y (t) = CX (t)

(6)

where EiL(t) = 1AiX (t))+1Biu(t)+Did(t) is the term of the
uncertainty value. The first state is assumed belong to x(t) ∈
[−γ ; γ ], and the lumped uncertaintyEiL(t) < L1. Applying
the sector nonlinearity to system (2) yields ω1(θ (t)) =

γ+x(t)
2γ

and ω2(θ (t)) =
γ−x(t)
2γ .

A1 =

−1 2 0
0 0 −γ

γ γ 0

, B1 =

 0
1
1

, E1 =
 1
1
1

,
A2 =

 −1 2 0
0 0 γ

−γ −γ 0

, B2 =

 0
1
1

, E2 =
 1
1
1

 and

C = [ 1 0 0 ].

Since we have this potential, the synchronization of paired
T-S fuzzy models with different initial conditions were
applied. The system states of Eq. (6) are achieved by
MATLAB simulations, as shown in Fig. (1) below.

In Fig. 1, the system state in the first 100 seconds is shown
with no periodic and chaotic trajectories. The system phase
portraits are shown in Fig. 2 below.

Two experiments have been performed, and the system
on the electronics circuit could be converted by the ampli-
fier and multiple components’ characteristics. Whenever the
derivative of the system can be represented by the capaci-
tor, the multiple system state can be converted by multiple
devices. In this section, the systems’ mathematical model
in an electronic circuit will be discussed; this model was
obtained from the OrCAD Capture software. The time scale
of the system was reduced 1000 times by reducing the resis-
tance values, which are linked to capacitors c1, c2, and c3.
The time scale reduction is intended to achieve better signal
compression in the higher frequency. This conversion can
preserve all of the original system’s characteristics. The time
scaling affects the selection of, e.g., the electronic com-
ponents and the signal encryption frequency. Furthermore,
the phase portrait of the system is still mostly the same as the
MATLAB simulation. All of the details of the T-S fuzzy sys-
tem in Eq. (6) are shown in the followingAppendix and Fig. 1.
The three-dimensional Takagi-Sugeno system in Eq. (6)
has been implemented in the electronic circuit simulation.
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FIGURE 1. System behaviors with respect to the initial conditions
x(0) = 0.1, y (0) = 0.1, z(0) = 0.1, and x(t) ∈ [−5;5]: (a) x-axis trajectory,
(b) y-axis trajectory, (c) z-axis trajectory.

The x-, y-, and z-axes reveal the general chaotic states. The
system phase portraits are shown in Figure 3.

The system states are shown in Figure 4 below.
The system trajectories will differ due to application of

different conditions; however, the phase portrait shapes are
similar due to the system characteristics. To synchronize two
nonidentical T-S fuzzy systems, the control synchronization
and disturbance observer need to be perfectly constructed
for the system. This study proposes the disturbance observer
based linear matrix inequality to achieve the desired per-
formances. For clarity, the system states of Eq. (1) can be
used as x → xm1 or x → xs1, y → xm2, or y → xs2,
and z → xs3, or x → xs1 for the master and slave states,
respectively.

III. DISTURBANCE OBSERVER-BASED LINEAR MATRIX
INEQUALITY FOR SYNCHRONIZATION OF THE
TAKAGI-SUGENO FUZZY CHAOTIC SYSTEM
This study reused the mathematical mode of paper [35] to
build a new T-S fuzzy mode, as shown in Eq. (6). The master

FIGURE 2. System phase portraits in two axis coordinates and three
coordinates with respect to the initial conditions x(0) = 0.1, y (0) = 0.1,
z(0) = 0.1, and x(t) ∈ [−5;5]: (a) y-x phase portrait, (b) z-x phase
portrait, (c) z-y phase portrait, (d) x-y-z phase portrait.

and slave system are now defined as follows:
ẋ1m(t) = −(a+1a)xm1(t)+ (b+1b)xm2(t)+ dm1(t)
ẋ2m(t) = −x1m(t)x3m(t)+ dm2(t)
ẋ3m(t) = (c+1c)x21m(t)+ xm1(t)xm2(t)− d + dm3(t)

(7)

where xim are the master system states with the known values
a, b, c, and d. In additional, we have the unknown system
parameters 1a, 1b, and 1c as variations of the terms a, b,
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FIGURE 3. System phase portraits on the micro second scale: (a) y-x
phase portrait, (b) z-x phase portrait, (c) z-y phase portrait.

