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ABSTRACT Time discretization is an important part of time-varying problems solving that determines
convergence, real-time performance and accuracy for solution models. It is a challenging work compared
with relatively simple derivative approximation due to unknown future information and stability constraint.
To the best of the authors’s knowledge, no effective time discretization was developed other than Euler
finite difference formula before recently development of ZeaD formulas. Existing work presents some
ZeaD formulas including specific time-discretization formulas having third order accuracy. In this work,
N -instant general third-order-accuracy formula is proposed, and it leads to different general third-order-
accuracy formulas when different instant number N is considered. Stability and convergence are analyzed,
and effective domains for parameters in 5-instant and 6-instant general third-order-accuracy formula are
given to guarantee effective time discretization. Furthermore,N -instant general third-order-accuracy formula
is employed to solve time-varying optimization, and N -instant general solution model is proposed. Finally,
comparative experimental results are presented to substantiate the effectiveness and superiority of proposed
general formulas and models.

INDEX TERMS Time discretization, general third-order-accuracy formulas, time-varying optimization, 0-
stability.

I. INTRODUCTION
Time discretization plays an important role in many
areas of science, especially time-varying problems solving,
which makes a transition from continuous time to discrete
time [1], [2]. The first effective time discretization formula
is Euler forward finite difference formula expressed as

ẋ(tk ) =
x(tk+1)− x(tk )

g
+ O(g),

where g is the sampling gap and O(g) is the truncation
error [3]. It is termed Euler formula in this paper for con-
venience. Euler formula seems to be only an approximation
of first-order derivative formally. However, it exists as the
unique effective time discretization formula for decades. It is
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because that time discretization formulas have to meet some
constraints in addition to derivative approximation [4], [5].

Firstly, time discretization formulas are to deal with time-
dependent data in real time, and thus they have to be formally
one-step-ahead [6], [7]. Specifically, one-step-ahead formu-
las have the form of

ẋ(tk ) =
α1x(tk+1)+ α2x(tk )+ α3x(tk−1)+ . . .

g
+ O(gp),

where α1, α2 . . . are constants and O(gp) is truncation error.
Constant α1 is nonzero and it can be rewritten as

x(tk+1) =
g
α1
ẋ(tk )−

α2

α1
x(tk )

−
α3

α1
x(tk−1)− . . .+ O(gp+1). (1)

It is observed from (1) that the left is about informa-
tion at tk+1, i.e., future information, and the right is
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about information at and before tk , i.e., current and past
information. It means that future information is calcu-
lated predictively at each time instant tk so that time
consumption of computation has no infection on real-time
performance [8], [9].

Secondly, time discretization formulas have to meet
0-stability constraint [10], [11]. It is a tough requirement
that most existing derivative approximation formulas can not
satisfy. A series of Lagrange-type formulas were presented in
[8], which are all one step ahead. Their accuracy is quite high.
However, all these formulas cannot lead to stable models.

A series of formulas have been developed for time dis-
cretization with the deep study on time-varying problems
in recent years, which have second-order, third-order and
even higher order accuracy [12]–[17]. For example, in [12],
a second-order-accuracy formula was developed with four
instants utilized. In [13], a third-order-accuracy formula was
developed with five instants utilized. In [14], a fourth-order-
accuracy formula was developed with eight instants utilized.
These research results are about specific time discretiza-
tion formulas, which are difficult to be compared together.
Thus, researchers study their general forms in recent years.
For example, in [18], a general three-step time discretiza-
tion formula was proposed, which utilizes four instants and
have second order accuracy. In [19], a general four-step
time discretization formula was proposed, which utilizes
five instants and have third order accuracy. Besides, some
other general formulas have been developed and investi-
gated. However, each existing work corresponds to only one
general formula, which have fixed instants for time dis-
cretization. In this work, different general time discretiza-
tion formulas are developed by proposing an N -instant
general third-order-accuracy (TOA) formula. Each values
of instant number N corresponds to a general formula.
Recent main study about time discretization formulas com-
pared with this work are listed in Table 1. Theoretical
analyses guarantee the existence of effective domain for
parameters in N -instant general TOA formula when instant
number N ≥ 5.

Optimization is widely encountered in various science and
engineering fields showing its fundamental importance, such
that many efforts have been devoted to such problems [4],
[19], [21]–[29]. Most existing researches are about time-
invariant optimization, and it may be challenging for them
to describe some real-time problems in reality such as real-
time tracking control of robot manipulator [4], [19]. The
proposed N -instant general TOA formula is employed to
solve time-varying optimization in this work and N -instant
general solution model is proposed.

