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ABSTRACT Computational color constancy has the important task of reducing the influence of the scene
illumination on the object colors. As such, it is an essential part of the image processing pipelines of most
digital cameras. One of the important parts of the computational color constancy is illumination estimation,
i.e. estimating the illumination color. When an illumination estimation method is proposed, its accuracy
is usually reported by providing the values of error metrics obtained on the images of publicly available
datasets. However, over time it has been shown that many of these datasets have problems such as too few
images, inappropriate image quality, lack of scene diversity, absence of version tracking, violation of various
assumptions, GDPR regulation violation, lack of additional shooting procedure info, etc. In this paper a
new illumination estimation dataset is proposed that aims to alleviate many of the mentioned problems and
to help the illumination estimation research. It consists of 4890 images with known illumination colors
as well as with additional semantic data that can further make the learning process more accurate. Due
to the usage of the SpyderCube color target, for every image there are two ground-truth illumination
records covering different directions. Because of that, the dataset can be used for training and testing of
methods that perform single or two-illuminant estimation. This makes it superior to many similar existing
datasets. The datasets, it’s smaller version SimpleCube++, and the accompanying code are available
at https://github.com/Visillect/CubePlusPlus/.

INDEX TERMS Color constancy, dataset, illumination estimation, white balancing, multiple illumination,
mixed illumination.

I. INTRODUCTION
The human visual system is able, in some conditions, to rec-
ognize colors despite the influence of the illumination on their
appearance through the ability known as color constancy [1].
It is not yet fully understood how this ability functions and
therefore it is not possible to directly model it. Nevertheless,
various computational color constancy methods are used in
the pipelines of digital cameras. They are usually designed to
first identify the chromaticity of the light source and then to
remove its influence on the scene. The last one is described
in details here [2]–[5]. For both of these tasks, the com-
monly used image formation model that also includes the
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Lambertian assumption is usually given as

fc(x) =
∫
ω

I (λ, x)R(λ, x)ρc(λ)dλ (1)

where x is a pixel in the image f, c ∈ {R,G,B} is the color
channel, λ is a wavelength in the visible light spectrum ω,
I (λ, x) is the spectral distribution of the light source, R(λ, x)
is the surface reflectance, and ρc(λ) is the camera sensitivity
for the color channel c. It is often assumed that the scene illu-
mination is uniform. This means that the spatial information
is not required in the illumination estimation equations and
so the color of the observed light source e is

e =

eReG
eB

 = ∫
ω

I (λ)ρ(λ)dλ. (2)
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For a somewhat satisfying color correction, it is already
enough to know the direction of e [6], which means that e can
be described by chromaticities instead of colors. For example,
r , g, and b chromaticity components are calculated as R, G,
and B color components divided by their sum so that r + g+
b = 1. Thus, knowing only two of them is enough.

Since there are more unknowns than equations, illumi-
nation estimation is an ill-posed problem and additional
assumptions have to be made in order to tackle it. Because of
that, numerous illumination estimation methods with various
assumptions have been proposed and they are often divided
into two groups: the low-level statistics-based methods and
the learning-based methods.

The low level statistics-based methods include
White-Patch [7], [8] and its improvements [9]–[11],
Gray-World [12], Shades-of-Gray [13], 1st and 2nd order
Gray-Edge [14], Weighted Gray-Edge [15], using bright
pixels [16], gray pixels [17] or bright and dark colors [18],
exploiting illumination perception [19] and expectation [20],
etc. Interesting to note that�gray balancing� occurs also in
scope of printer calibration [21].

Learning-based methods include neural networks [22],
high-level visual information [23], natural image statis-
tics [24], Bayesian learning [25], [26], spatio-spectral learn-
ing [27], methods restricting the illumination solution
space [28]–[30], color moments [31], regression trees with
simple features from color distribution statistics [32], spa-
tial localizations [33], [34], convolutional neural networks
[35]–[38] and genetic algorithms [39], modelling color con-
stancy by using the overlapping asymmetric Gaussian ker-
nels with surround pixel contrast based sizes [40], finding
paths for the longest dichromatic line produced by specular
pixels [41], detecting gray pixels with specific illuminant-
invariant measures in logarithmic space [42], channel-wise
pooling the responses of double-opponency cells in LMS
color space [43], sensor-independent learning [44], [45], and
numerous others. Learning-based methods have much higher
accuracy than statistics-based ones, but they are usually
slower [46].

While the number of the proposed illumination estimation
methods is ever-growing, there are not too many illumination
estimation datasets and even the existing ones have various
problems. These include too few images, inappropriate image
quality, lack of scene diversity, multiple poorly synchronized
versions of the same dataset, violation of various assump-
tions, etc. A high-quality illumination estimation dataset
should be:
• Diverse. The more content and illumination cases are
covered, the higher is the testing quality.

• Large. It is important that the datasets are not only
diverse but that they also contain many images for each
particular case. This makes it possible to notice quality
improvement even for rare cases [47].

• Informative. Dataset should contain as much informa-
tion about each captured image as possible. Precisely
the information available during shooting procedure,

FIGURE 1. Examples of chromatic adaptation based on two captured
ground-truth illumination colors for an image from Cube++, a new large
dataset where each image is accompanied by ground-truth illumination
from several directions and semantic information about the scene
content. This enables the research of single and multiple illumination
scenarios as well as selection of images by various criteria.

meta-information about scene properties, information
about light sources from different angles, etc.

• Updatable. Every illumination estimation dataset usu-
ally contains ground-truth illumination errors. Because
of that, the dataset infrastructure should provide simple
and reliable way for dataset debugging and tracking of
its versions.

• Verifiable. From the previous point, it follows that the
dataset should be available for verification, namely all
provided markup and ground-truth can be collected and,
if necessary, recreated by anyone who just downloads
the source images.

• Accessible. The value of a dataset is decreasing when
the downloading process is too complicated or time-
consuming.

• GDPR compliant. Even a very good dataset can be of
limited use for European researches if it is not compliant
with GDPR, because it may prevent the researchers from
publishing some of their results without breaking the
regulations.