and c, respectively. Furthermore, di(t) are the disturbances of
xim for i = 1÷3. The slave system is defined in the following
equation:

ẋ1s(t) = −(a+1a)xs1(t)+ (b+1b)xs2(t)+ ds1(t)
ẋ2s(t) = −x1s(t)x3s(t)+ ds2(t)+ u1(t)
ẋ3s(t) = (c+1c)x21s(t)+ xs1(t)xs2(t)− d + ds3(t)

+ u2(t)
(8)

FIGURE 4. System states on the micro second scale: (a) x-axis, (b) y-axis,
(c) z-axis.

where the term m is represented as the slave. After applying
sector nonlinearity for both the master and slave systems,
the master system is now defined as follows: δXm(t) =

r∑
i=1

ωmi(x1m(t)){(AiXm(t))+ Gid + EimLm(t)}

Ym(t) = CXm(t)
(9)
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where EimLm(t) = 1AiXm(t)) + Didmi(t) is the lumped
uncertainty and disturbance of the master system. We assume
that the lumped disturbance and uncertainty is bounded such
that EimLm(t) < lm, where lm is an unknown constant value.
Gi = [ 0 0 −1 ]T and d are the constant terms. The slave
system is defined as

δXs(t) =
r∑
i=1

ωsi(x1s(t)){AiXs(t)+ Biu(t)+ Gid(t)

EisLs(t)}
Ys(t) = CXs(t)

(10)

where EisLs(t) = 1AiXs(t)) + 1Biu(t)) + Didsi(t) is the
lumped disturbance and uncertainty of the slave system. The
lumped uncertainty is assumed to be EisLs(t) < ls, where ls is
an unknown constant value. The error of the system is defined
as e(t) = Xm(t)− Xs(t), where

e(t) = Xm(t)− Xs(t) =

 x1m(t)− x1s(t)x2m(t)− x2s(t)
x2m(t)− x2s(t)

 (11)

To construct the controller for synchronizing the master and
slave system, this study proposed the linear matrix inequality-
based poles placement with D-stability. The uncertainty and
disturbance were suppressed by a fast-varying disturbance
observer. For more detail, the linear matrix inequality was
used. This inequality is briefly described.

A. LINEAR MATRIX INEQUALITY-BASED
POLES PLACEMENT
Basically, the states feedback and output feedback are simple
and effective control methods. These control methods are
simple and easy to implement in both hardware and software.
The system eigenvalues are determined in the stable region of
the complexity plane. The linear matrix inequality is usually
used to determine the system eigenvalues, which should be
located in the left-half plane. The region of the poles defines
both the transient response speed and the gain magnitude of
the controller. Generally, the system poles are stable when
the eigenvector of the system state matrix is represented as
λi = −ai ± bij, where ai and bi are positively defined.
The factors of the damping ratio, damped nature frequency,
rise time, and settling time are related to the eigenvalues’
locations. For the continuous time, the poles should be located
in the left-half of the complexity plane. There were many
methods for determining the control gain, but this study
applied the pole placement method based on the conic region.
The ẋ(t) = Ax(t) is called D-stable when the system poles are
located in region D [35]–[37]. A is stable when the symmetric
condition with P is satisfied:

AP+ PAT < 0, P > 0 (12)

A subset D is called LMI if there exists a symmetric matrix
a = akl ∈ Rm×m, b = bkl ∈ Rm×m and

D = (z ∈ C : fD < 0) (13)

where

fD = a+ zb+ z̄bT = akl + blkz+ blk z̄ (14)

with 1 ≤ k , l ≤ m. For the disk region, (c,r) is shown
in Figure. 5 below.

FIGURE 5. LMI in region D.

This article applied the LMI poles placement of [39], where
the D region is determined as follows:

Drc = {z ∈ C|((z+ c)(z̄+ c)− r2 < 0} (15)

where r and c are the radius and center of the disk region,
respectively. The characteristic of Eq. (15) can be rewritten
as follows:

FDrc =
[
−r c+ z
c+ z̄ −r

]
= Q+ zW + z̄W T (16)

where the matrix Q =
[
−r q
q −r

]
and W =

[
0 1
0 0

]
.

