
Received December 11, 2020, accepted December 12, 2020, date of publication December 16, 2020,
date of current version December 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045287

A Zero Placement Algorithm for Synthesis of Flat
Top Beam Pattern With Low Sidelobe Level
SHAOWEI DAI , MINGHUI LI , (Member, IEEE),
QAMMER H. ABBASI , (Senior Member, IEEE),
AND MUHAMMAD ALI IMRAN , (Senior Member, IEEE)
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

Corresponding author: Shaowei Dai (s.dai.2@research.gla.ac.uk)

This work was supported by the Singapore Economic Development Board and Singapore RFNet Technologies Pte. Ltd.

ABSTRACT Flat top beam pattern synthesis is increasingly important for beamformer in high mobility
scenarios due to the rapid change of Direction of Arrival (DOA). A Zero Placement for Flat Top (ZPFT)
beam pattern synthesis algorithm is presented in this article. It works in Z domain directly and breaks
down the total response into two portions. The first portion satisfies the beamwidth requirement with low
Sidelobe Level (SLL) which is realized through algorithms like Dolph-Chebyshev algorithm. The second
portion is then used to create a broadening effect. The location of the broadening zeros are derived using
principles result from the broadening effect analysis of two quadratic functions. Compared to conventional
Finite Impulse Response (FIR) method or iterative methods, the proposed method identifies the zeros of the
array factor directly and computes the weight without iteration. Since it works in the spatial angle domain
directly, the steering of the mainlobe beam could be implemented through a simple angle shift. Numerical
simulation confirms the effectiveness of the algorithm. ZPFT can achieve 22dB lower SLLwhile maintaining
the same main beam performance as compared with FIR method for an Uniform Linear Array (ULA) with
7 elements. It can achieve the same optimal performance as the iteration based global optimisation techniques
like Semi-Definite Relaxation (SDR) with about 380 times less computing time in an Intel Core i7 Windows
platform. ZPFT can steer the main beam easily in real time. All these make it an ideal candidate for high
mobility applications where the DOA changes rapidly.

INDEX TERMS Beamforming, flat top, synthesis, high mobility.

I. INTRODUCTION
Beamforming is widely used in wireless communication as
a spatial filter to enhance signals from a specific Direction
of Arrival (DOA) and suppress noise and interference from
other directions. In high mobility scenarios, wireless com-
munication with beamforming faces unique challenge [1]
where the DOA changes rapidly which makes the beamform-
ing performance degrade or fail if not addressed properly.
It is always desirable to tune the beamwidth of the main-
lobe to cater for the mismatch of DOA due to estimation
error or inaccuracy of element calibration. Various robust
algorithms [2]–[4] have been proposed to cater for the mis-
match of DOA by putting in constraints to broaden the
main beam. The Flat Top shaped beam pattern [5]–[9] is
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thus increasingly attractive due to its flat response to large
DOAmismatch especially in high mobility scenario when the
DOA changes more rapidly.

Beam pattern synthesis is an extensively investigated area
in antenna array beamforming design. Many algorithms have
been proposed in the literature to achieve the optimization
of low Sidelobe Level (SLL) [10], [11], high gain and nar-
row mainlobe. Schelkenoff [12] established the link between
nulls of the beam pattern and the complex roots of the
polynomials that represent the Z transform of the beam-
former weights. By spacing out the zeros in the unit circle
differently, many patterns could be synthesized. Dolph [13]
proposed to use the properties of Chebyshev polynomi-
als [14] of the first kind to achieve equal Sidelobe Level
and the narrowest main beam. Subsequently, Riblet [15]
discovers that Dolph’s method only applies to scenarios
where the antenna elements spaced at least half wavelength.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 225935

https://orcid.org/0000-0002-6556-3483
https://orcid.org/0000-0002-8151-3101
https://orcid.org/0000-0002-7097-9969
https://orcid.org/0000-0003-4743-9136
https://orcid.org/0000-0003-1287-7697