In this paper a new illumination estimation dataset named
Cube++ with all of these properties is described. It contains
4890 images (see Fig. 2) carefully calibrated so as to get
highly accurate ground-truth illumination. The images were
collected in numerous countries, places, and illumination
conditions. The countries in question include Austria, Croa-
tia, Czechia, Georgia, Germany, Romania, Russia, Slovenia,
Turkey, and Ukraine. In order to enable easy selection of
images with specific properties, each image is accompanied
by additional semantic information such as whether there are
shadows in the image, whether it is an indoor or an outdoor
image, whether the scene contains objects with known col-
oration, etc. An example of an image from Cube++ is shown
in Fig. 1. The dataset is appropriate for different light source
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FIGURE 2. Example images from the newly created Cube++ dataset.

estimation use cases such as: single light source estimation,
two light sources estimation, or estimation of at least one
significant light source in the scene. Finally, some of the
collected images were not included in the dataset and they are
kept aside to be released later as part of a future illumination
estimation benchmark somewhat similar to [48].

The paper is structured as follows: Section II describes the
most important existing illumination estimation datasets and
the problems associated with them, Section III gives the moti-
vation for creating a new dataset, Section IV describes the
methodology used to collect the dataset, Section V describes
the newly proposed Cube++ dataset, Section VI presents a
discussion about the scientific usefulness of contemporary
datasets’ form and about a potential improvement, and finally,
Section VII concludes the paper.

II. INFLUENTIAL EXISTING DATASETS
One of the first illumination estimation datasets with a large
number of images was the GreyBall dataset [49]. A gray ball
was placed in the scene of each of the 11346 images to extract
the ground-truth illumination. The main problem with this
dataset is that the images are non-linearly processed and as
such, they do not comply with the image formation model
given in Eq. (1). Furthermore, the images in the GreyBall
dataset are relatively small with a size of 240× 360. Finally,
the images were extracted from a video that was captured
at several locations, which means that many of them have
highly correlated illuminations and content. To cope with this
problem of high redundancy, it has been proposed to use only
a subset of 1135 images from GreyBall [50], [51].

In 2008, the ColorChecker dataset [25] with its 568 images
was published and the ground-truth illumination was
extracted by means of putting a color checker instead of a
gray ball in the image scenes. This dataset was created by
two different cameras and its images, which are individually
bigger than the ones in the GreyBall dataset, also underwent
non-linear processing, which means that similarly as with the
GreyBall dataset they are given as 8-bit per-channel JPEG
images.

In 2011, the reprocessed version of the ColorChecker
dataset that contains only linearly processed images was pub-
lished [52]. However, as observed already in 2013 [53], it was
not mentioned clearly enough that the black level was sup-
posed to be subtracted before using the images. Despite this
observation, a lot of papers continued publishing results of
methods obtained on the technically unprepared images with
the black level included. This effectively led to the circulation
of at least three versions of the ColorChecker datasets and the
problem was formally addressed in [54] by also bringing into
question the alleged advances in the illumination estimation
research. In 2018, there was an attempt to rehabilitate the
ColorChecker dataset by publishing the recalculated accuracy
of various methods by using the allegedly correct ground-
truth [55]. However, this attempt was marred by serious
technical faults and wrong calculations that included com-
paring the estimations obtained on older versions to the new
ground-truth, which only introduced further confusion [56].
This effectively opens the possibility of more future ver-
sions of the results on the ColorChecker dataset. In short,
using the ColorChecker dataset can be very confusing and
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problematic due to many circulating versions of the alleged
results and consequent inappropriate comparisons, and there-
fore, to avoid problems, it should probably be omitted as the
primary dataset choice.

In 2014, nine new NUS datasets with each of them taken
by one of nine different cameras were published [18]. The
images were only linearly processed, the black level sub-
traction was performed from the start in the initial paper,
and the number of images was sufficiently high. The cal-
ibration object used to extract the ground-truth illumina-
tion was again a color checker. However, the problems with
the NUS datasets include violations of uniform illumination
assumption when having only a single ground-truth illumi-
nation, a relatively small number of images per camera with
268 being the maximum, having the same scenes repeated in
images, and not being GDPR compliant as well as neither of
the previous datasets.

In 2017, the Cube dataset [44] was published with
1365 images taken with a single camera and with a Spy-
derCube 1 calibration tool used for calibration. Due to its
geometry that is superior to the one of a color checker,
SpyderCube allows for easier detection of the presence of two
illuminations and their extraction. This was extensively used
to carefully calibrate each of the images of the Cube dataset
and to obtain an accurate ground-truth. Special care was
also taken to avoid the violation of the uniform illumination
assumption as much as possible. The main drawback of the
Cube dataset is that it contains only outdoor images, which
also negatively affects the ground-truth illumination distri-
bution. This drawback was alleviated in the Cube dataset’s
extension named the Cube+ dataset [44]. It contains 342
additional indoor images for a total of 1707 images and a
wider span of ground-truth illumination distribution similar
to the one in other datasets.

A relatively recent dataset is the INTEL-TAU dataset [57],
a successor to the INTEL-TUT dataset [58], with
7022 images taken by three different cameras. While the
number of images is sufficiently high, its main drawback is
the fact that most of its images do not contain a calibration
object in their scenes. Namely, it was removed after the
initial calibration. Although this removes the requirement for
masking it out, it also makes it impossible to reliably check
and verify the ground-truth calibration and it is known that
such errors occur [59]. Additionally, since the original raw
image files are not provided, the EXIF data with the meta-
information that may be important to some methods is also
not available. The INTEL-TAU dataset is also completely
GDPR compliant. Instead of avoiding problematic scenes,
GDPR compliance was achieved by having ’’privacymasking
applied on all sensitive information’’ such as ’’recognizable
faces, license plates, and other privacy-sensitive informa-
tion’’. The masking was performed so that ’’color component
values inside the privacy masking area were averaged’’.

1https://www.datacolor.com/photography-design/product-
overview/spydercube/

However, this effectively changes the original content and it
may be undesirable in some cases.

A relatively recent dataset is the one for temporal color
constancy [60], which contains 600 sequences of varying
length between 3 and 17 frames. The dataset has not yet
been made publicly available at the moment of writing this
paper.