The transient response, damping ratio, and overshoot are all
dependent on the location of the system eigenvalue, which are
determined as the eigenvalue of the matrix A of the system
ẋ(t) = Ax(t). To design the system, the eigenvalue will be
located in −b < Re(det(A)) < −a if the following equation
is satisfied. {

(A+ aI )P+ P(A+ aI )T < 0
(A+ bI )P+ P(A+ bI )T > 0

(17)

or {
AP+ PAT + 2aP < 0
AP+ PAT + 2bP > 0

(18)

where a and b are positively defined. The stability in Eq. (18)
can be defined as[

−rP cP+ PAT

cP+ PA −rP

]
< 0 (19)

Proof: This section generally proved the convergence of
the linear matrix inequality. We define the Lyapunov condi-
tion candidate as follows:

V (t) = xT (t)Px(t) (20)

Taking the derivative of Eq. (20) leads to

V̇ (t) = ẋT (t)Px(t)+ xT (t)Pẋ(t)

= (Ax(t))TPx(t)+ xT (t)PAx(t)

= xT (t)ATPx(t)+ xT (t)PAx(t) (21)
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The Lyapunov condition is satisfied whenAP+PAT < 0.The
proof is completed for the basic state feedback by applying
the linear matrix inequality; this concept will appear in the
next section.

This section briefly reintroduces the D-stability. Here, we
give more details of the D-stability with a predetermined
air gap.

The advantages of the D-stability are as follows:
- D-stability is an easily implemented condition for the

control design, which obtains the system eigenvalues directly
by using the optimization method.

- The damping, overshooting, settling time, rise time, and
damped nature are all easily and effectively achieved by
applying the D-stability.

- In a comparison of the D-stability to the Lyapunov condi-
tion, the controller gains of applying the D-stability are easier
than for the Lyapunov condition.

- The D-stability is a subset of the α−stability, where
the control system eigenvalues of the D-stability could be
obtained in a specific area.

B. TIME-VARYING DISTURBANCE OBSERVER
Consider the system

Ẋ (t) = G1X (t)+ G2u(t)+ G3d(t) (22)

where X (t) ∈ Rm×n are the system states, u(t) ∈ Rp×n is
the control input, and d ∈ Rq×n is the disturbance of the
system. G1 ∈ Rm×m,G2 ∈ Rm×p,G3 ∈ Rm×q are the approx-
imated matrix of the states, control input, and disturbance,
respectively. The traditional nonlinear disturbance observer
proposed by Chen [36] can be represented as

ṗ(t) = −LdG3p(t)− Ld (G1X (t)+ G2u(t)+ G3q(t))
q(t) = LdX (t)
d̂(t) = p(t)+ q(t)

(23)

where Ld ∈ Rq×m is the disturbance observer gain,
p(t) ∈ Rq×n is the disturbance state vector, q(t) ∈ Rq×n is an
auxiliary vector of disturbance states, and d̂(t) ∈ Rq×n is the
observed disturbance. Taking the derivative of the estimated
disturbance yields

˙̂d(t) = ṗ(t)+ q̇(t)

= −LdG3p(t)− Ld (G1X (t)+ G2u(t)

+G3q(t))+ Ld Ẋ (t)

= −LdG3p(t)− Ld (G1X (t)+ G2u(t)

+G3q(t))+ Ld (G1X (t)+ G2u(t)+ G3d(t))

= −LdG3(p(t)+ q(t))+ LdG3d(t)

= LdG3d̃(t) (24)

Subtracting the derivative of the disturbance on both sides of
Eq. (24) leads to

ḋ(t)− ˙̂d(t) = ḋ(t)− LdG3d̃(t) (25)

or
˙̃d(t) = ḋ(t)− LdG3d̃(t) (26)

Here, d̃(t) = d(t) − d̂(t) is referred to as the disturbance
error value. For a disturbance error converging to zero when
time goes to infinity, this nonlinear disturbance observer
requires that the disturbance varies slowly or its derivative
ḋ(t) = 0. Due to this disadvantage, this study is proposing
a new method to suppress the term of disturbance with a
fast-varying disturbance mixed with uncertainty. The new
observer is now introduced as

ṗ(t) = −LdG3p(t)− Ld (G1X (t)+ G2u(t)+ G3q(t))
q(t) = LdX (t)
d̂new(t) = (α + 1)(p(t)+ q(t))+ β(ṗ(t)+ q̇(t))