The remainder of this paper is organized into four sec-
tions. In section II, different general TOA formulas are
developed by proposing N -instant general TOA formula.
The stability and convergence analyses of general formu-
las are given. In section III, time-varying optimization is
solved by the continuous-time solution model and its time
discretization realized via N -instant general TOA formula.

TABLE 1. Recent main study about time discretization formulas and their
comparison.

The corresponding N -instant general solution model is pro-
posed. In section IV, numerous numerical results are pre-
sented to substantiate the effectiveness and superiority of pro-
posed N -instant general TOA formula and N -instant general
solution model. Section V concludes this paper with final
remarks. The main contributions of this work are as follows.

1) Different general TOA formulas with different instants
are proposed to approximate and discretize the first-
order derivative.

2) Theoretical analyses guarantee the existence of effective
domain for parameters in N -instant general TOA for-
mula when instant number N ≥ 5.

3) N -instant general solution model is proposed to solve
time-varying optimization via utilizing N -instant gen-
eral TOA formula to discretize continuous-time solution
model.

II. GENERAL TOA FORMULAS
In this section, general TOA formulas are developed by
proposing an N -instant general TOA formula. Different val-
ues of instant numberN lead to different general TOA formu-
las. Theoretical analyses of N -instant general TOA formula
are presented to investigate its stability and convergence.

A. N-INSTANT GENERAL TOA FORMULA
In this subsection, N -instant general TOA formula is pro-
posed on the basis of Taylor expansion and high-order deriva-
tives elimination.
Theorem 1: If x(tk+1), x(tk−i), i = 0, 1, . . . ,N − 2, are

evenly-spaced sampling points of x(t) with the sampling gap
g ∈ (0, 1) and x(t) has bounded fourth-order derivative, then
the following N-instant general TOA formula has third order
accuracy:

ẋ(tk ) =
1
ãg
x(tk+1)

+

(
3

2gã
−

N−2∑
i=3

3i3 − 7i2 + 4
4ãg

ai

)
x(tk )

−

(
3
ãg
−

N−2∑
i=3

i3 − 2i2

ãg
ai

)
x(tk−1)
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+

(
1
2gã
−

N−2∑
i=3

i3 − i2

4gã
ai

)
x(tk−2)

+

N−2∑
i=3

aix(tk−i)
ãg

+ O(g3), (2)

where

ã = 3+
N−2∑
i=3

3i2 − i3 − 2i
2

ai,

and O(g3) denotes the truncation error. Different val-
ues of instant number N lead to different general TOA
formulas.

Proof: Based on Taylor expansion, the expansions of
x(tk−i), i = −1, 1, 2, . . . ,N − 2 are obtained as x(t) has
bounded fourth-order derivative:

x(tk+1)= x(tk )+ gẋ(tk )+
g2

2!
ẍ(tk )

+
g3

3!
x(3)(tk )+

g4

4!
x(4)(c1),

x(tk−1)= x(tk )− gẋ(tk )+
(−g)2

2!
ẍ(tk )

+
(−g)3

3!
x(3)(tk )+

(−g)4

4!
x(4)(c2),

x(tk−2)= x(tk )− 2gẋ(tk )+
(−2g)2

2!
ẍ(tk )

+
(−2g)3

3!
x(3)(tk )+

(−2g)4

4!
x(4)(c3),

...

x(tk−N+2)= x(tk )−(N−2)gẋ(tk )+
((N − 2)g)2

2!
ẍ(tk )

+
(−(N−2)g)3

3!
x(3)(tk )+

(−(N−2)g)4

4!
x(4)(cN−1),

where ẍ(tk ) denotes the second-order derivative of x(t)
with respect to t at time instant tk ; x(3)(tk ) and x(4)(tk )
denote the third-order and fourth-order derivatives; sym-
bol ! denotes the factorial operator; c1, c2, c3, . . . , cN−1
lie in (tk , tk+1), (tk−1, tk ), (tk−2, tk ), . . . , (tk−(N−2), tk ),
respectively.

