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ABSTRACT With the significant updates of location-acquisition technologies, there are more
spatial-temporal trajectory data available. Spatial-temporal stream plays a crucial role in the research and
applications of intelligent transportation. However, there are still some problems in the study of multi-target
hotness diffusion in spatial-temporal stream scenarios: such as forecast of POIs’ (Points of Interest) visitors
or short-term traffic. Passenger and traffic flow can be called spatial-temporal hotness, the law of hotness
diffusion in spatial-temporal of multi-hot-spots can be detected by studying their trajectory. Spatial-temporal
trajectory data often presents multi-core (or multi-target) characteristics around events or behaviors, it is still
a challenge to carry out multi-target modeling at the spatial-temporal level. Here, we provide a compelling
method for dealing with multi-target hotness diffusion. To excavate the hotness in the movement and
diffusion laws in spatial-temporal, we treat movements as a long network infrastructure flood from its source.
Throughmodeling and analysis of OD (Origin-Destination) stream, the hotness prediction is finally achieved.
Finally, two groups of experiments were used to demonstrate our method from the perspectives of passenger
flow and traffic flow respectively and the experiments based on real-world data show that the effectiveness
of our method in predicting the spatial diffusion state of multi-target hotness in different spatial scales. Based
on the R-square, MAE (Mean Absolute Error), MSE (Mean Squared Error), and other evaluation indexes
compared to the traditional prediction method and ARIMA (Autoregressive Integrated Moving Average)
model. Thus, these findings suggest that our method shows more advantages than others.

INDEX TERMS Spatial-temporal trajectory data, multi-target hotness, flood-discharge model.

I. INTRODUCTION
Spatial-temporal data play a vital role in the field of intelli-
gent transportation. As an important part of spatial-temporal
data, spatial-temporal trajectory data reflect the patterns of
the moving objects. Based on the trajectory data, the pre-
diction of traffic flow and research of multiple hot spots
attracted a lot of attention. Methods based on time series
have been widely used for traditional hot spot analysis in
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the field of intelligent transportation [1]–[3]. These methods
are often appropriate for single targets, and not for multiple
models that needed to be trained within complex scenarios.
Multi-hot-spots issues still needed to be researched further in
LBS (Location Based Service), intelligent transportation, and
other fields. Recently, with a large number of moving objects
integrated with positioning devices, a massive amount of
trajectory data are recorded to obtain the location, speed, and
other information [4]. The recorded trajectory data portray
numerous spatial and temporal features that are beneficial to
serve intelligent transportation applications. The trajectory
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data can easily reflect the characteristics of the movement
path and OD of the population and vehicles. Combined with
the stream computing methods [5], [6], research on traffic
flow prediction and hotness diffusion have made a major step
ahead [7]–[9], and provide ideas for solving multi-hot-spots
issues.

These studies of multi-hot-spots issues can be broadly
divided into two categories: one is the research method based
on time series which focuses on hotness prediction; the
other is the research on hotness motion based on streaming
data. The former describes the similarities between histor-
ical events and current events based on time series. These
methods have a high prediction accuracy, but ignores the
spatial correlation between multi-target. Therefore, it cannot
achieve good results when multi-target are involved in pre-
diction or emergency response [10]–[12]. The latter explores
the law of multi-target hotness diffusion in the space by
analyzing people’s behavior characteristics through the tra-
jectory. However, some scholars paid more attention to the
limitations of hotness diffusion path and speed, ignoring
the changes of hotness itself. Their research fields mainly
focus on predictions of bus arrival time and short-term traffic
flow [13].

To solve the multi-hot-spots issues better, we add the
hotness change factor based on the second category in this
paper. A flood-discharge-based spatial-temporal diffusion
method is proposed for multi-target traffic hotness construc-
tion from trajectory data. In particular, we regard the process
of spatial-temporal diffusion of hotness as the process of
flood flowing through the river and finally into the flood
storage area. The amount of flood reflects the scale of the
hotness of the traffic flow, and we treat the flow of pas-
sengers as a special kind of traffic flow in this paper. The
core of the flood-discharge method is to determine the source
of hotness generation, the law of hotness release, the route
of hotness diffusion, the wastage during hotness movement,
the convergence hotness of the destination. Combined with
stream computing, this method can be used to predict the
hotness change of multi-hot-spots like the region of hotness
intersection or destination.

In summary, the research of multi-target hotness diffusion
based on trajectory data focuses on both hotness change and
diffusion. Different from other studies, this study exploring
hotness change at the source. The source of the hotness means
the origin of the traffic generated. The source of canteen hot-
ness is every teaching buildings, while the source of traffic
hotness is every ROIs (Regions of Interest). The change of
hotness at the source reflects the law of passenger flow and
traffic released by the teaching building and ROIs. Combined
with the law of hotness diffusion in spatial-temporal, hotness
state of hot-spots can be predicted. Therefore, the require-
ment is different in our study:

1) This paper focuses on the correlation between geo-
graphical factors, rather than the similarity with his-
torical data, and predicts the hotness from the spatial
diffusion law of hotness.