It is also important to mention that in contrast to all the
described datasets that contain real-world images taken in
mostly uncontrolled conditions, there are a lot of datasets
made in fully controlled or even laboratory conditions, such
as [6], [61]–[66].

The main advantage of the laboratory dataset is that it
allows to research particular problem in fully-controlled con-
ditions, but the variability of such datasets is often too low.

While other illumination estimation benchmark datasets
also exist, it can be argued that the ones mentioned here are
the most influential ones. They also share many problems
with other existing datasets and thus their descriptions also
cover most of the problems of other datasets. Some char-
acteristics of the datasets mentioned here are summarized
in Table 1.

III. MOTIVATION
After laying out the brief descriptions of some of the
best-known illumination estimation benchmark datasets, it is
possible to identify some of their main problems already
recognized by the wider interested research community.
Therefore, the motivation for creating a new illumination
estimation is to try to reduce or entirely eliminate some of
the mentioned problems of the existing datasets.

A. SIMPLE TECHNICAL FAULTS
Probably the most serious and most detrimental problem
is the one connected to the technical shortfalls that can
happen when creating and publishing a dataset. Some of
the main such shortfalls are using non-linearly processed
images and providing confusing information on black level
subtraction.

As for the non-linearly processed images, the solution is to
simply avoid performing non-linear processing and this can
be simply carried out.

In the case of the black level subtraction, with the earlier
datasets, this problem occurred due to a lack of explicit men-
tioning of the black level value in the papers that originally
described these datasets. Additionally, in some cases, even a
script that demonstrates the proper handling of the black level
was either missing or put to a somewhat obscure location.
In the case of the ColorChecker, such problems have led to
multiple circulating versions of the ground-truth data and
experimental results. Therefore, in the case of publishing a
new dataset, such and similar problems motivate to clearly
provide all necessary details on the required data for the
black level subtraction and also to provide an example of how
to do it.
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TABLE 1. Characteristics of different illumination estimation datasets; the Cube++ dataset is described later in Section V.

B. RELIABLE GROUND-TRUTH
One of the probably least detectable technical faults with seri-
ous consequences is erroneous calibration and ground-truth
illumination extraction. Based on the experiencewith existing
datasets, it usually happens that there are multiple illumina-
tions in the scene and the calibration object is under the influ-
ence of only one of them,whichmay not even be the dominant
one. In that case, even if a method estimates the dominant
illumination, it will be penalized because the ground-truth is
based on another illumination. As mentioned earlier, this was
already reported for the ColorChecker dataset.

To make the ground-truth reliable, one should use such a
calibration objects that can detect the presence of multiple
illuminations. Examples of such calibration objects include
a gray ball such as in the GreyBall dataset or a SpyderCube
instance such as in the Cube+ dataset, because they make
it possible to simultaneously observe illuminations coming
from different angles, and these can then be checked for any
significant difference. An example of capturing two signif-
icantly different illuminations with a SpyderCube instance
and showing the difference in how they affect color correc-
tion is given in [44]. If a significant difference is present,
additional steps can be taken to either correctly determine
which of the illuminations is the dominant one or to discard
the image to prevent any future problems, which finally
results in a correctly extracted and reliable ground-truth
illumination.

C. VERIFIABLE GROUND-TRUTH
While the ground-truth should primarily be reliable, it should
also be verifiable in order to add an additional layer of
reliability. The simplest way of making the ground-truth of
a dataset verifiable is to have all the dataset images con-
tain a calibration objects in their scenes. In that way the
ground-truth can easily be extracted by other researchers and
then compared to the originally provided one to look for

potential errors. Additionally, the very visual information can
help identify cases such as e.g. having the calibration object
in a shadow while the majority of the scene is outside of that
shadow.

D. CONTENT VARIETY
A new illumination estimation dataset should have a high
content variety. While this seems rather obvious, it is not
always put into practice to the full extent. For example,
while the GrayBall dataset contains over 11k images, they are
highly correlated and thus effectively not as rich in content
as it may seem at first. In the case of datasets such as the
ColorChecker dataset or the NUS datasets, all images were
taken at the same geographical location and during the same
season. None of the images there were taken e.g. during
winter or at night. Such content choice restriction results in
failure to cover many interesting and challenging environ-
ments that illumination estimation methods encounter in real-
world applications and that should also be included in the
research.

E. ILLUMINATION VARIETY
Having an appropriate ground-truth illumination variety in
an illumination estimation dataset is important for several
reasons. The most important one is to closely cover as
much as possible of the illuminations that are encountered
in the real-world applications because in that way the illu-
mination estimation methods can be properly trained and
tested.

An additional reason to have a sufficient ground-truth
illumination variety is to prevent abuses of some often used
error statistics that are possible if the ground-truth illumi-
nation are too clustered [67]. Such abuses can lead to false
conclusions about the performance of the tested methods and
consequently be detrimental for the research community and
practitioners.
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F. CHECKING FOR MULTIPLE ILLUMINATIONS
The majority of the illumination estimation datasets provide
only a single ground-truth illumination per image. This effec-
tively means that in terms of evaluation these datasets implic-
itly assume an uniform illumination. However, it is know that
in illumination estimation datasets this is generally not the
case [56]. As a matter of fact, any image with shadows has
already effectively at least two illuminations that may differ
significantly and this can also have a significant outcome on
the later color correction step [44]. Additionally, even if there
are no shadows, it is still possible for an image to be under
the influence of multiple illuminations. In that case having
a calibration object that is designed to successfully capture
the illumination from only one direction at a time will fail to
capture all the illuminations in the scene, let alone to detect
their presence. Capturing only a single illumination when
there are more present also leads to a problem during the
evaluation. Namely, if a method correctly estimates one of the
illuminations, but the other one is marked as the ground-truth,
it may be argued that in this case the method is being unfairly
judged. Because of that, an illumination estimation dataset
should preferably use calibration objects that can simultane-
ously capture the illumination color from multiple directions.
This would solve at least two problems. First, it would detect
whether there are multiple illuminations in the first place, and
second, if there really are multiple illuminations in the scene,
then such a calibration object will capture more information
on them. An example of such a calibration object is the
SpyderCube object that has been described earlier.