S. Dai et al.: Zero Placement Algorithm for Synthesis of Flat Top Beam Pattern With Low SLL

The original Dolph-Chebyshev array is then extended to
scenarios with less than half wavelength inter-element space
where a different mapping could be applied to use the Cheby-
shev polynomials. A similar pattern for continuous apertures
is proposed by Taylor [16] with a modification that the far out
of the sidelobes can decay faster following a uniform array
pattern while keeping the sidelobes close to themainlobewith
equip-ripple as in Dolph-Chebyshev array. To implement the
same pattern directly for a discrete array, Villeneuve [17]
proposed a method to replace the last few zeros of the
array response with the zeros of a uniform array. Different
window methods like Gaussian [18] and the derivative of
Chebyshev [19] have been reported to get a decaying side-
lobe shape with narrower main lobe for improved efficiency.
In [20], a modified Chebyshev array is proposed to make the
SLL, beamwidth to be adjustable independently. But since
the modified function is non-linear and can’t be expressed as
polynomials, an iterative method has to be used to derive the
converged weight.

Although these methods synthesize beam patterns with
low SLL, narrow or adjustable main beam, the shaped beam
pattern is not part of their optimization goal. To get flat-top
beam pattern, Finite Impulse Response (FIR) based algo-
rithms and various numerical optimization algorithms over an
objective or cost function could be used. Window method [5]
based on FIR algorithm is popular due to its robustness and
easy for implementation. But due to its extra constraints
of the same level of ripples in pass band and stop band,
it is not optimum for the filter order [21]. Iterative methods
based on numerical optimization algorithms like minimum
mean squared optimization [22], or stochastic based Genetic
Evolution algorithm [23], Particle Swarm Optimization
algorithm [6], [24] and various convex optimization based
algorithms [25] normally are used for getting shaped main
beam. However iterative methods might not be suitable for
high mobility scenarios where real-time calculation usually
is needed.

In this article, the Zero Placement method based on Schel-
lkenoff polynomial is used to synthesize Flat Top beam pat-
tern directly. Although a similar concept of zero replacement
is used in [17], their adjustment is still restricted on the unit
circle. So its effect in the main beam is limited to the null-
to-null beamwidth and gain. And the main beam shape can
not be controlled. In this article, by relaxing this restriction,
the zeros can be placed off the unit circle instead of replacing
part of the Dolph-Chebyshev zeros with uniform array zeros
located on the unit circle. This step makes the main beam
shape controlling possible. The proposed ZPFT algorithm
breaks the array factor into two parts. For an N elements
antenna array which has N − 1 zeros of freedom for beam
pattern control, two of the zeros are reserved for synthesizing
the flat-top shaped main beam. The rest N − 3 zeros can be
used for any other existing low SLL window methods. Due
to the unique feature that forms narrowest mainlobe with a
given Sidelobe Level (SLL) or lowerest SLL with a given
null to null beamwidth of mainlobe, Dolph-Chebyshev array

is chosen for the N − 3 zeros allocation. But other window
functions could also be used. The key innovation for this arti-
cle is two folds. Firstly, the off unit circle zeros are explored
directly to mix with unit circle zeros from Dolph-Chebyshev
to control the main beam shape. Secondly, the quadratic func-
tion approximation is used to investigate the flat-top effect
of the proposed zero location and an algorithm is developed
to identify the location of zeros for flat-top control. So that
it achieves lower SLL compared with FIR method with the
same flat-top pattern directly with simple zero placement in
the spatial angle domain. This also makes the steering of the
main beam straightforward. Further more, when comparing
to iteration based global optimization methods, it achieves
the same optimum beam pattern and takes 380 times less
computing time in an Intel Core i7 Windows platform as the
simulation shows for an ULAwith 8 elements. All thesemake
ZPFT an ideal candidate for high mobility applications where
the DOA changes rapidly. To the best of our knowledge, it is
the first time Dolph-Chebyshev zeros are combined with the
off unit circle zeros to realize flat-top main beam shape while
preserving the narrow main beam property. This different
way of zero arrangement makes ZPFT simple yet effective
and gives ZPFT the advantage of synthesizing flat-top shaped
beam patternswhilemaintaining lowSLL in a steering adjust-
ment efficient way compared with existing methods in the
literature.

