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ABSTRACT This paper proposes a novel artificial intelligence vision-based monitoring system (AVMS) for
ship berthing. To dock a ship, it is necessary to accurately estimate the relative distance between the quay
wall and the ship. However, maneuvering large ships near a port is a complicated and difficult procedure.
Thus, tugboats push the ship and dock it at the berth under the supervision of a pilot, who receives distance
information from a berthing aid system (BAS). The conventional BAS based on laser distance sensors,
which is the most widely used approach, is high-priced and limited by the size of the ship. Additionally,
if there is an obstacle between the ship and the berth, the distance cannot be measured, since it obscures
the laser signal. To address this problem, we develop an AVMS sensor module composed of a low-priced
camera, a differential global positioning system (DGPS) receiver, and an inertial measurement unit (IMU)
with an algorithm to estimate the distance between ship and berth. To evaluate the performance of the
proposed AVMS, field tests are performed at Ulsan port in Korea, and the results are compared with a
conventional BAS. From the field test results, the AVMS provides highly accurate estimates and shows
robust performance in poor weather conditions compared to the conventional BAS. The AVMS can measure
the distance between ship and berth regardless of the size of the ship, since it has a wide field of view. In
addition, it provides the pilot with real-time image information of the ship approaching the berth to obtain
safe ship berthing.

INDEX TERMS Artificial intelligence, berthing aid system (BAS), deep learning, vision sensor, ship
berthing.

I. INTRODUCTION
Due to the rapid development of the port logistics industry,
ships are becoming larger, and marine traffic congestion is
increasing. Therefore, port operations focus on the rapid and
safe berthing and unberthing of large container ships. How-
ever, berthing maneuvers are performed by tugboats, since
maneuvering large ships near the port is a complicated and
difficult procedure [1]. Many accidents occur when ships
approach ports since neither the surrounding environment of
the ship nor the port environment can be accurately identified
by the pilot. Accidents in ports cause significant monetary
damage, injury, and major risks in port operation.
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To address this problem, various sensor-based berthing
aid systems (BASs) have been applied, e.g., laser distance
sensors, lidar, radar, and cameras. An approach based on a
pair of 1D laser distance sensor-based BAS is currently the
most widely used approach in actual ports [2], [3]. However,
it incurs high costs for installation, operation, and mainte-
nance. In addition, because the laser distance sensors are fixed
at specific locations in the port and cannot be moved, there is
a limit to the sizes of ships that can be recognized. In [4], a
3D lidar-based monitoring system was proposed to overcome
the limitations in regard to the accuracy of a 1D laser dis-
tance sensor-based BAS. However, the measurement data are
noisy in poor weather conditions, including rain, haze, and
snow, because of the scattering and diffuse reflection of laser
light.
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Radar-based BAS is robust against environmental
changes [5]. However, when the ship approaches the berth,
the radar signals can contain large errors caused by multiple
and indirect echoes reflected from floating obstacles or berth
facilities. Therefore, radar-based BAS can cause unreliable
ship berthing [1].

Recently, a markerless distance measurement system
for ship berthing has been proposed based on stereo
cameras [6], [7]. Two stereo cameras are used to measure the
distances to the bow and stern of the ship. However, the pro-
posed system is a prototype, tested at a distance of up to
only 25 m, and its performance degrades under illumination
changes.

Electronic chart display and information systems (ECDISs)
and automatic identification systems (AISs) are also used for
ship berthing. Since these devices use location information
measured based on the global positioning system (GPS) data
of each ship, there are limitations of inaccuracies in GPS,
insufficient update periods, and ships not registered with the
AIS. Therefore, there is a very high demand for technology
that can monitor the vicinity of a ship or a port through
video for safe and rapid berthing and for low-cost systems
to address the problems in existing systems.