G. NUMBER OF IMAGES
While some of the previous datasets with non-linearly pro-
cessed images are obviously disadvantageous, some of them
like the GreyBall dataset have the advantage of having thou-
sands of images, which still makes them attractive to many
researchers. Therefore, besides having a technically correct
dataset, it is also important to make it have a sufficiently
large number of images. This can result in both making the
dataset desirable by offering a lot of useful data as well
as simultaneously discouraging researches from using the
inferior older datasets just because of their size. As for how
large exactly a dataset should be, it should contain several
thousands of images to outsize the existing datasets of lower
quality and also to enable new breakthroughs. Finally, having
a dataset with a large number of images is a prerequisite for
achieving the previously mentioned content and illumination
variety.

H. SEMANTIC DATA
In numerous cases, additional semantic information
can be useful for research of specific illumination

2Images are highly correlated. The GreyBall images are taken from
2 hours of video. The TCC images are taken from 600 video sequences.

3The cited version of ground-truth values were published in 2020, the orig-
inal dataset was published in 2008.

4Expected in 2020, the data is not published at the time of writing.

estimation methods. For example, some of the methods may
be interested in being explicitly trained only on indoor or out-
door images. Others may be interested in training images
that contain no shadows whatsoever since they introduce
additional illuminations. More generally, it may be useful to
know whether there is a violation of the uniform illumination
assumption on a given image. In such cases, it can be highly
practical to be able to efficiently filter out images from a
dataset based on some given criteria.

Because of that, a useful addition to a new illumination
estimation benchmark dataset would be semantic informa-
tion for each image. In that way, the research could be
speeded up by not requiring researchers to label the images
from scratch. Additionally, if such semantic information were
given in advance, a lot of potential label mismatches between
the labels created by different researchers could also be
prevented.

I. PRIVACY CONCERNS
With the recent arrival of regulations such as the General Data
Protection Regulation (GDPR), it becomes ever more impor-
tant to respect privacy in publicly available images. This
also means that using images from previous datasets with
e.g. recognizable people or registration plates may nowadays
be potentially seen as problematic. With respect to this, for
the sake of respecting privacy, any new illumination estima-
tion dataset should also take care of avoiding images that
would contain any content that could compromise someones
privacy.

On the other hand, if a public dataset is also supposed
to be useful for development of methods that rely on e.g.
faces [68], [69] or sclera [70], then it should obviously also
contain images with faces. However, in that case it would
be appropriate to obtain the consent for public use from the
persons present in the image scenes. That would enable the
researchers to use and show these images publicly in papers.

J. MULTIPLE INSTANCES OF THE SAME SENSOR CLASS
There can be significant differences between spectral char-
acteristics of different sensors used by various cameras. This
effectively means that a learning-based method that has been
successfully trained on the images created by a camera of one
model will not necessarily perform well on images created
by a camera of another model without some adjustments.
As a result, the problem of inter-camera color constancy has
recently started to gain ever more attention [44], [45], [71].
Since almost every dataset was taken with another camera
sensor, there is no shortage of training and testing images.

On the other hand, it is known and it can be shown that
even for the instances of the same sensor class there are
measurable differences in the spectral characteristics [72].
Hence, to check the significance of the impact of these dif-
ferences on the accuracy of illumination estimation methods,
an interesting feature of an illumination estimation dataset
would be to have images created by several instances of the
same sensor class. In addition to ground-truth illumination,
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such a dataset would also have to provide the sensor instance
labels for each image.

IV. ACQUISITION METHODOLOGY
By identifying the problems with the existing datasets and
describing some desired properties of the future datasets,
the guidelines for creating a new illumination estimation
dataset have been laid out. One of the main goals of this
paper is not just to provide a theoretical framework, but also
to create and propose a dataset by following these guidelines.
The first step in doing so is to describe the used acquisition
methodology.

A. TECHNICAL SETUP
1) COLOR TARGET (SpyderCube) CHARACTERISATION
As the calibration tool in the newly proposed dataset, the Spy-
derCube instances were used. SpyderCube is a color target
for photographers whose main purpose is to help them to
adjust the white balance manually. The general look of the
SpyderCube is given in Fig. 3. A chrome ball is used to
analyze specular highlights, the white on two faces is used
to estimate true highlight value, the gray on two faces rep-
resents the midtone of the image and its color temperature,
and the bottom black face is used to evaluate shadow values
in the scene in relation to the black trap i.e. the hole, which
represents absolute black.

FIGURE 3. SpyderCube general look.

According to the manufacturer company Datacolor,
the gray cube faces are neutral gray with a reflection coef-
ficient of 18%.

Since SpyderCube is a relatively low-cost tool, some
doubts about its declared optical properties could arise.
To validate its properties, two SpyderCube instances, labeled
SC1 and SC2, were compared. Individual faces of these
SpyderCube instances were named G1, G2, and W1, W2,
as shown in Fig. 3.

Reflection spectra of SpyderCube parts were measured
using a Eye-One Pro spectrophotometer by X-Rite in the
high-resolution mode of 3.3 nm with the help of the spotread

FIGURE 4. SC1 and SC2 white parts reflectance spectra.

FIGURE 5. SC1 and SC2 gray parts reflectance spectra.

utility from Argyll CMS.5 For each part, three measurements
were made and the results were averaged. Figures 4 and 5
show the spectral reflection coefficients of the white and gray
parts of the SC1 and SC2, respectively.

These measurements lead to the following observations:

• Gray parts of both SpyderCube instances are not ‘‘ideal’’
gray, i.e. the reflection spectra slightly depend on the
wavelength. The sensitivity of the blue sensor in many
cameras has a maximum at around 450 nm wavelength,
and the reflection coefficients of gray parts G1 and
G2 have a noticeable drop in the blue band.

• Each SpyderCube instance has small differences
between reflection coefficients of its own gray parts
G1 and G2.

• There are rather big differences between the gray parts
reflection coefficients of the two measured SpyderCube
instances.

5http://www.argyllcms.com/
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• White parts of both SpyderCube instances are also not
‘‘ideal’’ white, i.e. the reflection spectra are not horizon-
tal lines.