2) This paper not only focuses on the hotness change of
hot spots but also pays attention to the generation and
diffusion of hotness.

3) This paper uses prediction methods of hotness change
based on time series at source rather than results. The
hotness change at the source is relatively simple, and
the change of a similar category of targets has common
characteristics.

The rests of this article are arranged as follows. Section II
involves the related work in the field of multi-target hot-
ness diffusion; Section III introduces the flood-discharge
model and its combination with this study. Section IV shows
two case studies on real data for evaluating the proposed
approach; Finally, section V summarizes and extends the
discussion.

II. RELATED WORKS
Current studies on multi-target hotness detection mainly
focus on two aspects: one is the prediction method of event
hotness based on time series, which mainly focus on the sim-
ilarity between historical time and current events; the other
one is the overall trend of hotness diffusion in space, with
OD(Origin-Destination) stream which tends to ignore the
actual path or short-term single-target motion state research.

Hotness prediction methods are often associated with time
series. By summarizing the time series of hot spots for a
long time, scholars trained the stable hotness change trend
of hot spots, which has been applied in many fields such as
traffic flow and network traffic prediction [14]–[21]. Karim-
pour [22] proposed a time series model to predict the traf-
fic flow for a certain intersection. Lu.Deng [23] proposed
a hotness prediction method based on similar topics and
co-occurrence topics by combining genetic algorithm and
topic hotness time series. Yaslan.Y [24] processed the his-
torical time series of power usage based on EMD (Empirical
Mode Decomposition) and SVR (Support Vector Regres-
sion), and predicted the change of future power load demand.
J. Chen [25] proposed nonlinear learning integrated LSTM
method for deep learning time series prediction based on
LSTMs, SVRM (Support Vector Regression Machine), and
EO (Extremal Optimization) to predict the future wind speed.
In addition, it is worth mentioning that ARIMA method is
more efficient and more accurate than traditional hotness
prediction method [26].

In the studies of spatial-temporal hotness diffusion, schol-
ars proposed some methods for two aspects: one is the
overall hotness diffusion trend of space hotness, which
does not include the real routes as OD stream; the other
is an estimate of the motion state of the moving sin-
gle target [27]–[35]. J.Qiu [36] proposed a deep learning
method based on neighbors for travel time estimation (TTE),
called the Nei-TTE method. Yisheng Lv [37] proposed a
novel deep-learning-based traffic flow prediction method,
which considers the spatial and temporal correlations inher-
ently. Von.Landesberger [38] used a density-based clustering
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method to aggregate strongly connected adjacent locations
into regions. C.Chen and Y.Ling [39], [40]simplified the clus-
tering of taxi operation track data at night, revealed people’s
travel rules at night, and optimized the route selection of night
buses. Another part of scholars predicted the movement and
diffusion state of hotness based on historical data, regres-
sion model, and artificial neural network model [41], [42].
J.Amita [43] predicted the actual running status of public
transport according to the artificial neural network model.
According to the historical behavior and current behavior of
public transport, T.Cristobal [44] combined with k-medoids
clustering algorithm to predict the running state of public
transport.

In summary, these methods are not well effective in the
study of multi-objective space diffusion of hotness. On the
one hand, the previous hotness prediction methods are not
appropriate to solve multi-hot-spots problems as they focused
on single target problems. On the other hand, the OD-based
analyses on spatial-temporal hotness diffusion failed to con-
sider specific routes in the real world. Therefore, this paper
proposes a flood-discharge-based spatial-temporal diffusion
method for multi-target hotness construction from mobility
data. The process of flood-discharge is very similar to the
process of hotness diffusion. However, to our best knowledge,
there has been no research on traffic flow or spatial-temporal
flow detection taking account of the flood-discharge model.
Current researches on the flood-discharge model are mainly
applied in water conservancy projects, disaster prevention,
and control, and other fields [45], [46]. This study explored
the law of hotness release, routes of hotness diffusion, the law
of hotness diffusion, and other characteristics to analyze and
solve multi-hot-spots problems.