(27)

where α and β are positive values and are chosen condi-
tionally such that α/β > 1.d̂(t) is subset of d̂new(t). The
initial disturbance states are p(0) = 0 and q(0) = 0. The
convergence of the disturbance observer is proved to be

˙̂dnew(t) = (α + 1)(ṗ(t)+ q̇(t))+ β(p̈(t)+ q̈(t)) (28)

Subtracting the derivative of the disturbance from both sides
of Eq. (25) yields

˙̃dnew(t) = ḋ(t)− [(α + 1)(ṗ(t)+ q̇(t))+ β(p̈(t)+ q̈(t))]

= ḋ(t)− ˙̂d(t)− [(α)(ṗ(t)+ q̇(t))+ β(p̈(t)+ q̈(t))]
=
˙̃d(t)− [(α)(ṗ(t)+ q̇(t))+ β(p̈(t)+ q̈(t))] (29)

where ˙̃dnew(t) = ḋ(t) − ˙̂dnew(t) ∼ d̃(t) when time goes to
infinity and Substituting Eq. (25) into Eq. (29) leads to

˙̃dnew(t) = −
α

β
d̃new(t) (30)

The chosen condition of α and β leads d̃new(t) and d̃(t) to
approach zero when time goes to infinity.

The disturbance gain Ld is selected by experience as long
as the term LdG3in Eq. (26) is positively defined.
Remark 1: This article proposed the disturbance observer

without knowledge of the disturbance information and its
boundary. Therefore the disturbance with an unknown fre-
quency will be completely estimated without the requirement
of the first derivative of the disturbance value goes to zero
when time going to infinity.

C. SYNCHRONIZATION OF TWO NON-IDENTICAL
SYSTEMS BASED ON AN LMI CONTROL AND A
DISTURBANCE OBSERVER
This section presents the synchronization method for two
nonidentical models. Taking the derivative of both sides of
Eq. (11) yields

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωmi(x1m(t)){(AiXm(t))+ EimLm(t)}

−

r∑
i=1

ωsi(x1s(t)){(AiXs(t))+ Biu(t)+ EisLs(t)} (31)
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Substituting e(t) = Xm(t) − Xs(t) and ui(t) = Kdie(t) into
Eq. (31) leads to

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωmi(x1m(t)){(AiXm(t))+ EimLm(t)}

−

r∑
i=1

ωsi(x1s(t)){(Ai(Xm(t)− e(t)))+ BiKdie(t)

+EisLs(t)} (32)

or

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωmi(x1m(t))(AiXm(t))

−

r∑
i=1

ωsi(x1s(t))(Ai(Xm(t)− e(t)))

−

r∑
i=1

ωsi(x1s(t))BiKdie(t)

+

r∑
i=1

ωmi(x1m(t))EimLm(t)−
r∑
i=1

ωsi(x1s(t))EisLs(t)}

(33)

Because
r∑
i=1
ωmi(x1m(t)) = 1 and

r∑
i=1
ωsi(x1s(t)) = 1, Eq. (28)

can be rewritten as

ė(t) = Ẋm(t)− Ẋs(t)

×

r∑
i=1

ωsi(x1s(t))[Ai − BiKdi](e(t))

+

r∑
i=1

ωmi(x1m(t))EimLm(t)−
r∑
i=1

ωsi(x1s(t))EisLs(t)}

(34)

For the system in Eq. (6), the term disturbance can be con-
sidered as the master system disturbance EmLm(t) and the
slave system disturbance is EsLs(t). Then, Eq. (34) can be
rewritten as

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωsi(x1s(t))[Ai − BiKdi](e(t))+ EL̄ (35)

where L̄ is the subtraction disturbance between the master
and slave systems. By adding the estimated disturbance to
the control input of the slave system, Eq. (35) could be
rewritten as

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωsi(x1s(t))[Ai − BiKdi]e(t)

−

r∑
i=1

ωsi(x1s(t))(E ˆ̄Li − EL̄i) (36)

where
r∑
i=1
ωsi(x1s(t)) = 1. Again Eq. (36) can be rewritten as

ė(t) = Ẋm(t)− Ẋs(t)

=

r∑
i=1

ωsi(x1s(t)){[Ai − BiKdi]e(t)− E ˜̄Li} (37)

where E ˜̄Li =
r∑
i=1
ωsi(x1s(t))(E ˆ̄Li − EL̄i). By applying the lin-

ear matrix inequality and disturbance observer, the derivative
of the error approaches zero when time goes to infinity. The
linear matrix inequality gain is determined by inserting the
gain Ai − BiKdi into Eq. (18). The result is as follows:{