Let the expansion of x(tk+1) multiply 1, and let the expan-
sions of x(tk−i) multiply ai with i = 1, 2, . . . ,N − 2. Adding
together with the results yields

x(tk+1)− (1+ a1 + a2 + . . .+ aN−2)x(tk )

+ a1x(tk−1)+ a2x(tk−2)+ . . .+ aN−2x(tk−(N−2))

= (1− a1 − 2a2 − . . .− (N − 2)aN−2)gẋ(tk )

+
(1+ a1 + 4a2 + . . .+ (N − 2)2aN−2)g2

2!
ẍ(tk )

+
(1− a1 − 8a2 − . . .− (N − 2)3aN−2)g3

3!
x(3)(tk )

+O(g4), (3)

where O(g4) is the error term absorbing

g4x(4)(c1)
4!

,
a1(−g)4x(4)(c2)

4!
,
a2(−2g)4x(4)(c3)

4!
,

. . . ,

aN−2(−(N − 2)g)4x(4)(cN−1)
4!

.

General TOA formula should only include the first-order
derivative, and thus the terms of second-order and third-order
derivatives should be zero, i.e.,

(1+ a1 + 4a2 + . . .+ (N − 2)2aN−2)g2

2!
= 0,

(1− a1 − 8a2 − . . .− (N − 2)3aN−2)g3

3!
= 0,

which is rewritten as below with sampling gap g > 0:

[
1 1 4 . . . (N − 2)2

1 −1 −8 . . . −(N − 2)3

]


1
a1
a2
...

aN−2

 = 0,

i.e.,

[
1 4
−1 −8

] [
a1
a2

]
=−

[
1 9 . . . (N − 2)2

1 −27 . . .− (N − 2)3

]
1
a3
...

aN−2

.
Thus, a1 and a2 are substituted by other parameters as
below so that the second and third order derivatives could be
eliminated:

a1 = −3+
N−2∑
i=3

(
i3 − 2i2

)
ai,

a2 =
1
2
−

N−2∑
i=3

i3 − i2

4
ai.

(4)

We plug (4) into equation (3), and have

x(tk+1)+

(
3
2
−

N−2∑
i=3

3i3 − 7i2 + 4
4

ai

)
x(tk )

−

(
3−

N−2∑
i=3

(
i3 − 2i2

)
ai

)
x(tk−1)

+

(
1
2
−

N−2∑
i=3

i3 − i2

4
ai

)
x(tk−2)+

N−2∑
i=3

aix(tk−i)

=

(
3+

N−2∑
i=3

3i2 − i3 − 2i
2

ai

)
gẋ(tk )+ O(g4). (5)

Let equation (5) divide
(
3+

∑N−2
i=3 (3i2 − i3 − 2i)ai/2

)
g,

and then, the error term O(g4) becomes O(g3). Finally, the
N -instant general TOA formula (2) is obtained and it has third
order accuracy, i.e., O(g3). The proof is thus completed.

VOLUME 8, 2020 224237



H. Xuan et al.: General TOA Formulas for Time Discretization Applied to Time-Varying Optimization

TABLE 2. N-instant general TOA formulas with different values of N .

B. STABILITY AND CONVERGENCE ANALYSES
To analyze and guarantee the stability and convergence of N -
instant general TOA formula (2), the following theorem is
given.
Theorem 2: If instant number N is no less than five, i.e.,

N ≥ 5, then N-instant general TOA formula (2) must have
effective domains for parameters ai, i = 3, . . . ,N − 2, which
lead to stable and convergent time discretization. Besides,
when instant number N = 5, 5-instant general TOA formula
expressed as

ẋ(tk ) =
x(tk+1)

(3− 3a3)g
+

(3− 11a3)x(tk )
(6− 6a3)g

+
(3a3 − 1)x(tk−1)

(1− a3)g

+
(1− 9a3)x(tk−2)

(6− 6a3)g
+

a3x(tk−3)
(3− 3a3)g

+ O(g3) (6)

has an effective domain 1/5 < a3 < 1/3 for the parameter
a3.