The article is organized as follows, after the problemmodel
is established in section II, the zero placement algorithm for
synthesizing flat-top beam pattern is described in section III.
Numerical simulation is conducted in section IV which com-
pares the proposed algorithm with the existing algorithms.
In the end section V concludes the article.

II. PROBLEM FORMULATION
For clarity of the discussion, a system model for Uniform
Linear Array (ULA) with N antenna elements is illustrated
in Fig. 1.

FIGURE 1. Beamformer model of received signal.
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The received signal xi(t) on the ith element from a
signal sθ (t) incident from an angle θ could be expressed as

xi(t) = sθ (t)e−j
2πdsin(θ)

λ
(i−1)

= sθ (t)e−j2π (i−1)ξ (1)

where λ indicates the wavelength, and ξ = 2π dsin(θ )
λ

is the
spatial frequency.

The beamformer output y(t) in this narrow band model
could then be expressed as [26, p. 4]

y(t) =
N∑
i=1

wixi(t)

= sθ (t)
N∑
i=1

wie−j(i−1)ξ (2)

So the spatial frequency response could be defined as

H (ξ ) =
N∑
i=1

wie−j(i−1)ξ (3)

It could also be written in the Z transform format [27, p. 109]
as

H (z) =
N∑
i=1

wiz−(i−1) (4)

According to Schelkunoff [12], every ULA could be repre-
sented as a polynomial and vice versa. According to funda-
mentals of polynomial, the Array Factor (AF) defined by (4)
could be factored by its (N-1) roots as

‖H (z)‖ =

∥∥∥∥∥
N−1∏
i=1

(z− zi)

∥∥∥∥∥ (5)

where each zi gives a null response for the angle that defined
by ejξi = zi and z = ejξ is evaluated along the unit circle.
As indicated in (5), the Array Factor for a N elements array
could be uniquely characterized by its N − 1 zeros.
So the objective of this article is to synthesize a flat-top

beam pattern with low SLL by identifying the proper location
of zeros.

III. PROPOSED SOLUTION
For ULA, the number of zeros uniquely defines the Z trans-
form of the weight vector thus also defines the array factor.
Inspired by the concept of [1], the polynomial of Z (4) could
break into two parts.

H (z) = C(z)B(z) (6)

where C(z) corresponds to the sub-polynomial that generates
beam pattern without flattening constraints, and B(z) repre-
sents the portion that compensates and flattens the main lobe.
N − 3 zeros are allocated for C(z) as

C(z) =
N−1∏
i=3

(z− zi) (7)

which represents the sub-array that controls the main beam
width and SLL. Two zeros are allocated for B(z) as

B(z) = (z− z1)(z− z2) (8)

which represents the broadening sub-array that creates the
flat-top and decaying far-out sidelobes.

A. NARROW MAINLOBE BEAM WIDTH WITH LOW
SLL CONTROLLED BY C(z)
In this article, the sub-array represented by C(z) is imple-
mented through the Dolph-Chebyshev algorithm due to its
simplification. For clarity, the inter element space is assumed
to be half wavelength. Since two zeros represented by B(z)
are reserved for the flat-top control, the actual elements for
implementing the Dolph-Chebyshev array will be N − 2
elements.
InDolph-Chebyshev array, there is only one scaling param-

eter R0 that controls both the main beam width and SLL
which maps the spatial frequency ξ range to the abscissa
of the Chebyshev polynomial range [15]. The Chebyshev
polynomial used for C(z) could be defined as