(Ai − BiKdi)P+ P(Ai − BiKdi)T + 2aP < 0
(Ai − BiKdi)P+ P(Ai − BiKdi)T + 2bP > 0

(38)

or {
AiP+ PATi − BiKdiP− PBiK

T
di + 2aP < 0

AiP+ PATi − BiKdiP− PBiK
T
di + 2bP > 0

(39)

The linear matrix gain is now defined as

Kdi = −MP−1 (40)

where KdiP = M .
Remark 2: The sum of the disturbance and uncertainty of

the master and slave systems was considered by one term.
This convention is a simple way to design a single disturbance
with fully estimated effects of the disturbance and uncertainty
on both systems.

IV. ILLUSTRATIVE EXAMPLES
This section presents two experimental studies of the
proposed control synchronization method for the three-
dimensional T-S fuzzy system in Eq. (6). Two case studies
are given to show that the proposed synchronization control
in this article is suitable for both secure communications of
internet data and electronic circuit signal transmissions. This
section confirms that the same function of communication
can be achieved on electronic circuits.

There are two subsystems of the T-S fuzzy model of the
3-D chaotic system. The D-stability parameters are r → ri,
c → ci, a → ai, and b → bi, furthermore, Ld , α, and β
in Eq. (27) can be referred to Ldi, αi, and βi, respectively.
In Eq. (35) E → Ei and L̄ → L̄i where, i = 1 ÷ 2. Thus,
the proposed control synchronization method can be applied
to two subsystems together. The effective combination of the
D-stability in the previous section, the disturbance observer in
Eq. (27), and Eq. (35) for synchronizing the T-S fuzzy system
are shown in two case studies.

A. SYNCHRONIZATION OF TWO COMPUTERS
The synchronization of two computers via an internet router
is presented in this section. In this scenario the disturbance
was selected as random values and formed as

dmi =

 0
0

dm3(t)

 (41)
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FIGURE 6. Tested disturbance value on the master system.

where the disturbance dsi = 0 and dm3 is shown in Figure 6
below.

The control parameters are r1 = 20, c1 = 21, a1 = 1,
b1 = 40, and r2 = 15, c1 = 20, a2 = 6, b1 = 34 for the
first and second subsystem error regions, respectively. The
disturbance observer gains for these two regions are Ld1 =
[0.1, 0.1, 50], and Ld2 = [0.1, 0.1, 25] respectively. The
time-varying disturbance observer gains are α1 = 50, β1 =
10−4, and α2 = 1.25, β2 = 10−4.
Assumption 1: x(t) ∈ [−5; 5] and the system parameters

are ω1(θ (t)) =
5+x(t)
10 and ω2(θ (t) =

5−x(t)
10 . The LMI gains

are Kd1 = [9.0544, 7.5091, 17.3053],

Kd2 = [132.6184, 21.8418, 11.7170].

A1 =

−1 2 0
0 0 −5
5 5 0

, B1 =

 0
1
1

, E1 =
 1
1
1

,
A2 =

−1 2 0
0 0 5
−5 −5 0

, B2 =

 0
1
1

, E2 =
 1
1
1

 and

C = [ 1 0 0 ].

The system error eigenvalues of A1 − B1Kd1 are λ11 =
−20.6337 + 0.0000i, λ12 = −2.5903 + 1.8159i, and λ13 =
−2.5903−1.8159i. The system error eigenvalues of the term
A2−B2Kd2 are λ21 = −17.5772, λ22 = −8.4908+1.9586i,
and λ23 = −8.4908 − 1.9586i. The control synchronization
setup is shown in Figure 7 below.

The computers’ configurations are an Intel(R) Core(TM)
i7-2600 CPU @ 3.40 GHz, RAM 4.00 GB and an Intel(R)
Core(TM) i7-2600 CPU @ 3.40 GHz, RAM 10.0 GB for the
master and slave systems, respectively. Both of these com-
puters use Windows 10 64-bit. The given output signals of
the synchronization for the computers are in Figure 8 below.