The purpose of this paper is as follows. We propose
a novel artificial intelligence vision-based monitoring sys-
tem (AVMS) for ship berthing; this system is more econom-
ical and overcomes the disadvantages in the conventional
laser distance sensor-based BAS. The proposed system pro-
vides precise and accurate measurements of the distances
between port and ship regardless of the environmental and
illumination conditions when the ship is berthing. In addition,
although conventional approaches have limitations regarding
the size of the ship that can be recognized, the proposed
system has no limitations on the size of the ship. The pro-
posed AVMS sensor module comprises a camera, a differ-
ential GPS (DGPS) receiver, and an inertial measurement
unit (IMU). In addition, the AVMS can robustly recognize
ships even in poor weather conditions, by applying the deep
learning model in [8] to overcome the inherent limitations of
the camera.

The remainder of this paper is organized as follows.
In Section II, a conventional laser distance sensor-based
BAS is briefly reviewed, and its limitations are discussed.
Section III describes the proposed AVMS hardware and soft-
ware systems. Section IV presents field test results based
on various environmental conditions. Finally, a conclusion is
presented in Section V.

II. CONVENTIONAL APPROACH
A. LASER DISTANCE SENSOR-BASED BERTHING
AID SYSTEM (BAS)
Laser distance sensor-based BASs are the most widely used
assistant systems for ship berthing [2]. The basic concept of
the conventional laser distance sensor-based BASs is shown
in Fig. 1. Two laser distance sensors are mounted at the

FIGURE 1. Conventional berthing aid system (BAS) based on a pair of
laser distance sensors. Conventional BAS systems have the following
limitation: if the size of the ship is too small, the laser distance sensors
may not be able to estimate the distance from the ship to the berth.

berth. One sensor measures the distance from the berth to
the ship’s bow, and the other measures the distance from the
berth to the ship’s stern. The BAS provides the approaching
distance information of the ship to the pilot and ground
crews to prevent collisions due to excessive speed, and the
BAS helps ships safely reach the berths. Under good weather
conditions, the maximum measurable distance of a typical
BAS is approximately 100-150 m.

B. LIMITATIONS OF THE LASER DISTANCE
SENSOR-BASED BAS
Laser distance sensor-based BAS systems have the following
limitations. Because two laser distance sensors are fixed at
specific locations in the berth, as shown in Fig. 1, the BAS
system has a limit on the size of the ship that can bemeasured.
If the size of the ship is too small or too large, the laser range
sensors may not accurately point the bow and stern of the
ship and consequently cannot estimate an accurate distance
and speed.

Many obstacles can float near the berth, and the speed and
distance information between such obstacles and the ship is
also very important for safely docking the ship. However,
the conventional laser distance sensor-based BAS cannot
detect floating obstacles, such as other ships near the berth.
The high sensor price and construction costs of the conven-
tional BAS have also been emphasized as problems.

III. ARTIFICIAL INTELLIGENCE VISION-BASED
MONITORING SYSTEM (AVMS)
A. SYSTEM SPECIFICATION AND OVERVIEW
To overcome the limitations of the conventional laser distance
sensor-based BAS, we propose an AVMS for ship berthing.
The purpose of the AVMS is to inform pilots and ground
crews of navigation information generated by fusing the sen-
sor data gathered from multiple AVMS sensor modules at
the berth. Basically, the AVMS estimates the relative distance
from the berth to the bow and stern of the ship. In addition,
it recognizes obstacles and other ships nearby and estimates
the relative positions to prevent collisions. If a collision is
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detected, the AVMS warns the pilots and ground crew to
prevent marine ship accidents.

The sensor module of the AVMS is composed of a
wide-angle camera for image capture, a DGPS for precise
positioning, an IMU for attitude measurement, an embedded
computer for software implementation, and the local area
network (LAN), as shown in Fig. 2. Each sensor module
is enclosed in a waterproof case to prevent corrosion from
seawater. The sensor modules are installed in a fixed structure
near the berth and at a certain height from sea level. The
postures of the sensor modules are designed to bemanually or
automatically adjusted. Table 1 shows the main specifications
of the AVMS sensor module, e.g., the measuring item, field of
view, sampling rate, operating illuminance, and international
protection (IP) code. Since the maximum approach speed of
the ship is less than 1 m/s during berthing, the sampling rate
for distance estimation near the port generally requires 1 Hz.
In addition, the AVMS can provide real-time video data to
pilots and ground crews through a cloud server at a sampling
rate of 10 Hz. The IP67 rating indicates that the system can
provide complete protection against the ingress of dust and
water.

