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ABSTRACT Semantic segmentation networks focus on the scene parsing of an unrestricted open scene.
The typical segmentation architectures are stacks consisting of convolutional layers, which are used to
extract semantic features. The feature map dimension is sharply changed at sampling units for most of
networks, which ensure effective propagation of the gradient in deep nets. In this article, we proposed a
state-of-the-art networkmodel named Fully Convolutional Pyramidal Networks (FC-PRNet), which employs
pyramidal residual structure to change the featuremap dimension at all convolutional layers. This design is an
effective way of improving generalization ability and optimizing parameters, and FC-PRNet could achieve
excellent capability of semantic extraction. We used urban scene benchmark CamVid and KITTI dataset
to test our network, the experimental results show that FC-PRNet achieves better results without any pre-
training or post-treatment module. Moreover, due to smart construction of pyramidal residual structures,
FC-PRNet has less parameters than other existing networks trained on these datasets.

INDEX TERMS Semantic segmentation, artificial intelligence, lightweight model, KIITI data sets.

I. INTRODUCTION
In 2012, Hinton proposed AlexNet [1], which occupies an
important historical position in the field of convolutional neu-
ral networks (CNNs). Nowadays CNNs are driving advances
in different vision tasks such as: image classification, style
transfer, object detection, and local recognition. Scene pars-
ing is a fundamental topic in local recognition tasks. Its goal
is to assign each pixel in the image a category label. Scene
parsing frameworks are mostly based on Fully Convolutional
Networks (FCNs) [2], which is one of the natural extensions
of CNNs tackling per pixel prediction problems of semantic
segmentation. FCNs design an up-sampling path after CNNs
and introduces skip connections compensating for the feature
loss in pooling layers. Due to the up-sampling path, FCNs
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can process the input images at any resolution and meet the
requirements of most images take out pixel.

A large number of CNNs networks have been extended to
FCNs. For the more traditional especially Deep Residual Net-
works (ResNet) [3] implements hundreds of convolutional
layers by introducing a new building block, which consists
of two convolutional layers and a shortcut. The block dose
the sum of the input and non-linear transformation of input.
ResNet has a problem of diminishing feature reuse, which is
that gradients are not forced through the convolution layers
in deep networks [6], [7]. Many scholars have studied this
problem from the network structure and training process
[6]–[8]. FCNs extended from ResNet have achieved very
good results [4], [5].

Recently, DongyoonHan proposed Deep Pyramidal Resid-
ual Networks (PyramidNet) [9], which utilizes a new method
of dimension growth. It is a strictly linear relationship
between the dimensions of the network and the number of
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convolutional layers. PyramidNet shows good performance
in solving the diminishing feature reuse problem. The linear
increase of dimension leads to fewer parameters of deep
convolutional layers and this structure has a high utilization
rate of parameters to improve accuracy [9].

In this article, we introduce the PyramidNet architec-
ture to FCNs for semantic segmentation and proposed a
new network named Fully Convolutional Pyramidal Resid-
ual Networks (FC-PRNet). We designed residual blocks in
up/down-sampling paths, and the up/down-sampling paths
form a complete semantic segmentation network by connect-
ing sampling layers with several skip connections [10]. The
FC-PRNet achieves good segmentation results in CamVid
and KITTI datasets. In part II, we will introduce pyramidal
residual blocks and the constructions of FC-PRNet in detail.
After introducing different kinds of FC-PRNet in part III,
we will show the results of two urban scene benchmark
datasets. Part IV is the summary of this article and the
arrangement of future work.

II. MATERIALS AND METHODS
A. PYRAMIDAL RESIDUAL NETWORKS
Most CNNs [7], [10]–[13] employ an approach whereby fea-
ture maps dimensions and feature maps sizes change at down-
sampling layers. In the case of the original ResNet, the feature
size is down-sampled by half and the number of dimensions is
doubled. PyramidNet is a derivative network of ResNet and it
proposes a new method of dimensions growth: the dimension
is increased by a value during each extracting layer and
the feature size still decreases during down-sampling layers.
To achieve this dimensional variation, PyramidNet designs a
unique feature extraction unit referred to as a pyramidal resid-
ual block (PR-block). There are two kinds of PyramidNet,
which are additive mode and multiplicative mode as shown
in Figure 1.

FIGURE 1. Dimensional schematic. The width of each block denotes the
output dimension of the PR-block. The wider the block is, the more
parameters the network has. Even when the number of layers are the
same,(b) has many more parameters than (a).

PR-blocks, as shown in Figure 2, are the basic building bol-
cks of PyramidNet. Y denotes the output, whose dimension
is n bigger than that of input x. Due to different dimensions
among individual PR-blocks, an identity-mapping shortcut

FIGURE 2. PR-block: DX denotes the dimension of X and DY denotes the
dimension of Y.

is unusable. Therefore, only a zero-padded shortcut or
a projection shortcut is available. In view that a projec-
tion shortcut will hamper feature propagation and lead to a
problem of optimization [14], PyramidNet adopted a zero-
padded shortcut, which does not introduce additional non-
zero parameters. Moreover, each zero-padded shortcut can
provide a mixture of the residual network and the plain
network. With the dimension increasing at each unit, the
mixture effect is more marked.