The received signals of the slave system are very close
to the master system. The disturbance and uncertainty values
affect the systems’ output performance, and the system states
will be changed definitely. This study used the time-varying
disturbance observer to delete the disturbance and uncertainty
of the transmission. The error signals of the transmission are
now calculated from the sent and received system as shown
in Fig. 9 below.

The transmission errors of two nonidentical T-S fuzzy
systems are very small, and this feature was achieved by

FIGURE 7. Two-computer synchronization setup system.

FIGURE 8. The response signals of the slave system and the transmitted
signal of the master system.

FIGURE 9. The error signals of the synchronization.

applying the time-varying disturbance observer to cancel the
disturbance and uncertainty of the transmission process.

The slave output signals reached the master signal very
quickly. Very few overshoot values appear in Figure 9a. In this
case, the disturbance was tested by inserting it into the master
system. The value of the tested disturbance can be seen
in Figure 6 as a random signal that can easily be rejected by
a new disturbance observer. The estimated disturbance and
tested disturbance are shown in Figure 10 below.

The estimated disturbance and uncertainty values are
marked by the red color in Figure 10 above. The tested dis-
turbance is mostly rejected by compensating the disturbance
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FIGURE 10. Disturbance and uncertainty estimation response signals
of 100 seconds and a region of the signal consisting of 20 to 30 seconds:
(a) tested disturbance in 100 seconds, (b) a region of the tested
disturbance consisting of 20 to 30 seconds.

and uncertainty values, which implies that the output signals
of the slave system closely tracked the master output signals.

B. SYNCHRONIZATION OF ELECTRONIC CIRCUITS
This section presents the synchronization of two electronic
circuits that is based on the above theory. Due to the gains
of the electronic circuits’ limitation, this section selected the
different gain values compared to the computers’ communi-
cation in the previous section. The parameters of the control
system are r1 = 5, c1 = 10, a1 = 1, b1 = 9, and r2 = 3,
c2 = 5, a2 = 2, b2 = 7 for the first and second subsystem
error regions, respectively. The disturbance observer gains are
Ld1 = [0.1, 0.1, 5], and Ld2 = [0.1, 0.1, 10], respectively.
The time-varying disturbance observer gains are α1 = 24,
β1 = 0.1, and α2 = 49, β2 = 0.1.
Assumption 2: x(τ ) ∈ [−5; 5], the system parameters are

the same as the parameters in the previous part ω1(θ (t)) =

5+x(t)
10 , ω2(θ (t)) =

5−x(t)
10 ,A1 =

−1 2 0
0 0 −5
5 5 0

 , B1 =

 0
1
1

,
E1 =

 1
1
1

, A2 =
−1 2 0

0 0 5
−5 −5 0

, B2 =
 0
1
1

, E2 =
 1
1
1


and C = [ 1 0 0 ].
The LMI gains are
Kd1 = [−0.8629,−2.0154, 22.7895] and Kd2 =

[2.2202, 5.3071, 4.7628]. The system error eigenvalues of
A1 − B1Kd1 are λ11 = −5.6874, λ12 = −8.0433+ 3.4475i,
and λ13 = −8.0433− 3.4475i. The system error eigenvalues
of the term A2−B2Kd2 areλ21 = −2.5510, λ22 = −4.2594+
1.5354i, and λ23 = −4.2594−1.5354i. The simulation of two

FIGURE 11. Two electronic circuits’ synchronization simulation results:
(a) x1 and y1 trajectories, (a) x2 and y2 trajectories, (a) x3 and y3
trajectories.

nonidentical synchronizations is in the appendix’s Figs. 1-3.
The simulation results are shown in Figure 11.

The blue color is used to represent the master signal, and
the red color corresponds to the slave signal. The simulation
of electronic circuit synchronization achieved a good result
with very small tracking error values and small overshoots.
Furthermore, the responses of the slave to the master system
are very rapid. This simulation is obtained on millisecond
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FIGURE 12. Tracking error values: (a) e1 signal, (b) e2 signal, (c) e3 signal.

scales, which is meant to aid a decision on selecting the elec-
tronic components. The tracking error values are calculated
in Figure 12 below. The tracking error values are calculated
in Figure. 12 below.

The given output of the simulation in Orcad Capture soft-
ware was shown with small tracking error values. The errors
of the x-state, y-state, and z-state range from [−16 mV,
19 mV], [−60 mV, 50 mV], and [−12 mV, 42 mV], respec-
tively. The system states of themaster and slave are very close
to each other, and they are used to confirm that the proposed

FIGURE 13. A synchronization setup system with two electronic circuits.

control method is effective at the synchronization of two non-
identical T-S fuzzy 3-D chaotic systems. The control system
was constructed by means of the circuits in Figure 13 below.