TN−3(x) =

{
cos((N − 3) · arccos(x)), for |x| ≤ 1
cosh((N − 3) · acosh(x)), for |x| > 1

(9)

where x = R0 cos(
ξ
2 ) is the scaled input for the Chebyshev

polynomial. The scaling factor R0 could be derived from the
null to null beam width as:

R0 = cos(
π

2(N − 3)
) · 1/ cos(π

d
λ
· sin(bw/2)) (10)

where bw is the required null to null beam width.
By setting TN−3(x) = 0 for |x| ≤ 1, all the N − 3 zeros

could be found as [28, p. 1147]

ξi = 2 · arccos(
xi
R0

) (11)

where xi = cos (i−1/2)π
N−3 , i = 1, 2, . . . ,N − 3.

B. ZERO PLACEMENT FOR FLAT TOP CONSTRAINTS
SUB-ARRAY B(z)
To find the zero locations ofB(z) to flatten the beam pattern of
the main lobe, it would be necessary to understand the pattern
around the main lobe and the impact of the location of zero
(r0, 0) on the pattern.
As illustrated in Fig. 2, each angle ξ = 2πd

λ
sin(θ ) cor-

responds to a DOA θ . The main lobe is assumed at point c
which corresponds to 0 degree measured from the broadside.
It is clear from Fig. 2 that |z− r0| reaches the minimum when
z is at c which corresponds to the main lobe.

The distance dr0 between z and r0 could be described
as (12).

dr0 (ξ ) = |z− r0|

=

√
1− 2 cos(ξ )r0 + r20 (12)
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FIGURE 2. Norm |z − r0| for a zero placed at (r0,0) .

To further investigate the curve effect of r0, dr0 (ξ ) could be
expanded using the second order Taylor series around point c
which corresponds to the main lobe at ξ = 0 as

dr0 (ξ ) ≈ ˆdr0 = dr0 (0)+ d
′
r0 (0)ξ +

1
2
d ′′r0 (0)ξ

2 (13)

where d ′r0 ,d
′′
r0 indicates the first and second derivative of dr0

respectively. After taking derivative of (12 ), it is easy to find
out that:

d ′r0 (0) =
r0 sin(ξ )√

1− 2 cos(ξ )r0 + r20

∣∣∣∣∣∣
ξ=0

= 0 (14)

d ′′r0 (0) = d ′′r0 (ξ )
∣∣
ξ=0
=

r0
1− r0

(15)

So the second order Taylor series could be expressed:

d̂r0 (ξ ) =
r0

2(1− r0)
ξ2 + 1− r0 (16)

For using this as a broadening function, the shaping parameter
is derived as

kb =
dr0
1
2d
′′
r0

=
2(1− r0)2

r0
(17)

Fig. 3 shows the effect of zero location on the ampli-
tude response. It is clear that when r0 moves to the origin,
it gives an all-pass response that will not change the amplitude
response. On the other hand, when r0 moves towards the unit
circle, it creates a dip at the main lobe.

By examining the effect of zeros in Fig. 3, the dip effect at
angle 0 could be used for creating the flat-top pattern in the
mainlobe. So the z1 could be just located in the real axis and
off the unit circle at (r0, 0). Fig. 3 shows that the broadening
zero at z0 has a side effect of raising the far-out sidelobe level
as also indicated in [29]. An extra zero (-1,0) could then put in

FIGURE 3. Zero location effect on amplitude response.

to compensate for the effect. So the two zeros for B(z) could
be designed as:

B(z) = (z− r0)(z+ 1) (18)

With (6),(9),(18), the transfer function could be derived as:

H (z) = TN−3(R0 cos(π
d
λ
sin(θ )))(z− r0)(z+ 1) (19)

where θ is the azimuth angle. The power distribution of the
beam pattern could then be evaluated along the unit circle as:

P(θ )=|TN−3(R0 cos(
πd
λ

sin(θ ))(z−r0)(z+ 1)|2
z=ej

2πd
λ

sin(θ)

(20)

C. PRINCIPLE CONDITION FOR FLATTENING A SECOND
ORDER POLYNOMIAL WITH A BROADENING
POLYNOMIAL
The flat-top effect of the zero z0 is investigated through
an approximation with a second order polynomials in this
section. For a second order even polynomial that have a
curvature peak at x = 0,

f (x) = −a1x2 + b1 (21)

where a1 > 0 and b1 can be any real value, a broadening
polynomial

b(x) = a2x2 + b2 (22)

where a2 > 0 could be applied to obtain a flat-top function

p(x) = f (x)b(x) (23)

where p(x) represents a resultant function that has a flat-
top. To get the condition for broadening function b(x) to be
effective, the derivative of (23) could be investigated

p′(x) =
d
dx

(−a1x2 + b1)(a2x2 + b2)

= x(−4a1a2x2 + 2(−a1b2 + a2b1)) (24)

where
d
dx

indicates the derivative operator.
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By forcing (24) to 0, the peak of p(x) could be located as

x0 = 0 (25)

x21,2 =
1
2
(
b1
a1
−
b2
a2

) (26)

where x0 represents the original peak location, x1,2 is the
two possible peak locations introduced by the broadening
polynomial.

By defining shape parameters as

kf =
b1
a1

(27)

kb =
b2
a2

(28)

and controlling factor as

k =
kb
kf

(29)

where kf , kb is the shape parameter for original function and
broadening function respectively, and k is the controlling
factor for regulating the broadening effect, (26) could be
simplified as:

x21,2 =
1− k
2

kf (30)

In the practical beamforming context, kf > 0 is always
satisfied.With this assumption, the principle condition for the
broadening polynomial could be summarized as:

p(x) =


no flat top, for k > 1
flat top, for k = 1
flat top with variation, for k < 1

(31)

This concept is illustrated with an example polynomial
f1(x) = 2x2 + 20 in Fig. 4. It shows that with k = 1,
the production patched function p(x) has a flat-top without
variation. When k = 0.2, 0.5, 0.7, the top is broadened but
also exhibit a dip in the original top. The smaller the k value,
the deeper the dip and the wider the broadening effect. As a
contrast, it barely shows the broadening effect when k = 3.
It could be explained from (26), when k > 1, there is no real
roots for (24) except at x = 0 which means there is only one
extreme point: the original top point.

Since the peak occurs at the extreme point x1, x2 and the dip
occurs at x0, the variation within the broadened range could
be easily calculated as:

δ =
p(x1)
p(x0)

=
(1+ k)2

4k
(32)

where the δ represents the variation within the broadened
band and k is the controlling factor as defined in (26).

So for a given δ, the controlling factor k could be derived
as

k = 2(δ −
√
δ2 − δ)− 1 (33)

by finding the roots of (32).

FIGURE 4. Concept to flatten a second order even polynomial function.

D. MAIN LOBE PATTERN APPROXIMATION BY TAYLOR
SERIES EXPANSION
In the main lobe region, the beam pattern could be Taylor
expanded to get a second order polynomial approximation as

f (ξ ) = cosh(Nx)

≈ ˆf (ξ ) = f (0)+ f ′(0)ξ +
1
2
f ′′(0)ξ2 (34)

where x = acos(R0cos(ξ )) represents the normalized angle,
and f ′(·), f ′′(·) indicates the first and second derivative oper-
ator of f (x) respectively. With simple manipulation, the the
derivatives could be derived as:

f ′(0) = N · sinh(Nx)
(−R0 sin(ξ ))√
R20 cos(ξ )

2 − 1

∣∣∣∣∣∣
ξ=0

= 0 (35)

f ′′(0) = f ′′(ξ )
∣∣
ξ=0 = N · sinh(Nx)