The variation of dimensions between adjacent PR-block
is called growth-rate. It can be constructed in two different
ways: additivemode expressed as (1) andmultiplicativemode
expressed as (2):

Dk =

{
Din k = 1
Dk−1 + α k ≥ 2

(1)

Dk =

{
Din k = 1

Dk−1 × β
1
k k ≥ 2

(2)

where α and β are both growth-rate and k is the number of
PR-blocks. The main difference between additive networks
and multiplicative networks is that the dimension of additive
networks increases linearly, whereas the dimension of mul-
tiplicative networks increases geometrically. The process of
multiplication network is similar to that of original deep net-
work architectures, whose dimension of input-site increases
slowly and the dimension of output-site increases sharply.
It means that multiplicative networks have more parameters
than additive networks as the network gets deeper.

Two kinds of PyramidNet show similar performance due
to unobvious difference in their significant structures when
they are shallow. As the nets get deeper, they show some
differences in capabilities of feature extraction. The feature
map dimensions of multiplicative networks tend to be much
larger at the output-side than that of additive networks, and
redundant parameters will make the network harder to train
and affect network performance. Comparative experiments
show that additive network has better performance than mul-
tiplicative the network.
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FIGURE 3. Schematic illustration of PR-block: (a) basic PR-block;
(b) bottleneck PR-block (The size of the block indicates the number of
network parameters).

B. FULLY CONVOLUTIONAL PYRAMIDAL
RESIDUAL NETWORKS
The PyramidNet architecture described in section 2.1 builds
the down-sampling path of our FC-PRNet. In order to
recover the high-dimensional feature, FC-PRNet introduces
a corresponding up-sampling path, which is composed
of PR-block, up-sampling layers and skips connections.
We design basic PR-block and bottleneck PR-block as shown
in Figure 3. Basic PR-block consists of two 3 × 3 Conv.
While, bottleneck PR-block uses a combination of 1×1 Conv,
3× 3 Conv and 1× 1 Conv, which can reduce the parameters
effectively.

FC-PRNet adopted two sampling layers to change the
feature size. In the down-sampling path, we introduced a
transition down layer (TD) to reduce the feature size. In the
up-sampling path, we introduced a transition up layer (TU)
to recover the feature size. Note that TD has an operation of
pooling, which will lead to some losses of information from
earlier PR-blocks. Nevertheless, this information is available
in the down-sampling path of the network and can be passed
via skip connections. Besides two kinds of transition lay-
ers, different structures of PR-blocks are used in two paths.
Different from the PR-blocks in the down-sampling path,
the PR-blocks in the up-sampling path gradually reduces
the feature map dimensions. Figure 4 shows the schematic

FIGURE 4. Schematic diagram of FC-PRNet.

diagram of FC-PRNet. The dimension increases gradually
when feature maps extracting in the down-sampling path
and decreases gradually in up-sampling path. Several skip
connections connect TD and TU.

III. EXPERIMENTS
A. ARCHITECTURE
In this section, we will introduce architectures of FC-PRNet
with additive and multiplicative mode used in the subsequent
experiments. Firstly, in Figure 5, we define 6 kinds of build-
ing blocks used in the network. Differ from PR-block in
the down-sampling path, PR-block in up-sampling path uses
1× 1 convolutional layers for adjustment of dimensions. TD
consists of BN, ReLU, 1×1 Conv and Maxpooling. TU only
contains one 3× 3 Transposed Conv.
Secondly, we define additive FC-PRNets and multiplica-

tive FC-PRNets. Both kinds of networks were modeled in
basic PR-blocks and bottleneck PR-Block. We summarize
all kinds of FC-PRNet in Table 3 and take FC-PRNet94
with basic PR-Blocks as an example to introduce the net-
works. FC-PRNet94 with basic PR-Block is built from
94 convolutional layers: a layer with 48 convolution cores to
process RGB images, 48 layers in the down-sampling path,
44 layers in the up-sampling path and a final layer to process
output data followed by a SoftMax non-linearity to predict
each pixel. If the growth-rate α is 4, the biggest dimension
is 128. Compared with additive FC-PRNets, multiplicative
FC-PRNets with basic PR-Block are much wider and the
biggest dimension is 1840 when the growth-rate β is 1.2.

Thirdly, we test out models using a desktop computer with
an Intel I7 4790k CPU and a TITAN XP GPU. We use
minimum pixel cross-entropy and Adam (Adaptive Moment
Estimation) in training. The learning rate was set to 0.001,
reduced by 5% per epoch and the batch_size is 4. We monitor
the mean intersection over union (MIoU) and the global
accuracy.
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FIGURE 5. Layer structure: (a) basic PR-Block in down-sampling path; (b) Bottleneck PR-Block in down-sampling path; (c) transition down
layers; (d) basic PR-Block in up-sampling path; (e) Bottleneck PR-Block in up-sampling path; (f) transition up layers.