The experiments’ electrical voltage was supplied by
the Laboratory DC power supply through a GWINSTEK
GPC-6030-D Dual tracking with a machine fixed at 5 V. The
performance of the system was displayed by the Tektronix
DPO 2014B digital phosphor oscilloscope. The Takagi-
Sugeno fuzzy system phase portraits are shown in Figure 14
below.

The real circuit phase portraits are quite similar to the
simulation phase portraits of the MATLAB simulation and
the Orcard Capture simulation. In terms of the constant value
d, the third equation in Eq. (1) determines the phase portraits
definitively. The given phase portraits of the experiment on
the electronic circuit again confirm that the proposed model
can be completely converted to the Takagi-Sugeno fuzzy
mode on a milliseconds time scale. Conversion of the system
mode still retains the original conservative characteristics of
the 3-D chaotic system. This article used the linear matrix
inequality to obtain the control gains, and it used the dis-
turbance observer to delete unwanted value values from the
system. The implementation results of the real circuits are
shown in Figure 15 below.

The disturbance of the electronic main boards along with
the resistors and capacitors changing the temperature, which
mostly compensated the slave system like the estimated dis-
turbance and uncertainty in Figure 16 below.

The synchronization of two nonidentical T-S fuzzy systems
was implemented on the electronic circuit perfectly. The slave
system states are closed to the master system states, and the
tracking error is very small. The estimated disturbance and
uncertainty are given as the value of the electronic board
resister and the capacitor values. The errors of the master
and slave system states are e1 = [−0.6 V, 0.2 V], e2 =
[−0.45 V, 0.6 V], and e3 = [−0.1 V, 0.6 V]. The time-
varying disturbance observer and D-stability are correctly
applied to the synchronization of the 3-D T-S fuzzy chaotic
system. Two illustrative examples are included.
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FIGURE 14. System phase portraits: (a) x2-x1 phase portrait,
(b) x3-x1 phase portrait, (c) x3-x2 phase portrait.

TABLE 1. Comparison of synchronization states’ error maximum values.

No prior paper deals with synchronization of the 3-D
chaotic model in Eq. (1) and with the method for syn-
chronization as the combination of D-stability and a new

FIGURE 15. Two electronic circuits’ synchronization given output:
(a) xm1 and xs2 signals, (b) xm2 and xs2 signals, (c) xm3 and xs3 signals.

FIGURE 16. Estimated disturbance and uncertainty values of two
electronic circuits’ synchronization.

disturbance observer. This comparison affirms that the pro-
posed control synchronization of this study can obtain a very
good transient response with very little overshooting and with
stability. The comparison is given in Table 1 below.
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FIGURE 17. Master system in electronic circuit modeling.

VOLUME 8, 2020 225817



V. N. Giap et al.: Disturbance Observer-Based LMI for the Synchronization of T-S Fuzzy Chaotic Systems

FIGURE 18. Linear matrix inequality and disturbance observer modeling in electronic circuit.
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FIGURE 19. Slave system in electronic circuit modeling.
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V. CONCLUSION
This article presented the control synchronization of two
nonidentical chaotic systems, which were converted to a new
form of the T-S fuzzy system. The control synchronization
was based on the linear matrix inequality convex optimization
method and a time-varying disturbance observer. The linear
matrix inequality was applied to determine the eigenvalues
of the error states. The system error eigenvalues were located
in the convex optimized area. The author’ ideas were per-
fectly achieved by the computers’ communication via a local
network router, and the electronic circuits’ communication.
The given outputs of the slave system states are closed to
the sent signals of the master system. Furthermore, the dis-
turbance and uncertainty were mostly suppressed, and they
were used to confirm that the proposed control algorithm
is ideal for the synchronization of two nonidentical chaotic
systems. The cost of the experiment of the electronic circuit
synchronization was cheaper than the cost of the computer
synchronization. This work gives a suggestion for our future
works in secure communications, which will be based on
electronic circuits.

APPENDIX
This section used X for xm and Y for xs, df for L1(t) and df1
for L2(t). The master, slave, and control systems are shown in
the Appendix figures below.

See Figs. 17–19.
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