−R0√
R20 − 1

(36)

Treat this expansion as the original function to be broad-
ened, the shape parameter could be derived as

kf =
f (0)

−
1
2 f
′′(0)

=

2
√
R20 − 1

R0N · tanh(Nx)

≈

2
√
R20 − 1

R0N
(37)

where the approximation is made due to tanh(Nx)|ξ=0 ≈ 1.
The location of r0 for the broadening could then be derived
according to (29) as

(1− r0)2

r0
=

k
√
R20 − 1

N · R0
(38)

Solving (38), r0 could be derived as:

r0 = 1+
1
4
(kkf ±

√
(kkf )2 + 8kkf ) (39)
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where k is the controlling factor as defined in (29) and kf is
the original function to be broadened as defined in (37). One
interesting finding from (39) is that there are two r0 satisfy
the requirement. They are conjugated to each other in the
complex angle sense [30]. For beamforming implementation
purpose, the r0 < 1 will be taken.

E. ALGORITHMS FOR THE SYNTHESIS OF FLAT TOP
BEAM PATTERN
With the preparation of the previous sub-section, the algo-
rithm for the synthesis of flat-top beam pattern could then
be described as a 3 steps process. Firstly, based on the input
requirement of number of antenna elements N and SLL value
or Beamwidth, the N −3 zeros of the N −2 elements Cheby-
shev array are calculated. Secondly, based on the requirement
of the allowed variation, the last two zeros location are calcu-
lated. In the end, the completeN weights are derived from the
whole N −1 zeros. The details of the algorithm are described
below.

Algorithm 1 Synthesis of Zero Placement Controlled Flat
Top Beam Pattern
Require: Input(N , sll, bw, d, λ,δ)

N : Number of Antenna Elements
sll: Sidelobe Level
bw: Null to Null Mainlobe Beamwidth
d : Antenna Element Space
λ: Wave Length of Incident Signal
δ: Allowed Variation in the mainlobe beam

1: //Derive R0 for (N − 2) elements based on sll or bw
2: if sll! = null then
3: L = 10sll/20

4: R0 = cosh( acosh(L)(N−3) );
5: else
6: R0 = cos( π

2(N−3) ) · 1/cos(π
d
λ
· sin( bw2 ))

7: end if
8: //Find all zeros for Chebyshev sub-polynomial
9: for i in 1 to (N − 3) do

10: zi+2 ⇐ e
j·2·acos( 1

R0
cos( (2i−1)π2(N−3) ))

11: end for
12: //Find a proper controlling factor k based on allowed

variation δ
13: k = 2(δ −

√
δ2 − δ)− 1

14: //Derive shape parameter kf for the second order Taylor
expansion of Chebyshev Response

15: kf =
2
√
R02−1

R0(N−3)
16: //Derive r0 for the broadening zero location

17: r0 = (1+ 1
4 (kkf ±

√
(kkf )2 + 8kkf )) · α

18: z1 ⇐ r0
19: z2 ⇐ −1
20: C(z)⇐

∏N−1
i=1 (1− ziz−1)

21: for i in 0 to N-1 do
22: w(i+ 1)⇐ coefficient of z−i

23: end for

For a N element Uniform Linear Array (ULA), there are
total N − 1 zeros for distribution. In steps 1 to 11, N − 3
zero are used to build the Chebyshev array using the SLL
or Beamwidth constraints. The left two zeros are used for
the broadening effect. In steps 12-13, the controlling factor
is decided, there is some flexibility for the value of k and it
depends on how much variation is allowed inside the main
beam. In steps 14-15, the second order Taylor expansion is
used to approximate the Chebyshev response, so that the
broadening theory developed using the second order poly-
nomial could be used to calculate the shape parameter kf .
Then in steps 17-18, the location of the broadening zero r0 is
derived. During implementation, an optional adjustable factor
α could be applied to r0 to compensate for the approximation
error. In practice, α = 0.9 gives a good matching result.
In step 19, an extra zero is placed at (-1,0) to balance the effect
of r0 for remaining low SLL.