Proof: The proof is divided into four parts, i.e., N < 4,
N = 4, N = 5 and N > 5.
Part 1: When the instant number N < 4, we have to

use three instants at most, i.e., x(tk+1), x(tk ) and x(tk−1),
to discretize the first-order derivative ẋ(tk ). It means that
two Taylor expansions of x(tk+1) and x(tk−1) at most can be
utilized. To eliminate the second and third order derivatives
by the two expansion equations, the following equation have
to be satisfied: 

(1+ a1)g2

2!
= 0,

(1− a1)g3

3!
= 0,

which is unsatisfiable. Thus, N -instant general TOA formula
does not exist when N < 4.
Part 2: When the instant number N = 4, we have to

use four instants, i.e., x(tk+1), x(tk ), x(tk−1) and x(tk−2),

to discretize the first-order derivative ẋ(tk ). It means that only
three Taylor expansions of x(tk+1), x(tk−1) and x(tk−2) can be
utilized. To eliminate the second and third order derivatives
by the three expansion equations, the following equation have
to be satisfied:

(1+ a1 + 4a2)g2

2!
= 0,

(1− a1 − 8a2)g3

3!
= 0.

As the sampling gap g > 0, we have a1 = −3, and a2 = 1/2.
Thus, 4-instant general TOA formula is directly given as

ẋ(tk ) =
x(tk+1)

3
+
x(tk )
2
− x(tk−1)+

tk−2
6
. (7)

When 4-instant formula (7) is employed for time discretiza-
tion, according to Result 1 in Appendix [10], [30], its charac-
teristic polynomial is

P(ζ ) =
1
3
ζ 3 +

1
2
ζ 2 − ζ +

1
6
.

It is evident that its three roots do not satisfy the 0-stability
condition according Result 1 in Appendix [10], [30]. Thus,
N -instant general TOA formula does not lead to stable and
convergent time discretization when N = 4.
Part 3: When the instant number N = 5, five instants,

i.e., x(tk+1) and x(tk−i), i = 0, 1, 2, 3, to discretize ẋ(tk ).
To eliminate the second and third order derivatives by the
three expansion equations, the following equation have to be
satisfied:

(1+ a1 + 4a2 + 9a3)g2

2!
= 0,

(1− a1 − 8a2 − 27a3)g3

3!
= 0,
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Thus, a1 and a2 are substituted by a3 as below so
that the second and third order derivatives could be
eliminated:  a1 = −3+ 9a3,

a2 =
1
2
−

9
2
a3.

(8)

Then, based on the derivative process of N -instant gen-
eral TOA formula, 5-instant general TOA formula (6) is
obtained.

Based on the stable condition in Appendix [10], [30],
when 5-instant general TOA formula (6) is employed for time
discretization, its characteristic polynomial is

P(ζ ) = ζ 4 + (
3
2
−

11a3
2

)ζ 3 + (9a3 − 3)ζ 2

+(
1
2
−

9a3
2

)ζ + a3. (9)

In order to investigate its roots, the bilinear transformation is
employed, i.e., define ζ = (1+ ω)/(1− ω) in equation (11),
and then the following equation is obtained(
1+ ω
1− ω

)4

+

(
3
2
−

11a3
2

)(
1+ ω
1− ω

)3

+ (9a3 − 3)
(
1+ ω
1− ω

)2

+ (
1
2
−

9a3
2

)
(
1+ ω
1− ω

)
+ a3 = 0,

which is simplified as

(6− 6a3)ω3
+(12− 12a3)ω2

+(2− 2a3)ω+20a3 − 4=0.

According to Routh’s stability criterion, the following
inequalities should be satisfied:

6− 6a3 > 0
12− 12a3 > 0
2− 2a3 > 0
20a3 − 4 > 0
(2a3 − 2)(12a3 − 12)+ (6a3 − 6)(20a3 − 4)

12− 12a3
> 0.

Solving the above inequalities, we have 1/5 < a3 <

1/3. As the Routh’s stability criterion is the necessary and
sufficient condition for the stability, 5-instant general TOA
formula (6) leads to stable time discretization with 1/5 <

a3 < 1/3. Besides, based on the results in Theorem 1,
the consistency is guaranteed, and thus, the convergence is
proved based on Result 3 in Appendix [10], [30].
Part 4: When the instant number N > 5, we have more

than five instants to discretize the first-order derivative, and
more Taylor expansion equations are utilized. It means that
more parameters such as a4 and a5 can be adjusted to make
N -instant general TOA formula (2) satisfy the 0-stability
condition. For more convenience, N -instant general TOA
formulas withN = 5, 6, 7 are presented in Table 2. As shown
in Table 2, 6-instant general TOA formula is a special case of
7-instant general TOA formula when parameter a5 = 0, and
5-instant general TOA formula is a special case of 6-instant