• Differences of the white parts W1 and W2 reflection
coefficients of the both SpyderCube instances are small.

The idea behind SpyderCube as a calibration tool is that
it does not distort the color of the illumination source, i.e. it
is assumed to be ‘‘color neutral’’. From this point of view,
what is important is the similarity between the shapes of
the curves of reflection coefficients for the two SpyderCube
instances and not the differences between the curves’ val-
ues. From the measurements, it can be concluded that the
curve shapes are indeed very similar. Therefore, the Spyder-
Cube ‘‘color neutrality’’ assumption generally holds with one
exception being the blue region of the spectrum for the white
faces.

The degree of SpyderCube’s color neutrality is one of
the most important factors for accurate ground-truth extrac-
tion. The height of the grey reflection coefficient curve
does not significantly influence the ground-truth extraction.
Compared to other uncertainties, the measured deviations
from color neutrality have only rather a small impact on the
ground-truth.

Nevertheless, tomeasure the amount of this impact in terms
of practical use, several images of two SpyderCube instances
that were simultaneously in the same scene were captured
with a Canon 600D camera under a D50-like illumination.
The average difference between the ground-truth illumina-
tions extracted from the faces of each SpyderCube instance
and measured in terms of the angular reproduction error [73]
was about 0.15◦, which is in terms of color reproduction
insignificant and invisible [74].

Performed measurements effectively demonstrate that
using grey faces of different SpyderCube instances in differ-
ent images has no significant effect on the overall ground-
truth extraction quality. Still, SpyderCube quality should be
studied in details also for all types of complicated artificial
light sources (such as gas discharge lamp, etc.).

2) HANDHELD SETUP
To collect the dataset in natural conditions, the following
equipment shown in Fig. 6 was used:

• Canon 550D camera or Canon 600D,
• SpyderCube calibration tool, and
• special attachment of the cube to the camera.

Special cube fasteners were built that allows the cube to be
positioned so that it appears near the lower right corner of the
image. The fasteners can also be rotated both in horizontal
and vertical planes. The distance of the cube from the camera
can be adjusted using a telescopic monopod and during the
dataset, images capturing it was set to 50 cm. The experience
gained while collecting the dataset images has led to the
conclusion that the custom-built handheld setup is convenient
to use.

FIGURE 6. The general look of the handheld setup with Canon 600D
camera.

FIGURE 7. Examples of images that should be excluded from the dataset:
a) the color target is illuminated by the local lantern from the near shop,
the color is different from the lighting of the most of scene; b) the color
target is illuminated by sources that have almost no effect on the lighting
of the observed scene; c) overexposed color target; d) the overly dark
image.

B. DATA COLLECTION AND FILTRATION
The main thing to pay attention to during the image capturing
was to assure that the used target cube and the majority of the
observed scene are under the same illumination or illumina-
tions. Examples of images with scenes where this require-
ment was not met are shown in Fig. 7.

Another significant factor that prevents accurate ground-
truth extraction is the occurrence of glare on the color
target. Images with this issue are usually characterized by
clipping of the values in one of the color channels on the
gray or white faces of the color target. The overexposure can
be avoided in at least two ways: either by using manual cam-
era settings or by specifying relative exposure compensation.
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Dimming by one step usually turned out to be enough during
the image collecting. Manual camera settings and one step
lighting can also help to properly deal with the overly dark
images. Examples of an overexposed and a too dark image
are shown in Fig. 7c and Fig. 7d, respectively.

It should again be mentioned that there may often be sev-
eral different illumination sources in one scene, commonly
two, e.g., sun and sky or sky and streetlight. In this case,
especially if the areas of the scene parts illuminated by differ-
ent light sources are comparable, it is preferable to place the
cube so that both illumination colors are captured by different
cube faces. By doing so, it is later possible to simultaneously
extract the illumination color of both influential scene light
sources.

One of the main problems during image acquisition was to
find the right position for the photographer to avoid differ-
ences between illuminations influencing the target cube and
most of the observed scene. A lot of interesting scenes are
available only in urban areas where there are a lot of different
artificial illuminations. However, scenes in urban areas are
usually full of different personal data like faces or plate
numbers, which means that there are some difficulties related
to GDPR. To make Cube++ GDPR compliant, the images
with humans in the scene were filtered out and removed.
This was done both automatically by using YOLOv3 [75] and
manually by additionally checking each image.

FIGURE 8. Examples of images with partial illumination estimation: a)
and b) some scene parts are illuminated by the light source not captured
by the cube; c) illumination significantly varies in the scene due to the
interreflections d) all of the scene is in the shadow, while one of the cube
faces is illuminated by the sun.

During the final quality filtration, all images were divided
into three categories: a) images with full light source esti-
mation, where the cube was illuminated by all the main light
sources in the scene, b) incorrect images where the cube does
not allow to determine the illumination rating consistent with
the scene, and c) the rest i.e. images with partial light source
estimation, see Fig. 8.

As a result, about 400 images were marked as incorrect and
removed from the dataset, about 524 images were marked as
difficult images with a partial light source estimation, and the
rest of the images were marked as good.

Additionally, the fiber on the top of the cube may fall on
a cube or remain on the image after cropping out the color
target. To prevent it, the fibers were glued to the cube or just
cut off on most images. All of the images are captured hori-
zontally without the use of a camera flash.

C. GROUND-TRUTH EXTRACTION
The ground-truth extraction was performed on raw images.
First, a simple debayering has been performed by transform-
ing each RGGB Bayer pattern square into a single pixel. The
red and blue channels of the pixel color were obtained directly
from the R and B components of the pattern, while the green
was obtained by averaging the two G values. No interpolation
was performed and therefore the number of image rows and
columns was halved. Next, the oversaturated pixels were
masked out, and then the black level of 211 was subtracted
from all pixels. Finally, the ground-truth illumination values
were extracted by calculating the average chromaticity of the
manually annotated areas of the SpyderCube triangles.

Four chromaticities were calculated for every image. They
correspond to white and gray triangles on the left and right
cube faces. Note that on the brightly illuminated cubes,
the white triangles may have oversaturated areas that cannot
be properly used. On the contrary, the gray triangles chro-
maticities on the darker images may not be stable due to the
black level noise. It is important to note no image contains
saturated grey edges, while some of the images contain satu-
rated white edges and in such cases, a corresponding mark is
provided.