III. METHODOLOGY
A complete flood discharge process begins with the release
of the flood from the spillway. The flood proceeds along the
planned channel toward the preset flood storage area and the
intersection of the floods create hot spots, which need to be
controlled with emphasis. At the same time, in the process
of flood movement, there will be an infiltration phenomenon,
that is, the flood is absorbed by the river soil, share part of
the flood ’hotness’. The confluence area appears at the place
where the flood converges, it can be seen as a ’hot spot’ for
floods. As the movement of transportation flow in the road
network, it also includes the origin and destination points,
routes, wastage of hotness, and a time series of vehicles depart
from its origin. We hypothesized a scenario to describe this
process in more detail. A team of trucks transported goods
from the warehouse to the mall in batches, but some of the
trucks failed to arrive at the mall due to vehicle failure, result-
ing in the wastage of goods. This process involves the OD of
trucks’ flow, the time series at the source of trucks depart,
the path of trucks’ movement, and the possible wastage.
Hot spots will be formed at the intersection of trucks when
we lengthen the distance and add different warehouses and
shopping malls. Rest stations can be set to facilitate drivers in

the hot spot area. In order to make the flood-discharge model
truly feasible with the data of different scenarios, each part of
the model is specified and parameterized. At the source of the
model, we consider the law of hotness release. The release of
hotness is not completed instantly, Newton’s law of cooling
is employed to simulate the release of hotness. The origin and
destination of the hotness diffusion must be clear, clustering
methods are used to determine fuzzy OD points in large scale
space. Hotness diffusion along the real routes on the space,
we attempt to explore the best route of hotness diffusion to
estimate the movements of hotness. Hotness converges and
gathers in space to form multi-hot-spots, and the hotness
prediction of multi-hot-spots can be achieved by calculating
the hotness at different time periods. Wastage of hotness is
accompanied by hotness diffusion, hotness may no longer be
attracted to its target as it moves. For example, few students
may be attracted by the roadside restaurants or snacks bars
and do not choose the planned canteen, resulting in a part of
hotness wast.

We propose a novel framework for a flood-discharge-based
spatial-temporal diffusion method for multi-target hotness
construction from mobility data in this paper. Figure 1 shows
the entire workflow of the study. Two different sets of traffic
flow data were used to demonstrate our work in different
scale space, one was canteen visitors data in school, and
the other was operational vehicle data in urban. The school
dataset includes canteen visitors data, schedule data, POI data
(buildings in school), and school network data. The urban
dataset includes vehicle trajectory data, road network data,
and urban maps. After completing multi-source data collec-
tion, a data pre-processing step was performed to remove
erroneous data. We applied different methods to obtain the
hotness OD points of different scale space. POIs are extracted
as the OD points of hotness diffusion in school data. In
the trajectory data of the operating vehicle, after the stop
points are extracted, OD points are obtained by HDBSCAN
clustering method. Path analysis of both data is based on
the actual road network. Finally, a flood-discharge model is
used to predict the hotness of multiple hot spots, results will
be compared with test data and other methods to verify its
accuracy.

A. FLOOD-DISCHARGE MODEL OF HOTNESS
The flood-discharge model is an abstraction of the whole
process of flood-discharge. In our model, the origin points
of hotness regard as the source of flood-discharge, the des-
tination points of hotness regard as the storage area of the
flood, the routes of hotness diffusion regard as the river
of flood movements, and the wastage of hotness diffusion
regard as the infiltration of flood movements. In addition,
the multi-storage-area corresponds to multi-hot-spots in this
study. A hot spot is a confluence ofmultiple streams or floods.

1) FLOOD-DISCHARGE MODEL
The flood-discharge model mainly consists of five parts:
source Oi, flood storage Di, discharge F , channel R and
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FIGURE 1. Workflow of this study.

summary infiltration Wast . Wast is the summary infiltration
in the process of flood movements. This part of the flood will
be absorbed by the river during its moves. This amount of
flood should be removed in the actual calculation.

When moving multi-source flood converges through river
channels, the discharge process can be accumulated from
multi-period flood quantities by applying the following
formula:

F =
n∑
i=1

n∑
j=1

Fij (1)

where Fij is the flood quantity discharged by Oi in spillway
at time j.

As the infiltration phenomenon will occur in the whole
river, the wastage of flood will increase gradually with the
advance of time. The shorter the distance between the current
location of the flood and storage area, the greater the total the
wastage will be. It’s important to note that the wastage here
is the amount of all steps rather than wastage of an individual
step. The amount of wastage each step is proportional to the
distance, because the farther the distance, the less attractive it
is. Wast is the total wastage of flood, it can be calculated by
applying the following formula:

Wast = h−ρi (2)

where hi is the distance from the current position of the flood
to the storage areaDi, and ρ is the decay factor of the distance.

The final flood volume S into the storage area Di is
the total amount of water released F by each spillway that
reaches each storage area after diversionminus the infiltration
volume:

S = F −Wast (3)

2) FLOOD-DISCHARGE OF HOTNESS ISSUES
The spatial-temporal variation of hotness inside the trans-
portation network is, to some extent, analogous to the

process of flood discharge. Similar characteristics between
flood-discharge and hotness diffusion are mainly reflected in
the following four aspects:

1) OD stream of hotness in transportation network: the
diffusion of hotness and the movements of flood have
definite OD points, the OD points of hotness is not
always determined. The origin and destination of hot-
ness may be a region in a larger spatial scale. In this
study, points were used as the origin and destination of
hotness. Therefore, OD flow information needs to be
extracted and processed from traffic data.