general TOA formula when parameter a4 = 0. As proved
in Part 3, the effective domain is 1/5 < a3 < 1/3 for
5-instant general TOA formula, and thus, it must exist an
effective domain for 6-instant general TOA formula, which
is a plane composed of a3 and a4, and the plane includes
the range 1/5 < a3 < 1/3, a4 = 0. Furthermore, it must
exist an effective domain for 7-instant general TOA for-
mula, which is a three-dimensional space composed of a3,
a4 and a5, and the space includes the effective domain for
6-instant general TOA formula. Similarly, if more instants
are utilized, then N -instant general TOA formula has lager
effective domain, which includes the effective domain for the
general TOA formula with less instants. The proof is thus
completed.
To further investigate the connection of effective domain

for N -instant general TOA formula with different values of
N , the effective domain composed of a3 and a4 for 6-instant
general TOA formula is studied. 6-instant general TOA for-
mula is expressed as

ẋ(tk )

=
x(tk+1)

(3− 3a3 − 12a4)g
+

(3− 11a3 − 42a4)x(tk )
(6− 6a3 − 24a4)g

+
(9a3 + 32a4 − 3)x(tk−1)

(3− 3a3 − 12a4)g
+

(1− 9a3 − 24a4)x(tk−2)
(6− 6a3 − 24a4)g

+
a3x(tk−3)

(3− 3a3 − 12a4)g
+

a4x(tk−4)
(3− 3a3 − 12a4)g

+ O(g3).

(10)

Based on the stable condition in Appendix [10], [30], when
6-instant general TOA formula (10) is employed for time
discretization, its characteristic polynomial is

P(ζ ) = ζ 5 + (
3
2
−

11a3
2
− 21a4)ζ 4 + (9a3 + 32a4 − 3)ζ 3

+(
1
2
−

9a3
2
− 12a4)ζ 2 + a3ζ + a4. (11)

We define ζ = (1+ω)/(1−ω) in equation (11) by the bilinear
transformation and have(
1+ ω
1− ω

)5

+

(
3
2
−

11a3
2
− 21a4

)(
1+ ω
1− ω

)4

+ (9a3 + 32a4 − 3)
(
1+ ω
1− ω

)3

+ (
1
2
−

9a3
2
− 12a4)

(
1+ ω
1− ω

)2

+ a3

(
1+ ω
1− ω

)
+ a4 = 0,

which is simplified as

(6− 24a4 − 6a3)ω4
+ (18− 72a4 − 18a3)ω3

+ (14− 56a4 − 14a3)ω2
+ (18a3 + 88a4 − 2)ω

+ 20a3 + 64a4 − 4 = 0.
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FIGURE 1. Effective domain for 6-instant general TOA formula (10).

According to Routh’s stability criterion, the following
inequalities should be satisfied:

6− 24a4 − 6a3 > 0
18− 72a4 − 18a3 > 0
14− 56a4 − 14a3 > 0
18a3 + 88a4 − 2 > 0
20a3 + 64a4 − 4 > 0

−
4
3
(15a3 + 64a4 − 11) > 0

64
3
a4 − 128a3 − 704a3a4 −

8704
3

a24 +
128
3
> 0.

Feasible domain of the inequalities is shown in Fig. 1, which
is exactly the effective domain for 6-instant general TOA
formula (10). It is observed from Fig. 1 that the effective
domain of a3 is 1/5 < a3 < 1/3 when a4 = 0 for
formula (10), which is consistent with the results in Part 4 of
the proof process of Theorem 2.

III. TIME-VARYING OPTIMIZATION
In this section, a series of general solution models are pro-
posed based on the zeroing neural dynamics and theN -instant
general TOA formula (2).

The problem of time-varying optimization is formulated as
below with xk+1 to be obtained at each computational time
interval [tk , tk+1) = [kg, (k + 1)g) ⊆ [0, tf]:

min. f (x(tk+1), tk+1)

s. t. A(tk+1)x(tk+1) = b(tk+1). (12)

The object function f (·, ·) : Rn
× [0,+∞) → R is time

varying, nonlinear, and convex with respect to x, and the rank
of Ak+1 ∈ Rm×n is constantly equal to m with m < n. Thus,
problem (12) is a time-varying convex problem, and any local
optimum of this convex problem is constantly global.