The illuminations for a triangle were calculated as the
mean illumination of its area after 50% downscale to the
barycenter. The value of 50% is selected as a simple empirical
trade-off. Namely, a full-size triangle may contain non-
triangle pixels because of unfocused cube or markup inac-
curacies, while a tiny triangle would contain too few pixels
and would be affected by noise.

D. SEMANTIC MARKUP
When developing and testing an algorithm for illumination
estimation in a scene, it is useful to be able to analyze the
structure of errors. The average error over the entire dataset
will often not help to reveal whether e.g. the accuracy of
the method for indoor images is much less accurate than
for outdoor images. To enable performing such and similar
checks faster and easier, additional information about the
scene and shooting conditions were added to each image
in the dataset. In addition to the information available dur-
ing the shooting, this also includes the following manual
annotation:

• Time of day (field daytime, with values day/night/
unknown).
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• The presence of objects with known coloration
(has_known_objects field with values true/false).

• Scene illumination type (illumination field with values
artificial/natural/unknown). It is worth noting that there
are no flash photos in the dataset.

• Image sharpness (is_sharp field with values true/false).
• The presence of light sources in the scene (the
light_objects multiple choice field with the values
lamp/sky/sun/none).

• The place where the image was captured (the place field
with the values outdoor/indoor/unknown).

• Scene richness (field richness with values rich/simple).
• The presence of shadows in the scene (shadows field
with values yes/no/unknown)

• The cube illumination by all the main light sources in
the scene (estimation field with values full/partial)

Finally, it is important to note that none of the fields had a
preset default value. In that way, the value of every field had
to be explicitly set by an annotating person. Namely, if some
default field values were to be set in advance, it could increase
the annotation bias.

V. THE PROPOSED DATASET
Having in mind all of the concerns and motivation from
the previous section, a new dataset named Cube++ is pro-
posed that continues on the previous Cube+ dataset. The
dataset download link, the accompanying code, and the
technical file description are available at https://github.com/
Visillect/CubePlusPlus/.

The Cube++ dataset contains 4890 images. It includes
only 1359 of the 1707 images from the Cube+ dataset
and only 330 of the 363 images from the 1st Illumination
Estimation Challenge (IEC#1) test set [76]. Other images
were excluded because they may go against respecting pri-
vacy by containing personal data such as faces and license
plates or theymay be problematic for ground-truth extraction.
The remaining 3201 images are brand new.

Cube++ has diverse scene illumination cases as demon-
strated by Fig 9. There it can be seen that the chromaticity
coverage area is wider than in e.g. Cube+. In other words,
the illumination variability has been significantly improved.

The ground-truth illumination distribution for Cube++
and its parts can also be seen from another point of view by
taking a look at Fig. 10.
This figure shows that Cube+, which includes Cube, and

Cube++ have somewhat similar distributions, which in turn
means that a lot of images were taken under outdoor daylight
illumination.

One of the important features of the proposed dataset is the
fact that it contains two ground-truth illumination records per
image, one for each side of the SpyderCube instance. Even
though in many of the images there is effectively only one
dominant illumination in the scene, Fig. 11 helps to better
understand the relation between the two recorded illumina-
tions over the dataset images. Currently, the average angular

FIGURE 9. Scatter plot of ground truth illumination chromaticities
captured by the SpyderCube gray faces.

FIGURE 10. Stacked histogram of the red chromaticity values
r = R/(R + G + B) of Cube++ ground-truth illuminations.

FIGURE 11. Histogram of angular differences between SpyderCube’s left
and right gray faces for Cube++.

error of state-of-the-art illumination estimation methods is
arguably somewhere between 1◦ and 2◦. With that in mind,
all images with larger angular difference between their illu-
mination records can be treated as two-illumination cases.
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TABLE 2. Feature statistics for various Cube++ subsets.

Another important feature of the proposed dataset that has
to be stressed additionally is that it contains semantic data
for each image. All semantic information features are shown
in Table 2. Different features provided in the semantic data
can be helpful for algorithm tuning and profiling as they give
potentially useful information about each image individually.

A. TECHNICAL DESCRIPTION
The dataset consists of several parts. First, there are the raw
images with only simple linear debayering performed that
are stored in 16-bit PNG format. Next, there are CSV files
with ground-truth illumination values and CSV files with
additional related properties. Furthermore, there are JPEG
images generated by using the dcraw open-source tool.7

Finally, there are also additional files for storing auxiliary
information. All these files are automatically built from
sources included in the dataset by running a script that is also

7https://www.dechifro.org/dcraw/

provided. The sources contain the original CR2 images from
the camera and JSON files with the manual annotation data.

The original camera JPEG images are not included as their
generation depends on cameras’ settings, which means that
they cannot be recreated simply or even accurately [77].

1) PNG AND JPEG IMAGES
The main 16-bit PNG images are generated from the original
CR2 files in three steps. First, the CR2 files are decoded by
using the dcraw tool with the options -D -4 -T. This gen-
erates a 16-bit 1-channel TIFF image. Second, the [10, 10+
5184] × [4, 4 + 3456] rectangle was cropped, to have the
same area as the default camera JPEG, which comes with
certain advantages. Finally, a naive debayering is applied so
that every R, G1,

G2, B pattern is converted to a pixel of color(
R, G1+G2

2 ,B
)
. After that the size of the generated PNG

images is 2592 × 1728 = 2534 × 2633. Even though the
color channel values have 16 bits of storage, in practice their
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maximal value is always below 214 − 1. The black level that
can be used for every dataset image is 2048 = 211.
For visualization purposes, the modified versions of JPEG

images generated by thedcraw tool are included aswell. The
modification includes cropping and downscaling in order for
the JPEG images to have the same size as the PNG images.
Downscaling is required because JPEG images generated by
dcraw are not downscaled like the PNG images. On the
other hand, JPEG images generated by the camera were not
included because they depend on camera settings and the
camera’s white balancing algorithm, which is proprietary,
not fully documented, and it may differ for Canon 550D
and 600D cameras that have been used for image capturing.
Because of that, they can not be recreated reliably.