FIGURE 6. IoU on CamVid.

B. CAMVID DATASET
CamVid [15] is the first video collection with semantic tags,
providing each pixel with an associated tag in 11 semantic
classes. Differ from the fixed-position mode of other videos,
this data set is taken from the perspective of a driving automo-
bile. We use data of CamVid Group III, including 367 frames
for training, 101 frames for validation and 233 frames for test-
ing, with a resolution of 360×480 per frame. We trained and
predicted with full-size images without any post-treatment or
pre-training module.

Table 1 and Figure 6 show the comparison of FC-PRNet
with other networks. The experimental results show that addi-
tive FC-PRNets94 with basic PR-block (α = 4) gets the
best results. The pyramid residual structure has a maximum
result, and can effectively improve the MIoU of all kinds
by 15%-20%, especially trees, bicycles and road signs. It is

noteworthy that the image in the camera corresponds to the
video frame, so the data set contains temporal information.
If we introduced advanced video timing processing methods,
the performance of the network can be improved.

Figure 7 shows some segmentation results of FC-PRNet94
with basic PR-block (α = 4) on CamVid datasets. The
qualitative results are in good agreement with the quantitative
results, showing clear segments explainingmany details, such
as cars, pedestrians, trees and the rest of the labels of the
dataset. In the category of poor segmentation, we can see
that there are some misidentifications of road signs, columns,
buildings and cars.

C. KIITI DATASET
The KITTI [18], [19] road benchmark is a comprehensive
dataset and it is very popular with road detection researchers.
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FIGURE 7. CamVid segmentation results.
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TABLE 1. Results of Various Networks in CamVid:FC-PRNets Perform Better Than Multiplicative FC-PRNets;the Network Works Best When the
Growth-Rate α is 4.

TABLE 2. Average Results on ‘‘UM’’, ‘‘UMM’’ and ‘‘UU’’ Test Sets. Best Scores are Presented in Bold.

FIGURE 8. Segmentation results of FC-PRNet on KITTI road benchmark.

KITTI uses a wide variety of evaluation metrics to assess
algorithm performance and also provides information cap-
tured by various sensors including visual cameras, LiDAR
sensor, and GPS. KITTI estimation benchmark consists
of 289 training and 290 test images, both containing three
different road scene categories including urban unmarked

roads (UU, 98/100), urban marked roads (UM, 95/96) and
urban multiple marked lanes (UMM, 96/94). For evalu-
ation, ground truth is provided for training images only
and the number of submissions for online evaluation is
limited. KITTI provides some established measures of
Maximum F1-measure (MaxF) [20], Average precision as
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TABLE 3. Four Structures of FC-PRNets.

used in PASCAL VOC challenges (AP), Precision (PRE),
Recall (REC), False Positive Rate (FPR) and False Negative
Rate (FNR).

We compare the performance of FC-PRNet with other
state-of-the-art methods on the KITTI road benchmark. The
compared algorithms include StixelNet [21], SPRAY [22],
Up_Conv_Poly [23] and RBNet [24]. Table 2 shows the
results of different algorithms on the evaluation. It is worth
that KITTI road benchmark includes LiDAR data, while
our algorithm only uses image data from visual cameras.
Therefore, the comparison experiment only contains algo-
rithms that use the same image data. It can be seen that in
all these metrics the FC-PRNET algorithm outperformed its
competitors, neral road detection. Some qualitative results of
FC-PRNet algorithm are shown in Figure 8.

IV. DISCUSSION AND CONCLUSION
This article focuses on segmenting objects at scene parsing.
By introducing pyramid residual blocks, FC-PRNet can avoid
the diminishing feature reuse problem. The dimensions are
forced to grow gradually in order to reduce the parameters.
To analyze the effectiveness of the proposed algorithm, well-
known datasets of CamVid andKITTIwere tested. FC-PRNet

achieves good semantic recognition results for segmenting
objects at scene parsing without additional post-processing
and pre-training.

At present, FC-PRNet just processes one piece of the color
image. However, the datasets contain information about time
series and LiDAR, which are important to improve the results
of scene parsing. In the follow-up work, we managed to
incorporate information about time series and LiDAR in the
training process to obtain better results. Meanwhile, we will
design optimal models with more layers to improve segmen-
tation performance.

In conclusion, we study a new semantic segmentation
network named Fully Convolutional Pyramidal Residual
Networks (FC-PRNet). By designing pyramid residual blocks
and sampling modules in down/up-sampling paths, the net-
work achieves excellent capability of semantic recognition
with few parameters. In the CamVid dataset, FC-PRNets
obtained 75.4% ofMIoU and 93.6% of Pacc, higher than Seg-
Net, DeepLab V3 and FC-Densenet. In KITTI road bench-
mark, FC-PRNets obtained 95.38% of MaxF, 91.86% of AP,
95.63% of PRE, 95.17% of REC, 2.93% of FPR and 4.86%
of FNR. FC-PRNets made better performance than StixelNet,
SPRAY, Up_Conv_Poly and RBNet.
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APPENDIX
See Table 3.
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