Based on previous work [4], [31], the continuous-time
solution model based on the zeroing neural dynamics method
is obtained as

ẏ(t) = −H−1(y(t), t)
(
λh(y(t), t)+ ḣt (y(t), t)

)
, (13)

with y(t) =
[
xT(t), lT(t)

]T
∈ Rn+m. Moreover, lT(t) ∈ Rm is

the Lagrange-multiplier vector, and h(y(t), t) is defined as

h(y(t), t) =

∂f (x(t), t)∂x(t)
+ AT(t)l(t)

A(t)x(t)− b(t)

 ∈ Rn+m.

Matrix H (y(t), t) is defined as

H (y(t), t) =

 ∂f 2(x(t), t)∂x(t)∂Tx(t)
AT(t)

A(t) 0

 .
H−1(y(t), t) denotes the inverse of H (y(t), t). ḣt (y(t), t) is
the partial derivative of h(y(t), t) with respect to t , which is
defined as

ḣt (y(t), t) =
∂h(y(t), t)

∂t
.

The design parameter λ > 0 should be set as large as the hard-
ware permits or set appropriately for simulative/experimental
purposes.

To solve optimization problem (12) in real time, i.e., cal-
culate xk+1 at each computational time interval [tk , tk+1) =
[kg, (k+1)g) ⊆ [0, tf], N -instant general TOA formula (2) is
employed to discretize continuous-time solution model (13).
Then, N -instant general solution model is obtained as

y(tk+1) = −

(
3
2
−

N−2∑
i=3

3i3 − 7i2 + 4
4

ai

)
y(tk )

+

(
3−

N−2∑
i=3

(
i3 − 2i2

)
ai

)
y(tk−1)

−

(
1
2
−

N−2∑
i=3

i3 − i2

4
ai

)
y(tk−2)−

N−2∑
i=3

aiy(tk−i)

−

(
3+

N−2∑
i=3

3i2 − i3 − 2i
2

ai

)
H−1(y(tk ), tk )

·
(
κh(y(tk ), tk )+ gḣt (y(tk ), tk )

)
, (14)

where κ = λg. Different values of instant number N lead to
different general solution models.

The solution precision of N -instant general solution
model (14) is analyzed and guaranteed by the following
theorem.
Theorem 3: If parameters ai, i = 1, 2, . . . ,N − 2 lie in

effective domain, N-instant general solution model (14) to
solve time-varying optimization problem (12) is 0-stable and
convergent, which converges with the truncation error order
of O(g4), which denotes a vector and every element being
O(g4).

Proof: It is known from Theorem 1 that the truncation
error of N -instant general TOA formula (2) is O(g3). When it
is employed to discretize solution model (13) without omit-
ting the truncation error, the following equation is obtained:

y(tk+1) = −

(
3
2
−

N−2∑
i=3

3i3 − 7i2 + 4
4

ai

)
y(tk )
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FIGURE 2. Approximation errors defined as ε(tk ) = |ẋ(tk )− ẋ∗(tk )| when using 5-instant general TOA formula as well as conventional Euler
formula and Taylor-Zhang formula to approximate the first-order derivative of x(tk ) = sin(2tk ) with different sampling gap g. (a) With g = 0.1 s.
(b) With g = 0.01 s. (c) With g = 0.001 s.

+

(
3−

N−2∑
i=3

(
i3 − 2i2

)
ai

)
y(tk−1)

−

(
1
2
−

N−2∑
i=3

i3 − i2

4
ai

)
y(tk−2)−

N−2∑
i=3

aiy(tk−i)

−

(
3+

N−2∑
i=3

3i2 − i3 − 2i
2

ai

)
ẏ(tk )+O(g4),

It is concluded that the truncation error of N -instant general
solution model (14) is O(g4) by the comparison of this equa-
tion and solution model (14).

Furthermore, based on Theorem 2, N -instant general solu-
tion model (14) to solve time-varying optimization prob-
lem (12) is 0-stable and convergent if parameters ai, i =
1, 2, . . . ,N − 2 lie in effective domain. Finally, based on
Result 4 in Appendix [10], [30], it is proved that N -instant
general solution model (14) to solve time-varying optimiza-
tion problem (12) converges with the truncation error order
of O(g4). The proof is thus completed.