FIGURE 2. Components of the artificial intelligence vision-based
monitoring system for the ship berthing (AVMS) sensor module. Each
sensor module consists of a wide-angle camera, a DGPS, an IMU,
an embedded computer, and the local area network (LAN).

TABLE 1. Main specifications.

The AVMS hardware system consists of multiple AVMS
sensor modules, a local server, and a cloud server, as shown
in Fig. 3. To ensure a wide field of view, multiple AVMS
sensor modules are installed in a berth to collect the sensor
data. Each sensor module preprocesses image data by fusing
the IMU and DGPS data in an embedded computer based on
NVIDIA Jetson TX2 [9]. The preprocessed images are trans-
ferred to the local server via LAN. The local server stitches
the images collected from multiple AVMS sensor modules to
generate a wide-angle image to estimate the relative distances
of the ship from the berth. The relative distance estimates
and wide-angle images of the ships are transmitted in real
time to a cloud server through a 4G or 5G cellular network.

FIGURE 3. Overview of the AVMS hardware system consisting of multiple
AVMS sensor modules, a local server, and a cloud server. The cloud server
provides web-based services to the users.

The cloud server provides users with the location information
of the ships and wide-angle images, which can be interpreted
at a glance. Fig. 4 schematically shows the sensor data pre-
processing performed on the embedded computer of each
sensor module, and the relative distance estimation algorithm
performed on the local server. Details of the preprocessing of
the sensor data and relative distance estimation algorithm are
described in Sections III-B and III-C, respectively.

B. IMAGE PREPROCESSING
1) IMAGE ENHANCEMENT
In marine environments, large daily temperature ranges
and evaporation of seawater from haze frequently occur,
which make the image-based ship recognition difficult. Deep
learning [10] and image processing [11], [12]-based image
enhancement algorithms have been proposed for noise reduc-
tion in general environments. However, these image enhance-
ment algorithms are not suitable for operation in an embedded
computer, since they require large amounts of computation.
Therefore, we apply the image enhancement algorithm pro-
posed by K. He [12] to the AVMS by optimizing and simpli-
fying it to be suitable for real time operation in the embedded
computer to eliminate haze. Fig. 5 shows the results of the
enhancement algorithm on a raw image with haze.

2) SHIP DETECTION AND SEGMENTATION
An object segmentation algorithm is used to detect the ship
to be tracked and distinguish it from floating obstacles,
other ships, and the surrounding environment based on the
images collected by the AVMS. The AVMS uses a deep
learning-based Skip-ENet [8] model to recognize objects in
real time from images. The Skip-ENet model is designed to
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FIGURE 4. Overview of the AVMS software system. An embedded computer of each sensor module preprocesses the sensor
data. A local server estimates the relative distances by stitching the images from multiple AVMS sensor modules.

FIGURE 5. Source image (left) and enhanced image (right).

recognize marine objects such as boats and buoys in various
marine environments. Since it can extract marine objects in
pixel units, it is suitable for estimating the shape information
of objects. In [8], the Skip-ENet model shows the best seg-
mentation performance in a marine environment compared
to other deep learning models for segmentation. In addition,
Skip-ENet can be implemented in the embedded computing
unit of the AVMS and reduce the amount of computation by
up to 1/100 compared to other deep learning models.

Fig. 6(a) is the raw image obtained from the AVMS cam-
era, and Fig. 6(b) shows the segmentation result from the
Skip-ENet [8] processing of the raw image. Objects on the
sea surface, such as ships and floating obstacles, are marked
in red, the sea surface is marked in blue, and other areas
are marked in white. Among the object areas marked in red,
noises such as those from sea clutter, small boats, floating
objects, and coastal terrains are removed. From the results,
the target ship can be selected, and the quay wall can be
detected.