2) Spatial-temporal dependent feature: hotness or flood
are not released regularly, not instantaneously. A suit-
able hotness algorithm is needed to reproduce the actual
sequence of hotness release. Trends at the source are
simpler and easier to track, both flood-discharge and
hotness diffusion.

3) Path-dependent feature: in the real world, diffusion of
hotness or movements of flood have preset channels.
In the traffic network, paths of hotness diffusion are
affected by more factors and require more detailed path
analysis.

4) Distance-dependent wastage: wastage occurs during
the process of hotness diffusion or flood movements.
The distance between hotness and targets affects the
actual attractiveness of targets, long distances are more
likely to cause hotness wastage.

3) SPATIAL-TEMPORAL CHANGE MODEL OF HOTNESS IN
TRANSPORTATION NETWORK
This paper proposed a spatial-temporal change model of
hotness in the transportation network. The ith source point
of hotness generation is Oi, the ith destination point is Di.
In small scale Spaces,Oi andDi represent different buildings.
In large scale Spaces, Oi and Di represent the centroids of
different ROIs.
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The calculation of hotness release is derived from New-
ton’s law of cooling, it can be calculated by applying the
following formula:

Tij = T α(j−t)t (4)

where Tij is the hotness released by the ith O point at time j,
Tt is the hotness at the previous time t , and α is the change
coefficient of hotness.

The hotness diffuse over a wide area and different path
levels in large scale space. Weighted shortest path analysis
is used to find the best path of hotness diffusion:

R = Dijkstra (wir) (5)

where R is the best path for hotness diffusion, r is the sub-
path, wi is the weight of the sub-path, and Dijkstra represents
the shortest path analysis. Although R is not directly involved
in subsequent calculations, it affects the time t when the
hotness reaches its target.

The possible wastage of hotness also needs to be consid-
ered. wastage will appear in the process of hotness diffusion,
and the quantity will increase with the diffusion process. IDW
(inverse distance weight method) method is introduced to our
model for this case. The formula is as follows:

Wast = per
(
h−ρi

)
(6)

where Wast is the entire wastage in the process of hotness
diffusion, hi is the path distance from Di, ρ is the distance
attenuation coefficient, and per() is the symbol for the per-
centage of the result.

The final results can be calculated by applying the follow-
ing formula:

P =


n∑
i=1

n∑
j=1

T (α∗1t∗)
ij ∗W , j ≥ 1ti

0, j < 1ti

(7)

where,

Tij = T α(j−t)t (8)

1t∗ = j− t (9)

W = 1−Wast (10)

where P is the final hotness prediction result of the target
region or object. 1t∗ is the time interval between last time
node t and current time j. Time interval 1ti is the time of
hotness moves from origin point to destination. W is the
weight of actual hotness. To be noted, the hotness value is
0 when the time interval is greater than j, which means that
the hotness has not to reach targets.

An illustrative example is presented to demonstrate the
method. Suppose there are two team trucks carry goods from
two warehouses to the mall. The time series of trucks depart
from the warehouse can be modeled by Newton’s cooling
law as shown in Figure 2. The dotted line represents the
time it takes for trucks depart from the warehouse, and the
horizontal distance between the solid line represents the time

FIGURE 2. Calculated results of Newton’s law of cooling and time of
trucks arrival.

it takes to arrive at the warehouse. The distance between
them is affected by the actual road network and path analysis
methods.

The relationship between distance and hotness wastage is
shown as follows Figure 3. In the process of goods transporta-
tion, there may be vehicle failure, cargo scheduling, and other
factors, resulting in the wastage of goods actually delivered
to the mall. The farther the truck’s current location is from the
mall, the higher the probability of these factors.

FIGURE 3. The relationship between distance and trucks wastage.

As the trucks toward the mall, this wastage accumulates
with each step, and the distance between the current position
of trucks and the mall is gradually decreasing. The rela-
tionship between the wastage and the distance between the
current position and the target point satisfies the condition of
the IDW method. It is important to note that this relationship
is different from the relationship between hotness wastage
and distance shown in Figure 3. The accumulation of hotness
wastage in IDW is not the amount of hotness wast in each
step, but the sum of them. It can be explained by the following
formula:

Wast = per(
N∑
n=1

f (d)) = per(h−ρ) (11)

where f (d) is the hotness wastage of trucks in different
distances, h is the distance parameter of IDW, and ρ is the
distance attenuation coefficient, per() is the symbol for the
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FIGURE 4. The relationship between distance and trucks wastage.

percentage of the result, Wast is the accumulation of trucks
wastage in IDW.