Based on Theorems 2 and 3, the following two corollaries
are obtained.
Corollary 1: If parameter a3 satisfy 1/5 < a3 < 1/3, then

5-instant general solution model expressed as

y(tk+1)

= (3a3 − 3)H−1(y(tk ), tk )
(
κh(y(tk ), tk )+ gḣt (y(tk ), tk )

)
+

(
11a3
2
−

3
2

)
y(tk )+ (3− 9a3) y(tk−1)

+

(
9a3
2
−

1
2

)
y(tk−2)− a3y(tk−3) (15)

to solve time-varying optimization problem (12) is 0-stable
and convergent, which converges with the truncation error
order of O(g4).
Corollary 2: If parameters a3 and a4 lie in the effective

domain in Fig. 1, then 6-instant general solution model
expressed as
y(tk+1)

= (3a3 + 12a4 − 3)H−1(y(tk ), tk )

×

(
κh(y(tk ), tk )+ gḣt (y(tk ), tk )

)

+

(
11a3
2
+21a4 −

3
2

)
y(tk )+(3− 9a3 − 32a4) y(tk−1)

+

(
9a3
2
+ 12a4 −

1
2

)
y(tk−2)− a3y(tk−3)− a4y(tk−4)

(16)

to solve time-varying optimization problem (12) is 0-stable
and convergent, which converges with the truncation error
order of O(g4).

IV. NUMERICAL EXPERIMENTS AND VERIFICATION
In this section, some numerical experiments are conducted to
verify the good performances of proposed N -instant general
TOA formula (2) and N -instant general solution model (14).
Numerical results are separated into two parts: first-order
approximation by N -instant general TOA formula (2) and
time-varying optimization by N -instant general solution
model (14).

A. FIRST-ORDER APPROXIMATION
In this subsection, 5-instant general TOA formula and
6-instant general TOA formula are used to approximate the
first-order derivative [31] of

xk = x(tk ) = sin(2tk ). (17)

For comparisons, conventional Euler formula [10] expressed
as

ẋ(tk ) =
x(tk+1)− x(tk )

g
+ O(g), (18)

and Taylor-Zhang formula [32] expressed as

ẋ(tk ) =
2x(tk+1)− 3x(tk )+ 2x(tk−1)− x(tk−2)

2τ
+ O(g2)

(19)

are presented. The numerical results are presented in Figs. 2
and 3. Fig. 2 shows approximation errors defined as ε(tk ) =
|ẋ(tk ) − ẋ∗(tk )| when using 5-instant general TOA formula
as well as conventional Euler formula (18) and Taylor-Zhang
formula (19) to approximate the first-order derivative of
x(tk ) = sin(2tk ) with different sampling gap g. Different val-
ues of parameter a3 are employed, and corresponding results
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FIGURE 3. Approximation errors defined as ε(tk ) = |ẋ(tk )− ẋ∗(tk )| when using 6-instant general TOA formula as well as conventional Euler
formula and Taylor-Zhang formula to approximate the first-order derivative of x(tk ) = sin(2tk ) with different sampling gap g. (a) With g = 0.1 s.
(b) With g = 0.01 s. (c) With g = 0.001 s.

FIGURE 4. Residual errors defined as e(tk+1) = ‖h(y(tk+1), tk+1)‖ when using 5-instant general solution model as well as conventional
models (21) and (22) to solve time-varying optimization (20) with effective parameter a3 and different sampling gap g. (a) With g = 0.1 s.
(b) With g = 0.01 s. (c) With g = 0.001 s.

are consistent with theoretical analyses. Specifically, approx-
imation errors are of order 10−3, 10−6 and 10−9 when sam-
pling gap g = 0.1 s, 0.01 s and 0.001 s, respectively, which
substantiate that 5-instant general TOA formula has third
order accuracy. In contrast, conventional Euler formula (18)
and Taylor-Zhang formula (19) have O(g) and O(g2) accu-
racy. Fig. 3 shows approximation errors when using 6-instant
general TOA formula as well as conventional formulas to
approximate the same signal with different sampling gap g,
which shows the good performances of 6-instant general TOA
formula.

B. TIME-VARYING OPTIMIZATION
In this subsection, the following time-varying optimization
[31] is considered and solved at each computational time
interval [tk , tk+1) = [kg, (k + 1)g) ⊆ [0, 30] s:

min.
1
4
(sin(0.1tk+1)+ 1)x41,k+1 +

1
4
(cos(0.1tk+1)

+1)x42,k+1 +
1
2
x21,k+1 +

1
2
x22,k+1

s. t. sin(0.2tk+1)x1,k+1 + cos(0.2tk+1)x2,k+1
= cos(0.5tk+1). (20)

N -instant general solution model (14) is employed to solve
this problem. For the purpose of comparison, traditional

Taylor-type solution model and Euler-type solution model
are also employed to solve this problem [31], and they are
presented as

y(tk+1)

= −H−1(y(tk ), tk )
(
κh(y(tk ), tk )+ gḣt (y(tk ), tk )

)
+
3
2
y(tk )− y(tk−1)+

1
2
y(tk−2) (21)

and

y(tk+1) = y(tk )

−H−1(y(tk ), tk )
(
κh(y(tk ), tk )+ gḣt (y(tk ), tk )

)
.