3) TOP-VIEW TRANSFORMATION AND IMAGE STITCHING
TheAVMS collects images from each wide-angle camera and
stitches them into a single image to recognize a berth area of
approximately 300 m in lateral length so that the entire area

can be simultaneously observed. Each image is transformed
into a top-view using an inverse perspective mapping (IPM)
algorithm [13]–[17]. The IPM uses the position and attitude
information of the camera to produce a top-view image to
remove perspective effects.

The process of transformation into a top-view based on the
DGPS and IMU sensors is as follows. Let [Xw, Yw, Zw]T be
the world coordinate system, [Xc, Yc, Zc]T be the camera’s
coordinate system, and [U , V ]T be the image coordinate sys-
tem, as shown in Fig. 7. The purpose of IPM is to transform
a pixel point [u, v]T on the image coordinate system to a
3D position [x, y, z]T on the world coordinate system, and
the relationship between the two coordinate systems can be
expressed as [13], [17]:

λ

 uv
1

 = K [R|Tc]


x
y
z
1

 , (1)

where λ is the homogeneous scaling factor, and K is
a 3 × 3 matrix that represents the intrinsic parameter of the
camera represented as

K =

αx β u0
0 αy v0
0 0 1

 . (2)

The parameters of αx and αy are the lens scaling factors,
u0 and v0 the principal point, and β the skewness factor. The
3 × 3 rotation transformation matrix R rotates the camera’s
coordinate system to the world coordinate system in 3D that
can be obtained by measurements of the IMU. The 3 × 1
translation vector Tc is the origin of the world coordinate
system expressed in the camera coordinate system that can be
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FIGURE 6. (a) Raw image as received from the AVMS camera. (b) Raw image as segmented by Skip-ENet [8]. Pixels representing the objects are in red,
the sea surface is in blue, and other areas are in white. (c) The AVMS transforms the image into a top-view based on the sea level, which indicates that
the direction of the quay wall of the berth is aligned with the horizontal direction in the image. (d) The contour of the ship is extracted, and its centroid
is computed. Then, the contour is approximated into a polygon. (e) The white opaque box represents the smallest area that contains all polygon
vertices, and the direction of the longest side of the rectangle can be considered the heading of the ship. (f) The rectangle that contains all polygon
vertices can be reduced to include only the hull area. Among the vertices in the reduced rectangle, the two closest vertices to the quay wall are
considered the bow and stern.

FIGURE 7. The relationship between the world coordinate system
[Xw , Yw , Zw ]T , the camera’s coordinate system [Xc , Yc , Zc ]T , and the
image coordinate system [U, V ]T .

obtained by measurements of the DGPS. The AVMS sensor
module is usually stationary, but it is possible to manually
or automatically change the attitude of the camera when
adjusting the field of view according to the size of the ship,
i.e., if the position or attitude of the AVMS sensor module is
changed, it is estimated through the IMU and DGPS. If the
projection plane is the plane at sea level, the constraint of
the plane is expressed as y = y0 and can be included in (1)
as follows:

λ


u
v
1
0

 = [ KR −KRTw
0 1 0 −y0

]
x
y
z
1


= M

[
x y z 1

]T
. (3)

where Tw = [tx , ty, tz]T is the translation vector between
the two coordinate systems expressed in the world coordinate
system, i.e., the relationship between Tc and Tw can be rep-
resented as Tc = −RTw. Through the inverse transformation
of (3), image pixels [u, v]T can be mapped to [x, y, z]T on
the sea level with y = y0 as follows:[

x y z 1
]T
= λM−1

[
u v 1 0

]T
. (4)

To obtain the solution of (4), M should be always invertible.
If the determinant ofM is nonzero, thenM is invertible. The
determinant ofM can be computed as

det
([

KR −KRTw
0 1 0 −y0

])
= det (κ) det (KR)

= κ det (KR), (5)

where

κ = −y0 − [0 1 0] (KR)−1 (−KRTw)

= −y0 + [0 1 0]Tw
= −y0 + ty. (6)

If ty 6= y0, then κ is nonzero. Also, since det(K) > 0 and
det(R) = 1, the condition that det(KR) 6= 0 is always satis-
fied. From these results, det (M) is nonzero while satisfying
ty 6= y0. Thus, the solution of (4) can be obtained.