The final prediction results of trucks arriving at the mall
are shown in the following formula and Figure 4:

P =
N∑
n=1

(fi(t) ∗ (1−Wast)) (12)

where fi(t) is the calculated results by Newton’s law of cool-
ing from different warehouses.

B. EXTRACTION OF ORIGIN-DESTINATION
MOVEMENT DATA
The origin and destination of hotness diffusion is a point in
our model, it is necessary to preprocess data of large scale
space. In this paper, OD is extracted by clustering the stop
points. The stop points reflect the origin and destination
locations of hotness, the region of hotness concentrated is
our study object in large scale space. Common clustering
methods can be divided into the following four categories:
hierarchical clustering, partitional clustering, density-based
clustering, and grid-based clustering. Density cluster-
ing is widely used in the analysis of traffic flow and
spatial-temporal stream because it accepts non-spherical
clustering and can reflect hot spots. In this paper, we com-
pared three different density clustering methods of DBSCAN
(Density Based Spatial Clustering of Application with
Noise) [47], [48], HDBSCAN (Hierarchical Density Based
Spatial Clustering of Application with Noise) [50] and
CFSFDP (Clustering by Fast Search and Find of Density
Peaks) [51], [52].

An example is presented here to compare these clustering
methods. Figure 5 shows the results of the different clustering
algorithms, which are evaluated by means of point density
analysis. In point density analysis, lower density pixels are
removed to facilitate comparison with different clustering
results. The clustering result of HDBSCAN algorithm is the
closest to the actual density, and the CFSDFP algorithm
has the worst effect, while DBSCAN algorithm retains too
many noise points. To sum up, the HDBSCAN algorithm
is used to extract OD in this paper. HDBSCAN performs
DBSCAN over varying epsilon values and integrates the

result to find a clustering that gives the best stability over
epsilon. This allows HDBSCAN to find clusters of varying
densities (unlike DBSCAN), and be more robust to parameter
selection.

Although HDBSCAN algorithm can cluster the stops of
the same attribute, it also brings some trouble to our work.
HDBSCAN clustering results on the space of the area may
be large in Figure 6(a). In order to reduce its influence on OD
extraction, the points within these regions need to be clus-
tered again. Therefore, this paper combines the advantages
of HDBSCAN and CFSDFP methods to perform a second
clustering of the HDBSCAN clustering results. CFSDFP is
a clustering algorithm based on peak density. It believes that
there are points with lower density around the clustering cen-
ter, and the distance between these points and the clustering
center is the closest compared with other clustering centers.
The results of this algorithm are also non-spherical, and the
complexity of the algorithm is lower. The refined result of
HDBSCAN is shown in Figure 6(b), in which clusters 4,6,
and 9 are divided into two small clusters.

It is important to extract centroids of the refined clusters
to represent these regions or ROIS. In our study, clustering
results of stop points can be any shape such as the clustering
results of commercial streets is banded. However, two meth-
ods often used in polygon-to-point processes are minimum
enclosing rectangle and minimum circumcircle, which are
better suited to convex polygons than concave polygons. An
approach of building TIN (Triangulated Irregular Network)
to find the centroid is proposed in our study, we get the actual
scope of the data by build TIN. This method is suitable for
both convex polygons and concave polygons.

Figure 7 shows the different locations of the centroid, our
method can better reduce the redundancy in the construction
polygon and the result more approximate the actual data area.
It is obvious that the centroid obtained by constructing TIN
method on a concave surface is more reasonable.

C. DETECTION OF MULTI-TARGET HOTNESS
Combined with the flood-discharge model, hotness detec-
tion is carried out for multi-target from the whole process
of hotness diffusion in our study. Different from traditional
methods, hotness detection methods were used to detect the
source of hotness release rather than detect the hotness of
targets in our study. Newton’s law of cooling is introduced
in this paper to detect the change of hotness source. The
release of hotness is not completed in an instant and has a
certain law. It is important to find a suitable hotness prediction
method to get the release law of hotness. There are few
influence factors of hotness change in its source, the simple
prediction algorithm can predict the hotness change quickly
and efficiently. Newton’s law of cooling is widely applied to
hotness predictions because it can well reflect the hotness
change between two time nodes and does not require too
many parameters [49]. Newton’s law of cooling is formulated
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FIGURE 5. Clustering results of different algorithms and actual points density.

as follows:

T ′t = −α (Tt − H) (13)

where T ′t represents the rate of hotness change of events
or POI, Tt represents the function of event hotness T with
respect to time t , H represents the surrounding hotness, and
α represents the proportional relationship between the sur-
rounding hotness and hotness change rate. The formula for
the integral transform is as follows:

T = H + (T0 − H) e−α(t−t0) (14)

where T represents the temperature of the object at the
moment, T0 represents the temperature at the previous time,
and t− t0 represents the time difference between the previous
time and this time.