IV. NUMERICAL SIMULATION AND ANALYSIS
To verify the performance of the proposed ZPFT algorithm,
two simulations are set up for the comparisonwith two type of
popular algorithms, windowmethod and numerical optimiza-
tion method. The third simulation is to show the ripple effect
of the k factor and the easy steering of the flat-top main beam.
The window method based on FIR algorithm is popular due
to its simplicity although not optimum [21] as it just applies a
window function to an ideal filter response to smooth out the
transition band. Recently, the convex optimization for beam
pattern synthesis becomes more and more popular with the
readily available optimization packages like CVX [31].When
shaped beam pattern synthesis is formulated as an optimiza-
tion problem, the constraints on the amplitude in the pass
band is often non-convex. One of the most promising way to
apply convex optimization is to use the Semi-definite Relax-
ation (SDR) algorithm which drops the rank one requirement
of the correlation matrix to make it a convex optimization
program [32]–[34].

A. LOWER SLL OR NARROWER NULL TO NULL
BEAMWIDTH COMPARED WITH WINDOW METHOD
In the first simulation, ZPFT is compared with window
method based on FIR and Dolph-Chebyshev to demonstrate
that ZPFT is able to deliver the same main beam as the
window methods but with much lower SLL or narrower null
to null beamwidth. A 7 elements ULAwith flat-top beam pat-
tern with -52dB SLL as designed in [5] is used for comparison
for FIR based algorithm. The design parameter is listed below
in Table (1).

Fig. 5 shows the performance of the synthesized beam pat-
tern following the requirements in Table (1). ZPFT algorithm
can be controlled by beamwidth or SLL. Both methods are
used in this simulation for comparison. It shows clearly that
while FIR algorithm used in [5] does make a flat-top beam
pattern, the synthesized SLL is around -52.7dB. In contrast,
the proposed ZPFT algorithm by beamwidth gives a much
lower SLL of around -75dB with the same broadened flat-top
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TABLE 1. Design Parameter for Simulation of Comparison With Window
Method Based on FIR.

FIGURE 5. Synthesized beam pattern comparison between FIR, ZPFT and
Dolph-ChebyShev.

main beam width of 25◦, the same null to null beamwidth
of 60◦ and a negligible ripple of 0.25dB as shown from the
zoomed view of the flat top pattern in Fig. 5. When SLL is a
design parameter, the proposed ZPFT algorithm by SLL gives
the much narrower null to null beamwidth of 102◦ with the
same SLL level of around -52dB and the same flat-top main
beamwidth of 25◦. As for the Dolph-Chebyshev algorithm,
although it achieves the lowest SLL of around−110dB, it has
no control of the beam pattern of the main beam.

Table (2) shows the synthesized array using the 3 algo-
rithms where ZPFT is simulated twice with two different
controlling parameter. The null to null beamwidth controlled
ZPFT is labled as ZPFT-bw while SLL controlled ZPFT is
labled as ZPFT-sll.

TABLE 2. Synthesized ULA for Dolph-Chebyshev, FIR and ZPFT.

For the listed three algorithms, the parameter of the beam
width and SLL are interlinked and can’t be controlled inde-
pendently. In the above simulation, the same width of the
flat main beam pattern is achieved for both FIR and ZPFT.
But as demonstrated, when null to null beamwidth is speci-
fied, ZPFT-bw gives much better attenuation in the sidelobe

which is around 22dB lower than the FIR algorithm. When
the SLL is specified, ZPFT gives a much narrower null to
null beamwidth which is around 18◦ narrower. Although the
Dolph-Chebyshev synthesized pattern has the lowest SLL,
it is not suitable for the intended usage where flat top beam
pattern is needed for robust beamforming to cater for DOA
mismatch.