TheAVMS transforms each image into a top-view based on
a plane at sea level, so that the direction of the quay wall of
the berth is aligned with the horizontal direction on the image.
Fig. 6(c) is a top-view transformed image based on the result
of Fig. 6(b). As shown in Fig. 6(c), the area corresponding
to the upper part of the ship’s deck is distorted. However,
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since the IPM is performed based on sea level, the perspective
effect on the quay wall of the berth and the intersection line
between the hull and the sea surface can be eliminated. Even
if the installation position or attitude of the camera is changed,
the plane remains the same, which makes it easy to match the
images. In addition, moving objects on the sea level can be
estimated in the two-dimensional coordinate system.

The local server collects the top-view images frommultiple
AVMS sensor modules to obtain a wide field of view. When
performing the top-view image transformation in the local
server, a common world coordinate system is used for all
AVMS sensor modules. Since all top-view images received
from multiple AVMS sensor modules are based on the com-
mon world coordinate system, image stitching can be easily
performed.

C. RELATIVE DISTANCE ESTIMATION
1) BOW AND STERN EXTRACTION
The process of extracting the bow and stern of the ship from
the image and estimating the distance from the bow and
stern to the quay wall of the berth is as follows. As shown
in Fig. 6(d), we detect the object contour for the area that
corresponds to the target ship object and find the centroid of
the contour. Then, the object contour is approximated into a
polygon. To compute the heading of the ship, we find the rect-
angle with the smallest area that contains all polygon vertices,
as indicated by the white opaque box in Fig. 6(e). Among the
four sides of the rectangle, the longest side that is closest to
the quay wall is considered the line where the hull and sea
level are in contact, and the direction parallel to this line is
considered the heading of the ship. As shown in Fig. 6(f),
the rectangle can be reduced to include only the hull area
based on the heading and center point of the ship. Among the
vertices of the polygon within the reduced rectangle, the two
closest vertices to the quay wall are considered the bow and
stern of the ship.

2) KALMAN FILTER TO ESTIMATE THE RELATIVE DISTANCE
The distances from the bow and stern to the quay wall are
estimated by a Kalman filter. We denote a state vector xbowk =[
dbowk , ḋbowk

]
, where dbowk and ḋbowk are the distances from the

quay wall to the bow and approaching speed at time step k ,
respectively. The process model and measurement model are
as follows:

xk+1 = Axk + wk , (7)

zk = Hxk + vk , (8)

A =
[
1 1t
0 1

]
, (9)

H =
[
1 0

]
, (10)

where wk and vk are the normally distributed process noise
and measurement noise, respectively. Since the approaching
speed of the ship is generally very slow (e.g., several cm/s),
the speed estimated in the previous time step is assumed to

FIGURE 8. Experimental setup with two AVMS sensor modules. The AVMS
sensor modules are currently installed at Ulsan port in Korea and being
pilot tested.

TABLE 2. Distance error.

be identical. This Kalman filter is also applied to estimate the
distance from the stern to the quay wall.

IV. FIELD TEST VALIDATION
To evaluate the performance of the proposed AVMS,
real-world field tests were performed based on a large ship
at Ulsan port in Korea. Two sensor modules were installed,
as shown in Fig. 8, to cover an area of 300 m (lateral) ×
100m (longitudinal) from the port: one observes the bow, and
the other observes the stern. To compare the performances
in various environments, the distances from the quay wall
to the bow and stern of the ship were measured in real time
in daytime, nighttime, and rainy environments. To compare
the accuracy and precision of the distance measured from
the AVMS, a 16-channel lidar was used to implement the
conventional laser distance sensor-based BAS in Fig. 2. The
measured distances to the bow and stern were compared
for a large ship, which was approximately 150 m long.
The lidar-based BAS measurement values in the daytime
environment were considered reference values and com-
pared with the AVMS results, since the BAS results pro-
vide stable measurements in an ideal environment such as
daytime.

