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ABSTRACT In this paper, the computational strength in terms of soft computing neural networks backprop-
agated with the efficacy of Levenberg-Marquard training (NN-BLMT) is presented to study the squeezing
flow with the heat transfer model (SF-HTM). The governing system of PDEs is reduced to an equivalent
system of nonlinear ODEs using similarity transformations. NN-BLMT dataset for all problem scenarios
progresses through the standard Adam numerical method by the influence of Prandtl number, Eckert number,
and thermal slip. The processing of NN-BLMT training, testing, and validation, is employed for various
scenarios and cases to find and compare approximation solutions with reference results. For the fluidic
system SF-HTM, convergence analysis based on mean square errors, histogram presentations, and statistical
regression plots is considered for the proposed computing infrastructure’s performance in terms of NN-
BLMT. Matching of the results for the fluid flow system SF-HTM based on proposed and reference results
in terms of convergence up-to 10−07 to 10−03 proves the worth of proposed NN-BLMT.

INDEX TERMS Squeezing flow, heat transfer, soft computing infrastructure, neural networks
backpropagated, Levenberg-Marquard training.

I. INTRODUCTION
The squeezing flow is generated due to two approaching par-
allel surfaces in relativemotion. In recent years, the squeezing
flow of Newtonian and non-Newtonian fluids has attained
considerable importance due to its widespread engineering
discipline applications. Lubricated squeezing flow is one
of the applications in polymer processing; i.e., it was also
interested in the behavior of materials under the compression
and extension. The flow fields are derived from the radially
symmetric stream function solution. Their flow regimes are
identified as super-lubricated, apparent slip, and lubrication
failure. Then we can that the result of the experiment depends
on the viscosity ratio, relative thicknesses of the films, and the
applied stress, respectively.
Domairry and Aziz [1] studied squeeze flow between infi-
nite parallel disks with the effect of suction or injection by
performed He’s homotopy perturbation method (HPM). Sid-
dique et al. [2] investigated the squeezing flow in the presence
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of magnetic effects and using the homotopy perturbation
method (HPM) to obtained velocity functions. Qayyum et al.
[3] be examined the unsteady flow of a Jeffrey fluid between
parallel disks and dissect the effects of velocity, porosity,
and squeezing on the flow. Stefan [4] presented a study for
squeezing flow based on lubrication approach and published
his article in 1874
The effect of heat transfer for a nanofluid flow squeezed
between parallel plates is one of the most important
studies topics due to its engineering applications and
scientific. Sheikholeslami et al. [5] investigated the heat
transfer of nanofluid squeezing flow by using the homo-
topy perturbation method (HPM). They also calculated the
effect of nanofluid’s thermal conductivity and viscosity by
the Maxwell-Garnetts (MG) and Brinkman models. Syed
Tauseef et al. [6] Presented a solution of heat transfer
squeezing flow of a non-Newtonian fluid by employed the
differential transform method. Hayat et al. [7] extended
the work on a stretching surface by considering the steady
laminar boundary layer flow and heat transfer past a stretch-
ing sheet and taking upper convective Maxwell (UCM) a
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FIGURE 1. Geometry of the problem.

rheological model. Q. K. Ghori et al. [8] solved squeezing
magneto-hydrodynamic (MHD) flow with the effect of heat
transfer via variational iteration method(VIM). Such vide
practical applications and important industrial characteristics
attracted the attention of many researchers [9]–[14].
All these numerical methods are applied to solve the problem
in different scenarios, and each has advantages and disad-
vantages. Although stochastic numerical computing based
on artificial intelligence has been developed to solve stiff
nonlinear problems, these solvers are not yet used to analyze
this squeezing flow model’s governing system. Stochastic
numerical computing solvers are generated basically by
taking advantage of computing-based on artificial neural
networks (ANN)modeling and its optimization of the process
to solve different problems system of ordinary or partial
differential equations.
There are many modern applications of stochastic numerical
computing solvers in various fields such as nonlinear systems
emerging in fluid dynamics [15]–[17], biological mathe-
matics [18], [19], financial system model [20], neuro-fuzzy
model [21], pantograph system [22]–[24] plasma physics
[25], fuel catching fire model [26], magneto-hydrodynamics
[27] electrical conduction solids [28], and atomic physics
[29] are little under significant examples of these solutions.
Such facts inspire the authors to explore and incorporate
the soft computing architectures as an alternative, precise,
and feasible computational approaches for solving the fluid
mechanics’ systems associated with the squeezing flow
system.
The main purpose of this study is to analyze the effect
of physical parameters associated with the squeezing flow
system under the influence of heat transfer by using an intelli-
gent computing technique based on the Levenberg-Marquard
algorithm. Whereas, Levenberg-Marquard (LM) inherits
accuracy and fastness from the Newton method. Moreover,
it also has the steepest descent method convergence capa-
bility [30]. Some structures of our discussion are noted
as follows:
• Levenberg-Marquard (LM) based backpropagated neu-
ral networks are used to offer a lot of diverse applications

FIGURE 2. A Single neural model structure.