2) THE GROUND-TRUTH
The ground-truth illumination records are stored in the
gt.csv file. Ground-truth illuminations are calculated as
described in Section IV-C. The columns are: image and for
each of the 4 triangles (left, right, left bottom, right bottom)
it contains three columns r, g, b with the corresponding RGB
illumination chromaticities so that r+g+b = 1. The triangles
brightness values are given in the properties.csv file.
Usually, computational color constancy datasets contain

only a single ground-truth illumination vector, which repre-
sents the dominant illumination in the scene. In the Cube++
dataset such illumination is not given, because the precise
single illuminant estimation may require specialist annota-
tion. Moreover, some images have two significantly different
illuminations, which makes it harder to select the dominant
one. If only a single ground-truth illumination is required and
the possible errors that it leads to are acceptable, then one of
the following methods can be used to obtain it:
• sample images with relatively similar left and right
ground-truth illuminations (the sugested answers for
such images are denoted in properties.csv);

• select from the left and right sides the brighter one;
then select the white triangle for a dark image, and grey
triangle for a bright image.

Note that the difference between the sensitivities of the
white faces is greater then the difference between the sen-
sitivities of the gray ones (see Section IV-A). Additionally,
since the white faces are more often overexposed than the
gray ones, using the gray faces should be preferred. On the
contrary, using white faces may be better on dark images as
mentioned in Section IV-C.
We also estimated if the ground truth values are distorted

by the pixels with the clipped values. The images with over-
exposed grey triangles were removed from the dataset. The
images with the clipped values on white triangles are present
in the dataset, but the overexposed triangles are marked in
properties.csv.

3) RELEVANT META-INFORMATION
The properties.csv file contains the most relevant
meta-information about the Cube++ images. It includes

the average triangle brightness R+B+G
3 , manual annotation

data, information about overexposed triangles, and a carefully
selected subset of EXIF data fields.

The EXIF data was extracted from CR2 files using the
PyExifTool library.8 All the extracted values can be found
in the corresponding JSON files. The properties table con-
tains only a few selected ones. The EXIF data format slightly
differs between the Canon EOS 550D and 600D cameras:
there are 312 common fields, 2 in 550D only, and 21 in 600D
only. All the selected EXIF fields are common.

The cam_estimation.csv file contains the EXIF
fields of the camera that contains the camera’s light source
estimation

B. IMAGE PREPARATION
Finally, it is important to clearly specify how to properly
prepare the provided Cube++ images before handing them
over to illumination estimation methods that are to be tested.

There are three main steps that have to be taken.

1) BLACK LEVEL SUBSTRACTION
The first step is to subtract the approximate black level of
2048 from all image pixel color components. In some cases
this can result in negative values, but such values should then
be set to 0.

2) SATURATION DETECTION
The second step is to calculate the maximum value m for
all pixels across all color channels. After that all pixels that
have a value greater than or equal to m − 50 in any of
their channels should have all their channel values set to 0
This would remove most of the incorrect pixels with clipped
values. Nevertheless, it would leave some rare overexposed
pixels, because demosaicing procedure may mix them with
the normal ones. To get precise information about saturated
pixels it is recommended to analyse images before demosaic-
ing (the last one can be extracted from CR2 files).

3) COLOR TARGET MASKING
The last step is to mask out the lower right rectangle of the
image that contains the color target to remove any potential
bias and thus to have a relatively fair testing. The size of
this rectangle is 700 × 1000 for all images. The rectangle is
masked out by setting all channel values of all its pixels to 0,
i.e. by making it black.

C. INTENDED DATASET USAGE
With all its features, especially the two ground-truth illumina-
tion records, Cube++ is appropriate for several illumination
estimation use cases. All datasets mentioned in Section II,
except for maybe TCC dataset, are designed for the most
widely used classical illumination estimation problem: esti-
mation of the single light source in the scene. Therefore, each
image is provided with only single light source ground-truth,

8https://pypi.org/project/PyExifTool/
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even in cases when the scene is obviously under the influ-
ence of multiple illuminations. In contrast to these datasets,
Cube++ allows to work on following problem statements:
1) Estimate one and only dominant lighting in a scene;
2) Estimate two dominant light sources in a scene;
3) Estimate at least one dominant light source in the scene.
For each of the listed problem statements we propose the

following rules to filter the Cube++ images that are suit-
able for it. To form the dataset subset for the first problem,
one needs to select all images where the angular differ-
ences between its two extracted ground-truth illuminations
is below 1◦ (except partially light source estimation part, see
section IV-B). For the two light source estimation problem,
one needs to do the opposite, i.e. to select all images that are
not selected for the first problem (except partially light source
estimation part). Finally, to work on the third problem, all
images can be chosen.

FIGURE 12. Example of chromatic adaptation based on illumination
extracted from a) left and b) right gray face of the SpyderCube calibration
object placed in the scene.

Here it is important to mention that the proposed rules are
arbitrary, that they will result in some of the images being
inappropriately selected, and that they may be improved. One
example where these rules fail is shown in Fig. 12. There the
extracted ground-truth illuminations differ significantly, but
practically the whole scene is mostly under the illumination
captured by the right cube face. This means that even though
the scene is effectively under uniform illumination, the men-
tioned rules will result in the opposite conclusion based on
the difference between the extracted illuminations on the two
cube faces.

Also it is important to mention what at the moment par-
tially light source estimation part of the dataset is not provided
with subjective single illumination estimation choice. The
plan is to solve this in future work.

D. SimpleCube++ DATASET
In addition to the main 200GBCube++ dataset, a 2GB-small
and simpler version of it is prepared. The small dataset
contains 4x downscaled images that have less than 1◦ dif-
ference between ground-truth illuminations of SpyderCube’s
left and right grey faces. It includes only images with a sin-
gle illumination source, and consequently, the ground-truth
file contains only one ground-truth per image. This ground-
truth was extracted in the following manner: firstly, average
values for both gray faces were calculated as in the main

Cube++ dataset; secondly, they were normalized by using
l1-norm (r + g+ b = 1 for both gray faces); finally, obtained
ground-truth values were averaged and normalized again by
using l1-norm. This dataset has two main advantages: small
weight (around 2GB) and a single answer per image.