(22)

Numerical results are presented in Figs. 4-6. Specifi-
cally, Fig. 4 shows residual errors defined as e(tk+1) =
‖h(y(tk+1), tk+1)‖ when using 5-instant general solution
model as well as conventional models (21) and (22) to solve
time-varying optimization (20) with effective parameter a3
and different sampling gap g. When sampling gap g =
0.1 s, 0.01 s and 0.001 s, steady-state residual errors of
5-instant models are of order 10−4, 10−8 and 10−12, which
substantiates that 5-instant general solution model has O(g4)
error. However, it is observed that conventional models (21)
and (22) only haveO(g3) andO(g2) errors based on the varia-
tion of their residual errors. Note that the parameter a3 is seted
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FIGURE 5. Residual errors defined as e(tk+1) = ‖h(y(tk+1), tk+1)‖ when using 6-instant general solution model as well as conventional
models (21) and (22) to solve time-varying optimization (20) with effective parameters a3, a4 and different sampling gap g. (a) With g = 0.1 s.
(b) With g = 0.01 s. (c) With g = 0.001 s.

FIGURE 6. Residual errors defined as e(tk+1) = ‖h(y(tk+1), tk+1)‖ when using (a) 5-instant general
solution model and (b) 6-instant general solution model to solve time-varying optimization (20) with
ineffective parameters and sampling gap g = 0.1 s.

in the effective domain 1/5 < a3 < 1/3, which is consistent
with the theoretical results. Fig. 4 shows residual errors when
using 6-instant general solutionmodel as well as conventional
models (21) and (22) to solve time-varying optimization (20)
with effective parameters a3, a4 and different sampling gap
g. Parameters < a3, a4 > are seted as < −0.07, 0.10 >,
< −0.23, 0.15 >, < −0.39, 0.20 >, < −0.55, 0.25 >

and < −0.71, 0.30 >. They are all in the effective domain
shown in Fig. 1 and lead to great performances to solve time-
varying optimization. Fig. 6 shows residual errors when using
5-instant general solution model and 6-instant general solu-
tion model with ineffective parameters, which are beyond the
effective domains presented in theoretical parts. It is evident
that they fail to solve time-varying optimization (20).

V. CONCLUSION
N -instant general third-order-accuracy formula has been pro-
posed to deeply study the time discretization in this paper.
Different N values lead to different general formulas, and
different general formulas have different effective domain
for their parameters. The connections of infinite general for-
mulas have been studied, which show that general formulas
using less instants are special cases of these using more
instants. Besides, the connection of effective domains for dif-
ferent general formulas have been investigated. Furthermore,

N -instant general third-order-accuracy formula have been
employed to solve time-varying optimization, and N -instant
general solution model has been proposed. Numerical results
have verified the effectiveness and superiority of proposed
general formulas and solution models.

APPENDIX
We have the following four results for an M -step
method [10], [30].
Result 1:AnM -stepmethod

∑M
i=0 αixk+i = g

∑M
i=0 βiψk+i

can be checked for 0-stability by determining the roots of its
characteristic polynomial PM (ζ ) =

∑M
i=0 αiζ

i. If all roots
denoted by ζ of the polynomial PN (ζ ) satisfy |ζ | ≤ 1 with
|ζ | = 1 being simple, then the correspondingM -step method
is 0-stable (i.e., has 0-stability).
Result 2: An M -step method is said to be consistent (i.e.,

has consistency) of order p if the truncation error for the exact
solution is of order O(gp+1) where p > 0.
Result 3: An M -step method is convergent, i.e., x[t/g] →

x∗(t), for all t ∈ [0, tf], as g→ 0, if and only if the method is
0-stable and consistent. That is, 0-stability plus consistency
means convergence, which is also known as Dahlquist equiv-
alence theorem.
Result 4: A 0-stable consistent method converges with the

order of its truncation error.
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