TABLE 1. Description of scenarios along with cases for squeezing flow
model.

FIGURE 3. Neural networks architecture.

of Computational Intelligence that analyzes the squeez-
ing flow with the heat transfer system for different
scenarios.

• The governing PDEs for squeezing flow and heat trans-
fer model is reduced to an equivalent system of nonlinear
ODEs by using similarity transformations.

• NN-BLMT dataset for all scenarios of squeezing flow
problem progresses through the standard Adam numer-
ical method.

• The processing of NN-BLMT that is training, testing,
and validation is employed on the squeezing flow model
for various scenarios and cases to find an approximation
of proposed solutions and comparison with reference
results.

• For the fluidic system SF-HTM, convergence analysis
based on mean square errors, histogram presentations,
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FIGURE 4. The overall process flow diagram of proposed NN-BLMT for squeezing flow with heat transfer model.

and statistical regression plots are employed to ensure
the performance of NN-BLMT for the smooth and
detailed analysis related to the dynamics of squeezing
flow under the impact of heat transfer.

Mathematical modeling of the squeezing flow model has
been presented in Section II. The method for the analysis of
SF-HTM has been discussed in section III. The numerical
and graphical results with discussion and comparison for the
fluid flow SF-HTM through proposed technique NN-BLMM
with numerical reference results are given in section IV.

Finally, concluding remarks for the study on the proposed
methodology and flow dynamics in terms of squeezing flow
under the impact of heat transfer are presented in section V.

II. MATHEMATICAL MODEL
An incompressible Couette fluidic system SF-HTM is
considered, and geometrical representation is shown via
(Fig.1). The Couette flow based on parallel plates in influ-
enced by the variation of the distance between the plates
z = ±`(1−αt)

1
2 = ±h(t). Thermal energy is produced along

with the momentum of the fluid flow.
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FIGURE 5. Performance of the NN-BLMT of Case 3 for squeezing flow model.

The governing system for SF-HTM [31] is described as
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along with associated B.Cs

u = β1
∂u
∂z
, w = 0, T = γ1

∂T
∂z
+ T0 at z = 0,

u = −β1
∂u
∂z
, w =

dh(t)
dt

,

T = −γ1
∂T
∂z
+ T1 at z = h(t), (5)

where T denotes the temperature, u andw represent the radial
and axial velocities along r and z axes, respectively.

After some mathematical simplification, we get
g′′′′ − S(ηg′′′ + 3g′′ − 2gg′′′)− m2g′′ = 0. (6)

θ ′′ + PRS(2gθ ′ − ηθ ′)+ PREC(g′′2 + 12δ2g′2) = 0. (7)

With the following boundary conditions
g(0)= 0, g′(0)− βg′′(0)=0, θ(0)− γ θ ′(0)=0,

g(1)=
1
2
, g′(1)+βg′′(1)=0, θ(1)+ γ θ ′(1)=1. (8)

III. SOLUTION METHODOLOGY
The proposed soft computing infrastructure based on
NN-BLMT provided in the single neural representation,
as shown in Fig. (2). This proposed model depends on the
framework of the fitting tool "nftool" which is available in
the neural networks toolbox in Matlab.
The numerical attempt based on NN-BLMT is presented
for squeezing flow with the heat transfer model given in
Eqs. (6-8). The proposed NN-BLMT is performed for three
scenarios by variation of PR, EC , γ with four different cases
for each scenario and fixed values of S = 1.0, m = 1.0,
β = 0.1, δ = 0.1 as shown in Table (1).

A summary of the proposed NN-BLMT workflow is pre-
sented in Fig. (4). The supervised neural network in the
NN-BLMT is used to obtain the output to get a more accu-
rate calculation repeatedly. Choose 0.001 as stepsize, which
means a 1001 data set of points between 0 and 1 created by
using the Adam numerical solver for the solution of ODEs
in Mathematica. Select 80% of points for training while
choosing the validation and testing 10%, 10%, respectively.
The number of neurons is considered 50 for the computa-
tional accuracy. The suggested structure of the NN-BLMT
consists of two layers of neural networks (hidden, output),
as shown in Fig. (3).