Fig. 9 shows the test results of the AVMS and lidar-based
BAS operations during a normal clear day. The green line
represents the bottom of the ship in contact with the sea sur-
face as estimated by the AVMS; the black line represents the
edge of the quaywall. The red points represent the point cloud
as measured from the lidar, and the gray lines represent the
distance to the bow and stern, as estimated by the lidar-based
BAS. As seen in the results, when the ship is located 300 m
away from the port, the BAS system cannot measure the
distance, since the ship has not entered the field of view
of the lidar-based BAS. However, the AVMS measures the
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FIGURE 9. Field test result during the daytime on a clear day. The green line represents the bottom of the hull that is in
contact with the sea surface, and the black line represents the edge of the quay wall. The red points represent the point
cloud of the lidar, and the gray lines represent the distances to the bow and stern, which are estimated by the
lidar-based BAS.

FIGURE 10. Comparison of the distances estimated by the field test during the daytime on a clear day. (a) From the quay wall to the
bow; (b) from the quay wall to the stern.

position of the ship until the ship finally completes the
berthing.

Fig. 10 shows the measured straight line distances from
the quay wall to the bow and stern by the AVMS and
lidar-based BAS when the ship approaches the berth, respec-
tively. The results show that the lidar-based BAS starts
measuring when the ship is within 100 m from the port.
Table 2 shows the distance error for each section by dividing

the approach distance into sections of 20 m when the ship
approaches the port. The accuracy and precision increase
when the ship approaches the port. Since the bow of the
ship is curved, the measurement of the BAS is inaccurate at
distances below 20m; thus, the BAS signal should not be used
as a reference signal. These results show that the low-cost
AVMS can be a suitable alternative to the existing high-
cost BAS.
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FIGURE 11. Field test result at night on a clear day.

FIGURE 12. Comparison of the distances estimated by the field tests at night on a clear day. (a) From the quay wall to the bow; (b) from the
quay wall to the stern.

In addition, to test the robustness of the AVMSwith respect
to environmental changes, additional experiments were con-
ducted at night and on rainy days. Figs. 11 and 12 show
the results of field tests at night on clear days. From the
first top-view image in Fig. 11, the stern clearly cannot be
measured, since the entire ship does not enter the field of
view of the BAS, although the ship approaches at a distance of
approximately 50 m from the berth. However, even at night,
theAVMS recognizes the entire ship and the distance from the

berth to the ship. Figs. 13 and 14 show the field test results
from a rainy night. In general, the BAS works well in all light
conditions, but its performance degrades in snowy, foggy,
and rainy environments, because of the irregular reflection
of the laser light. Fig. 14 shows that the measurement by the
BAS is not stable under rainy conditions. However, theAVMS
maintains stable performance even in a rainy environment at
night, and the measurements are continuously made without
interruption.
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FIGURE 13. Field test result at night on a rainy day.

FIGURE 14. Comparison of the distances estimated by the field tests at night on a rainy day. (a) From the quay wall to the bow; (b) from
the quay wall to the stern.

V. CONCLUSION
This paper proposed a novel AVMS, which is a monitor-
ing system based on artificial intelligence vision for ship
berthing. To provide an alternative to the high-cost laser dis-
tance sensor-based BAS, the AVMS sensor module consists
of relatively low-cost sensors such as a camera, a DGPS
receiver and an IMU. An image processing algorithm esti-
mates the distance between the ship and the berth by fusing
the sensor data obtained from multiple AVMS sensor mod-
ules. To evaluate the performance of the proposed AVMS,

field tests were conducted in various environments based on
real ships at Ulsan port in Korea, and the results were com-
pared with those from a lidar-based BAS system. The field
test results show that the AVMS performed better than the
conventional BAS, which can provide accurate distance mea-
surements in an ideal environment. In addition, the AVMS
showed more robust performance than an existing BAS sys-
tem in bad weather conditions. The AVMS has a wide field
of view and can measure the distance to the berth regardless
of the size of the ship. In conclusion, AVMSs, which are
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relatively inexpensive, can be a suitable alternative to the
existing high-priced laser distance sensor-based BASs, and
they can be applied in actual ports.
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