SimpleCube++ contains PNG and JPG files, gt.csv
with ground-truth data, and properties.csv with man-
ual annotation data. In addition, this dataset was divided into
train and test parts. Each image was independently assigned
to the test set with a probability of 20%.

VI. DISCUSSION
Having another high-quality illumination estimation dataset
such as the one proposed in this paper is certainly beneficial
to the interested research community as well as the industrial
sector and there should probably be no discussion about that.
However, proposing a new dataset is still only an incremental
move in terms of the overall paradigm of illumination estima-
tion research since this has been done on numerous occasions
while the dataset usage has remained relatively unchanged.

A much more constructive and necessary discussion that is
rarely taken forward should be about the direction of how to
better use or not use the datasets to achieve better progress in
illumination estimation research. In terms of that, one of the
burning issues is that the results in most illumination estima-
tion papers are unverifiable and thus questionable. Therefore,
for the sake of improving the state of the illumination estima-
tion research, it would be quite useful to further discuss this
problem as well as the potential solutions to it in more detail.

A. QUESTIONABLE RESEARCH PROGRESS
Obtaining low illumination estimation errors on a benchmark
dataset is a regularly used approach when trying to demon-
strate the superiority of a proposed illumination estimation
method. For all well-known datasets the ground-truth illumi-
nation used during the test phase is publicly available and the
actual error statistics calculation is usually performed by the
authors themselves and published in their papers. However,
this introduces several problems with the most serious being
data dredging, i.e. p-hacking and erroneous reporting.

The problem with data dredging in illumination estimation
is that in cases when a model selection is required, the final
results that are reported were not always obtained through
nested cross-validation [78]. Instead, the reported results are
the ones that were used to select the model in the first place.
By using these results, a method’s true performance on new
unknown data may be masked and unfairly shown to be
better than it actually is. This can prevent or slow down the
progress in illumination estimation research by giving mis-
leading clues about the validity of the method’s underlying
assumptions.

In the area of visual odometry similar problems with
e.g. the KITTI dataset [48] have been prevented by simply

8Not including Cube, Cube+, IEC#1 test part images, removed from the
Cube++ dataset because of GDPR restrictions or possible problems with
ground-truth extraction.
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keeping the ground-truth for the test secret. By having the
evaluation of the results on the test set carried out by the
dataset administrators, any serious attempts of p-hacking
have been prevented.

Another problem that can be prevented if the evaluation is
carried out by a third party is erroneous reporting. For exam-
ple, in [18] the results of the proposed illumination estimation
method on several datasets were allegedly all obtained by
using the same value of a hyperparameter. However, trying to
re-implement themethod fails to produce the same results and
only after checking the associated webpage [79] it becomes
clear that the hyperparameter value has to be changed for each
dataset to fully reproduce the published results.

A somewhat similar example is the 2007 paper by van
de Weijer et al. [23]. In an erratum published in 2008 [80]
it was explained how testing was inadequately performed,
which consequently resulted in reporting of erroneous error
statistics.

Finally, any doubts in the validity of some reported error
statistics could be reduced or fully eliminated if they were
calculated not by the authors themselves, but by a reliable
third party. This would also help the overall research progress.

B. ILLUMINATION ESTIMATION CHALLENGES
Inspired by the ideas mentioned in the previous subsection,
two international illumination estimation challenges have
already taken place [76], [81]. The challenges provided the
participants with thousands of training images and their
respective ground-truth illuminations, while for the test set
only the images were provided and the ground-truth remained
secret until the end of the challenge. Because of that the
error statistics for the illumination estimations sent over by
the authors were calculated by the challenge organizers,
which prevented a lot of problems described in the previ-
ous section. The results were thus more trustworthy and
they have shown e.g. high errors for some methods that
were previously reported to be highly accurate. Additionally,
the challenges helped to recognize additional problems such
as training a method to obtain excellent values for a given
error metric [82], which results in issues related to the so
called Goodhart’s law [83].

C. BENCHMARK
While the described international illumination estimation
challenges have shown the advantages of having a reliable
third-party calculate the error statistics, they were fixed in
time and they cannot be repeated on the same images any-
more. Therefore, the next stepwould be to create a benchmark
dataset similar to the KITTI dataset with an online user inter-
face for submitting the results at any given time. This would
surely represent a significant contribution to the illumination
estimation research since it would simultaneously provide the
researchers with trustworthy results and also eliminate many
of the serious problems that were described earlier in this
paper.

For the above reasons, creating such a benchmark is
already underway at the time of writing this paper. At present
time we are working on the question of benchmark creation.
Possible benchmark will be based on the images that were
taken during the same time as the rest of the Cube++ images,
but that were excluded from its final version. Because of that,
in this paper there are purposely no error statistics obtained
on the Cube++ dataset by any of the illumination estimation
methods. The error statistics will be published online and
they will be based on the first version of the benchmark test
set. This aims to avoid providing any results obtained on
the Cube++ images with known ground-truth illumination.
Namely, the idea is to separate the testing and the associated
problems from the dataset and to relegate it to the benchmark.
Therefore, the overall goal of this paper is to provide high
quality training data without any testing. The role of testing
data is to be assumed by the future benchmark.

VII. CONCLUSION
A new illumination estimation dataset named Cube++ has
been proposed. Unlike similar existing illumination estima-
tion datasets, it provides rich, reliable, and verifiable data on
scene illumination with specific care being given to precise
calibration. For every one of its 4890 images, there are two
ground-truth illumination records as well as a multitude of
semantic information and it is GDPR-compliant. Further-
more, a wide variety of scene content is covered, and numer-
ous illuminations are captured. Cube++ contains images
taken with several instances of the same model of the camera
sensor. In addition to that, a centralized versioning control
system for Cube++ has been established to simplify and
document possible future changes in the dataset and error
handling. By having these properties and novelties, Cube++
is technically superior to most similar illumination estimation
datasets. One of the future steps that should also be significant
progress in the overall illumination estimation research is to
create an online illumination estimation benchmark based on
the infrastructure that was used to create the Cube++ dataset.
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