The hotness prediction at the source reflects the hotness
change in the time of multi-target. Detecting the hotness of
multi-target also requires attention to the diffusion process of
hotness. The hotness diffuses along the actual paths and con-
verges to formmulti-hot-spots, multi-target hotness detection
can be achieved by hotness prediction of these hot spots.

D. PATH ANALYSIS
The spatial-temporal diffusion of multi-target hotness is
based on the actual paths. In this paper, we use the shortest
path algorithm and adjust it according to the actual situation
to get the best path. The speed and current location of hotness
diffusion can be grasped effectively by path analysis. As a
classical algorithm, the shortest path algorithm is suitable for
most scenarios.
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FIGURE 6. Results of HBSCAN and its refined clustering.

FIGURE 7. The different centroid of build TIN and minimum enclosing
rectangle.

Two scenarios, small scale space and large scale space,
were used in our study. In small scale space, the road network
is characterized by sparsity, small grade difference, and short
distance. The path of hotness diffusion is not complicated,
and the shortest path analysis can be applied to this scenario.

In large scale space, the road network is characterized by
well-developed, hierarchical road levels, and long distance.
We combine the weighted shortest path analysis with buffer
construction. Based on the actual situation, the weighted
shortest path analysis modify the results of the shortest path
analysis by setting the weights. The weights include levels
and attractiveness of the road. Hotness diffusion in different
roads has different speed because of the speed limits. Dif-
ferent roads also have different attractions for different types
of vehicles. For instance, the taxis may prefer places with
more passengers on the way, while the trucks tend to take
the expressway with less traffic. Although weighted shortest
path analysis can find the optimal path for hotness diffusion,

it should also consider the case of user detour. People often
choose the road around the optimal path for a short detour
when the current road is congested. Building buffers for this
optimal path can be applied in this case. In order to more
accurately grasp the extent of hotness diffusion, we conducted
buffer analysis on the optimal route according to the distance
of road intersections. Diffusion and computation of hotness
based the on buffer path in large scale space.

E. WASTAGE OF HOTNESS
Wastage occurs during hotness diffusion. Hotness may no
longer be attracted to the target as it diffuse. As the increases
time of diffusion, the wastage of hotness is increasing and the
distance between the current location of hotness and its tar-
gets is shrinking. IDW is adopted here to solve this problem.
It takes the distance between the interpolating point and the
sample point as the weight to carry out the weighted average,
and the inverse distance weighting method mainly depends
on the power value of the inverse distance. By adjusting
the power value, the influence of the distance factor on POI
attraction or attention can be changed. The process of IDW is
as follows:

1) Calculating the distance from a point (or position) to
the target POI point

h = distance(D, hot) (15)

where h is the distance between current position hot of
hotness and target D.

2) Calculating the weight of each point: the weight is the
function of the inverse of the distance.

ρ = f (1/h) (16)

where ρ is the distance attenuation coefficient, f (1/h)
represent ρ is is a function of the inverse of h.

3) Calculating the final result.

Wast = h(−ρ)i (17)

where Wast is the total wastage of hotness in the pro-
cess of hotness diffusion.

IV. EXPERIMENT AND ANALYSIS
In this section, the proposed method is evaluated in two
different scenarios, based on real trajectory data and road
network data. The first experiment is research on multi-target
hotness diffusion in school, while the second one is in urban
traffic. The hotness detection object of small scale space is
the number of canteen visitors, while the object of large scale
space is the number of vehicles in different hot-spots.

A. CASE 1: MULTI-HOT-SPOTS ISSUES IN SMALL SCALE
SPACE ROAD NETWORK
We apply the flood-discharge model to real canteen visitors’
data to show its effectiveness in small scale space. The dataset
includes the schedule data and canteen visitors data. The
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TABLE 1. An example of campus cards’ access records in a canteen.

schedule data records the number of students and the cor-
responding classroom from April 15th, 2019 to April 26th,
2019. The canteen visitors data records the number of canteen
visitors between 11:45 am-12:00 am on the corresponding
dates. The canteen visitors dataset comes from the campus
cards’ access records of the school’s logistics department.
An example of campus cards’ access records in a canteen is
shown in Table 1. Unnecessary and private data is hidden or
processed in this example. The machine ID can distinguish
different canteens.

In addition, we also obtained the basic vector data of the
school. The study region is divided into regular grids, and
the actual path is simplified to facilitate the understanding of
the model. The size of the fishing net was set as 50m*50m
based on the students’ walking speed and at an interval of
one minute in Figure 8.

FIGURE 8. School map and its simplified school map.