IV. INTERPRETATION OF RESULTS
After using NN-BLMT for cases in the squeezing flow with
the heat transfer model based on all three scenarios for the
performance, states, and error histograms given in Figs. (5-7),
respectively. Regression illustrations are given in Fig. (8).
Finally, a comparison of result finding by NN-BLMT with
the reference solution in Fig. (9). Furthermore, convergence
is monitored for each of the training, validation, testing,
performance, gradient, backpropagation measures, and the
time that each of the four cases mentioned in the Table (2).
The convergence for each of the training, validation, testing
is given in Fig. (5) for the variants based on three sce-
narios in the squeezing flow with the heat transfer model.
It is easy to notice that the best performance is achieved
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FIGURE 6. Performance of NN-BLMT in terms of Gradient, Mu, and validation checks of Case 3 for squeezing flow model.

FIGURE 7. Error-Histogram views of NN-BLMT for Case 3 for squeezing flow model.

FIGURE 8. Regression views of NN-BLMT results for Case 3 for squeezing flow model.

at 8,120,24 epochs, while MSE is almost 10−06, 10−10 to
10−14, 10−08 respectively. The gradient and backpropagation

measures are 5.39× 10−07, 9.80× 10−08, 7.79× 10−07 and
10−08, 10−14, 10−10 as shown in Fig. (6) The error dynamics
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FIGURE 9. Comparison of reference solutions with NN-BLMT outcomes for Case 3 for squeezing flow model.

TABLE 2. Total numerical analysis of NN-BLMT for Squeezing flow model.

FIGURE 10. Results comparison of fluid system SF-HTM through NN-BLMM with reference numerical results for
scenario 1.

estimate may be easier by error histograms for each input
point, and the results are presented in Fig. (7). The error is
approaching to reference zero error line, i.e., almost −2.1 ×
10−05, 5.34 × 10−07, and 1.09 × 10−05 for three scenarios
depending on the squeezing flowwith the heat transfermodel.
As shown in Fig. (8), the correlation value R approaches

statically around the unit, and it is the desired value for train-
ing, testing, and validation. A comparison of the NN-BLMT
result with the reference solution is shown in Fig. (9). The
maximum error for the proposed fluidic problem SF-HTM
in terms of testing, training and validation is even less than
2× 10−3, 2× 10−06, and 2× 10−04, respectively.
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FIGURE 11. Results comparison of fluid system SF-HTM through NN-BLMM with reference numerical results for
scenario 2L.

FIGURE 12. Results comparison of fluid system SF-HTM through NN-BLMM with reference numerical results for
scenario 3.

The considered problem SF-HTM is evaluated through the
efficiency of designed NN-BLMT presented in Table (2)
is almost 10−12 to 10−07, 10−13 to 10−07, 10−13 to
10−07 respectively. The significance of these results is
the consistency of the performance measured through
NN-BLMT for solving squeezing flow with the heat transfer
model.
Eventually, the outcomes for SF-HTM through NN-BLMT
are given for the temperature profile θ (η) in terms of dif-
ferent scenarios which are shown in Figs.(10(a) -12(a)),
respectively. The outcomes are compatible with the results
we obtained through the standard Adam numerical method
for all cases of each scenario. While the absolute error
from reference solutions for all scenarios is shown in
Figs. (10(b) -12(b)) respectively. It can be noticed that AE
is around 10−07 to 10−03, 10−07 to 10−03, 10−07 to 10−02 for
scenarios, respectively. All these results show the accuracy,
effectiveness, and smoothness of the proposed NN-BLMT
computing algorithm for solving the variants of squeezing
flow with the heat transfer model.

V. CONCLUSION
The computational strength in terms of supervised learning
method NN-BLMT is exploited to obtain a numerical solu-
tion for SF-HTM after the transformation of PDEs based
on SF-HTM into a system of ODEs by using similarity
variables conversions. The standard Adam numerical method
is used for the present dataset for the squeezing flow prob-
lem. The data containing training, testing, and validation for
NN-BLMT depending on various scenarios are determined
by 80%, 10%, and 10%, respectively. The close agreement
of both proposed and reference results is 10−07 to 10−03.
This means that the proposed model provides highly accurate
results for the fluid flow system under consideration. The
efficacy and performance of the proposed NN-BLMT for
the solution of SF-HTM appears via mean squared error
functions, performance measures, regression metrics, and
histograms.
In the future, new types of platforms based on artificial intel-
ligence will be fully developed to solve the problems of fluid
mechanics [32], [33].
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Nomenclature
µ Dynamic viscosity
w Axial velocities
β Dimensionless velocity
δ Dimensionless number
γ Thermal slip
ρ Fluid density
σ Electrical conductivity
Cp Specific heat at constant pressure
EC Eckert number
K Thermal conductivity
m Hartman number
p The pressure
PR Prandtl number
S Squeeze number
T Temperature of fluid
u Radial velocities
BLMT Backpropagated Levenberg-Marquard training
NN Neural Network
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