B. FASTER CALCULATION SPEED COMPARED WITH
NUMERICAL OPTIMIZATION METHOD
The second simulation is set up to demonstrate that com-
pared with the iteration based global optimisation methods
like SDR, the proposed ZPFT can deliver the same optimal
beam performance but with much lower computation com-
plexity. The design parameter is listed in Table (3).

TABLE 3. Design Parameter for Simulation of Comparison With SDR.

Fig. 6 shows the synthesized beam. The optimization
objective is set to minimize the stop band response and the
pass band ripple is set to less than 2dB. ZPFT achieves the
same pass band performance. Only at the first sidelobe as
shown in the zoomed view in Fig. 6, ZPFT shows around 2dB
lesser attenuation. But at the far end, it achieves much better
attenuation.

FIGURE 6. Synthesized beam pattern comparison between SDR and ZPFT.

Table (4) shows the synthesized array with the two algo-
rithm SDR and ZPFT.

With this comparable performance, ZPFT takes only
0.003 seconds. Compared with 1.15 seconds of the SDR
method, ZPFT runs 383 times faster than SDR in an Intel
Core i7Windows laptop where CVX [31] 2.2 software is used
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TABLE 4. Synthesized ULA for SDR and ZPFT.

for the SDR implementation. This makes it suitable for real
time applications as required in high speed rail scenario.

C. IMPACT OF k FACTOR AND STEERING OF MAIN BEAM
BY ANGLE SHIFT
The third simulation is set up to illustrate the effects of shape
factor k on the flattened pattern. To verify the impact of
the controlling factor, a simulation for 8 elements antenna
with different controlling factor k is conducted. The design
parameter is listed below in Table (5)

TABLE 5. Design Parameter for Impact of Shape Factor k Simulation.

Fig. 7 shows the effect of k on the beam shape. It is clear
that the higher the value of k , the narrower the beam width.
The broadening of the beam width comes with a price of
increased SLL. When k decrease from 10 to 0.5, the SLL
increased from −58dB to −50dB. From the zoomed view of
the main beam in Fig. 7, it is clear that when k is decreasing
from 10 to 0.5, the ripple in the main beam increases from
0 to 3dB.

FIGURE 7. Beam pattern effect of controlling factor k .

Since the ZPFT algorithm is directly working in the spatial
angular domain, the steering of the main beam becomes
straight forward. It could be implemented by just shifting the
angle of the derived zeros. To illustrate the shifting capability,
the design parameter is listed below in Table (6)

TABLE 6. Design Parameter for Main Beam Shifting Simulation.

Fig. 8 shows the steering of the DOA of the synthesized
20 elements ULA with the above parameter.

FIGURE 8. Main beam steering control for ZPFT algorithm.

In practical scenario, a value of 1-3would be recommended
for k to get a flat top beam pattern with pass band ripple less
than 1dB. In this article, k = 1 is set for the first simulation,
while k = 2 is set for the rest of simulations.

V. CONCLUSION
By breaking the array factor into two separate parts, a flat-top
and narrow main beam with low SLL could be synthesized
directly in the Z domain. The beam width requirement with
low SLL is realized through the use of Dolph-Chebyshev
array or other suitable window methods. The flat-top con-
straint is realized through two reserved zeros in the real axis
where one of the zero is derived from the analysis of the
broadening effect of two quadratic functions and the other
zero is placed for keeping the SLL low. The simulation results
confirm that ZPFT can achieve 22dB lower SLL while main-
taining the same main beam performance as compared with
FIR method for a 7 elements ULA. It can achieve the same
optimal performance as demonstrated by the iteration based
global optimisation techniques, with about 380 times less
computing time in an Intel Core i7 platform. ZPFT can steer
the main beam easily in real time by just doing an angle shift
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in the unit circle which makes it suitable for high mobility
application where the DOA is changing fast.
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