1) OD AND PATH ANALYSIS
In this case, we explore the spatial-temporal diffusion of
canteen visitors. Since the road network on the campus is
sparse and the difference in road grade is small, the shortest
path algorithm can meet the research requirements of this
case. The roads in school are relatively straight, and we carry
out the shortest path analysis through the simplified road
network, which will only produce a small error. Origin of

hotness is the teaching building, and destination is the canteen
in Figure 9. Except for Zhishan Building, most of the teaching
buildings are far away from the canteen.

FIGURE 9. OD stream of canteen visitors in school.

Figure 10 shows the potential canteen visitors of each
building on different weekdays. The Zhishan Building is the
building of the basic courses, and has the highest potential
visitors. They are small differences in the number of visitors
from different workdays.

FIGURE 10. Potential visitors of each building on different weekdays.

2) ANALYSIS OF RESULTS
To verify the effectiveness of our method in small scale
space, this experiment compares the calculated results of this
method with the time series curve of actual canteen visitors.
The relevant parameters were obtained from multiple experi-
ments: Newton cooling rate α =−0.155; distance decay rate
ρ =−0.142; the ratio of attraction between the two canteens
is 0.625:0.375. The traditional method(TM) is introduced
to compare with our method. The traditional method uses
Newton’s cooling law to directly fit the historical data of the
number of canteen visitors, without considering the genera-
tion and diffusion of hotness. Combined with the multi-day
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FIGURE 11. Predicted results of canteen visitors and actual visitors in different day.

data, the average coefficient method was used to optimize the
coefficient, and the final prediction result was obtained.

Figure 11 shows the prediction of two restaurants on dif-
ferent working days. Each subgraph contains four curves:
prediction of our method, the actual values, and the prediction
of the traditional method. Our prediction method is closer
to the actual curve in the variation of details and has more
reference value. Traditional methods without considering the
laws of heat generation and diffusion, cannot adapt to the
fluctuations caused by the arrival time of hotness and other
factors. It can only find the laws of such fluctuations through
constant training models, which is less efficient. Different
periods and different hot spots also require constant training
models, so it is not advisable to detect multi-hot-spots in this
way. To be noted, there are still some differences between our

TABLE 2. R-suqare of Dredicted and Dctual Disitors for Different Date.

prediction and actual value because of the unified parameters
in the experiment. These differences are more pronounced at
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FIGURE 12. Clustering results of refined HDBSCAN.

TABLE 3. Type of stop points of DBSACN clustering result.

the end of the curve due to a gradual increase in the proportion
of outsiders. The distance factor causes the hotness change of
canteen2 to start and end one minute later than the canteen1.
Table 2 shows the R-square values predicted by the two
methods on different dates. The accuracy of our method(DM)
is generally higher than that of traditional methods(TM), and
the R-square value reaches more than 8.5. Table 2 shows that
our overall prediction accuracy is better than the traditional
method, and R-square is greater than 0.8. DM had a lower
forecast accuracy than TM on April 19th, possibly because
there were fewer people visiting the canteen than on April 26.
In general, our method can achieve good results of hotness
prediction in small scale space.

B. CASE 2: MULTI-HOT-SPOTS ISSUES IN LARGE SCALE
SPACE ROAD NETWORK
We applied the flood-discharge model to real operating vehi-
cle trajectory data to show its effectiveness in large scale
space. The research area is the main urban of Changsha
and dataset is an operating vehicle GPS dataset recorded
in the city of Changsha on January 1, 2015, 1.04 million

FIGURE 13. The main movement of traffic flows between different ROIs.

FIGURE 14. Result of weighted shortest path analysis and its buffer.

FIGURE 15. The main hot area of traffic in urban.

GPS records of 560 vehicles were extracted from the original
dataset. The basic road network data of Changsha is from
OSM.
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FIGURE 16. The predicted results of different time interval by two methods.

1) STOP POINTS AND OD EXTRACT
We use the time-distance threshold method to extract stop
points. The first point of a short trajectory will be regarded
as a stop point if the trajectory did not move more than 60m
in 30 minutes. The experiment extracted about 3600 spots
from the original trajectory. A complete OD includes at least
two stop points, vehicles with only one stop record will not
participate in OD extraction. In this paper, OD is extracted by
HDBSCAN clustering of stop points. The parameter of HDB-
SCAN is set according to multiple experiments: MinPts=35.
Figure 12 shows the results of refined HDBSCAN. Accord-
ing to the method proposed in this paper, type 4 is refine
clustered as 401 and 402, and the same goes for categories
6 and 9. Table 3 shows the categories of regions represented
by centroid and the main POIs in the regions. POIs are
mainly divided into four categories: Business district, Tourist
area, Residential area, and Transportation junction. These
categories also fit the characteristics of the operating vehicle.

Figure 13 shows the main movement of traffic flows
between different ROIs. The ’O’ and ’D’ represent the differ-
ent origins and destinations (e.g ’O1’ and ’D1’means ’origin’
and ’destination’ with the centroid of cluster 1), while the
colors and widths of the bands represent different OD stream
and stream sizes. As can be seen from the figure, the major
colors of the band mean that the operating vehicles move
mainly between business districts and residential areas.

2) PATH ANALYSIS
The weight of the shortest path analysis in large scale space
is determined by the speed limit and the attractiveness of

the road. The speed limit on the road is 80km/h for express-
way, 60km/h for the main road, 40km/h for secondary road,
and 30km/h for branch road. The attract coefficients of the
road are set as follows: 2.0 for expressway, 1.4 for the main
road, 1.0 for secondary road, and 0.6 for branch road.

Figure14 shows the optimal path from the weight shortest
path analysis and the buffer of the optimal path. The buffer
radius is set to 800m according to the interval between the
intersections of main roads in Changsha.

3) ANALYSIS OF RESULTS
To verify the effectiveness of our method in large scale space,
this experiment predicted the hotness variations of areas
with the greatest traffic pressure. Figure 15 shows the areas
with the main traffic pressure. These areas contain a number
of commercial or transportation hub POIs, which meet the
activity characteristics of operating vehicles. The area with
the greatest pressure is near the Changsha north bus station,
which is an important traffic junction and close to mainly
outflow area ’O1’ and inflow area ’D5’ as shown in Figure 13.

We compared the effectiveness of our method with the
ARIMAmodel to detect hotness, and the greatest hotness area
in Figure 15 and ROI-7 was selected as the test area. Figure 16
shows the prediction accuracy of the two methods at different
time intervals at 2:00 am-4:00 am. ARIMA1 does not include
seasonal factors, and ARIMA2 set the seasonal factors as
3 hours. This experiment compares the effectiveness of the
three methods in different time intervals: 15 minutes and
20 minutes.

VOLUME 8, 2020 225459



T. Wu et al.: Flood-Discharge-Based Spatio-Temporal Diffusion Method

Each subgraph in Figure 16 contains four curves: pre-
diction of our method, the actual values, prediction of
ARIMA1 method, and prediction of ARIMA2 method. The
results predicted by our method are closer to the actual data.
Comparing the subgraphs, we can find that ARIMA model
is more suitable for the curve with regular fluctuation, and
the effect of ARIMA model is poor when the fluctuation
regularity is vague. With the increase of time interval, the law
of curve change tends to be stable, and the effects of these
methods are improved.

TABLE 4. Hotness prediction accuracy by different method.

Table 4 shows that our approach in general better than
ARIMA method. MAE and MSE are two evaluation meth-
ods based on the difference between real and predicted
values. Overall, the results of ARIMA1 is better than
ARIMA2 because the regularity of ’ACT’ curve fluctuation
is not obvious, thus the seasonal factors do not play a role in
ARIMA2. With the increase of time interval, the regularity
of the curve is more obvious, and the effect of ARIMA2 is
gradually approaching that of ARIMA. Our method is more
accurate, because our method does not rely on curve fitting,
but on the law of hotness diffusion to predict the hotness.

V. CONCLUSION AND DISCUSSION
The construction of the multi-hot-spots problem is still a
challenge in the field of intelligent transportation. In this
paper, we present a flood-discharge-based spatial-temporal
diffusion method for multi-target traffic hotness construc-
tion from trajectory data. This study detects hotness changes
of multi-target from the perspective of hotness diffusion,
rather than predicting hotness changes directly from the target
itself. According to the similarity between the process of
flood-discharge and hotness diffusion, this paper explored the
law of hotness change, and find the actual path of hotness
diffusion. The hotness change state of multi-hot-spots can be
predicted by calculating the hotness in the confluence area.
Besides, this study also considers the wastage of hotness in
the process of diffusion. This method can detect the hotness
of multi-target simultaneously, which provides references
for related research. Finally, we applied the method to real
schedule data and trajectory data, and the effectiveness of
this method is demonstrated by several cases in different
scale space. The two experiments prove the validity of using
the flood-discharge model to solve multi-hot-spots problems
and the necessity of studying hotness generation and diffu-
sion. In the small scale space, our method has shown more
excellent predicted results than the traditional method. In the

large scale space, our method is adaptable and accurate for
predicting traffic flow hotness inside road network, and ver-
ify the effectiveness of our method by comparing with the
ARIMA model.

As future work, we intend to improve the flood-discharge
model from many aspects. First, novel clustering methods
such as GCN-based clustering algorithmwill be considered to
optimize our model. Second, novel methods will be employed
to refine hotness characteristics. By further dividing the char-
acteristics of operating vehicles, the behavioral characteris-
tics of drivers of different operating vehicles can be better
distinguished, more appropriate routes can be planned, and
the accuracy of multi-hot-spots prediction can be improved.
Finally, the law of hot wastage can be further discussed. Road
intersections, POIs, and other factors will be concerned with
the analysis of hotness wastage.
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