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ABSTRACT In traditional transductive learning, all queries are used in learning to rank in order to generate
pseudo-labels when sufficient training data are not available. However, low quality queries may affect
retrieval performance in transductive learning. We thus think that it is important to improve the quality
of queries in transductive learning to train an effective ranking model. By using a small number of reliable
samples and data close to the boundaries of classification, we propose building a query quality estimator by
establishing a relationship between the benefits of good retrieval performance and features of the normalized
query commitment that influence query quality. In our proposed transduction model, all queries available are
filtered by the proposed query quality estimator and only high quality queries that enhance the effectiveness
of retrieval such that they yield performance-related benefits, are used to generate pseudo-labels for learning
to rank. Queries that can degrade performance benefits are discarded while creating the pseudo-labels.
Pseudo-labels aggregated by high quality queries in transductive learning are then leveraged in learning
to rank scenarios without sufficient training data. The results of extensive experiments on the standard
LETOR 4.0 dataset showed that our proposed method can outperform strong baselines and the average
normalized discounted cumulative gain is enhanced up to 7.77% in some case.

INDEX TERMS Transductive learning, query quality, retrieval performance, learning to rank.

I. INTRODUCTION
Several techniques have been proposed in recent decades to
construct ranking models for information retrieval, includ-
ing traditional heuristic methods, probabilistic methods, and
machine learning methods [1], [2]. Of these, learning to rank
is among the most popular weighting schemes [3]. However,
the need for a sufficient amount of training data in learning
to rank renders its use expensive and unfeasible when it is
difficult to gather labels for the data [4].

Transductive learning [5]–[7], a semi-supervised mode of
learning, is often used to iteratively aggregate pseudo-labels
for learning to rank in information retrieval in case a sufficient
amount of training data are not available [8]. In informa-
tion retrieval, it is often assumed that the top-ranking doc-
uments in the initial retrieval results, namely the results of
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content-based retrieval, are highly relevant to the given query
while the bottom-ranking documents are irrelevant [9], [10].
Thus, the top-ranking documents of each query are taken
as positive samples and the bottom-ranking documents as
negative ones in transduction. However, the assumption of
transductive learning is not always reliable. For example, only
13% of the five top-ranking documents in the initial retrieval
results onMQ2008, a subject of LETOR 4.0 [11], were found
to be relevant to the queries. In this case, noise was introduced
to the pseudo-positive examples when transductive learning
was applied, which significantly degraded retrieval perfor-
mance. Therefore, to guarantee the effectiveness of learning
to rank in information retrieval, it is necessary to enhance
the quality of the queries and their associated pseudo-labels
during transductive learning.

Considering that a small amount of labeled samples can
be easily obtained in most application scenarios, we aimed
to improve query quality by selecting pseudo-data on a
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per-query basis.We considered these labeled samples reliable
as they are manually annotated rather than generated by a
semi-supervised algorithm. Moreover, examples with a low
degree of confidence (unconfident examples), located close
to the boundaries of classification, significantly affect the
effectiveness of retrieval [12] and these unconfident examples
are incorporated in our methods. To improve the quality of
pseudo-labels in transduction, we estimate the quality of each
given query by determining whether it can enhance retrieval
performance with a limited number of reliable labels and
data with low confidence close to the classification bound-
aries. High quality queries are extracted by building a query
quality estimator between quality-related features based on
the normalized query commitment (NQC) and performance-
related benefits. The queries used for training are classified
into two groups, a high quality and a low quality group. Only
queries that can improve performance were incorporated into
the transduction to create pseudo-labels for learning to rank
while those belonging to the low quality group are discarded.

The major contributions of this paper are two-fold. First,
we proposed improving the effectiveness of retrieval of
transductive learning by building a query quality estimator
that uses a small number of reliable examples as well as
examples with low confidence located close to the classi-
fication boundaries. In contrast to traditional transductive
learning, only high quality queries were leveraged to aggre-
gate pseudo-examples during the iterative process of trans-
duction. Second, experiments on a standard dataset showed
that the automatically learned features for ranking may not be
sufficient to improve the effectiveness of retrieval in complex
ranking models while the improvement in the quality of
the training data played an important role in enhancing the
effectiveness of information retrieval.

The remainder of this paper is organized as follows:
Section II explains the application of transductive learning
in information retrieval and surveys research on improving
training data for learning to rank. Section III presents the pro-
posed transductive learning approach in detail, and Section IV
introduces the experimental settings and explains the base-
lines employed in the evaluation for comparison with the
proposed method. Section V shows the experimental results
on LETOR 4.0 and Section VI gives discussions. Section VII
offers the conclusions of this work.

II. RELATED WORK
A. TRANSDUCTIVE LEARNING IN INFORMATION
RETRIEVAL
Semi-supervised learning has been applied to many domains,
such as indoor localization, visual ranking, speech recog-
nition, scintillation detection, and web classification [7],
[13]–[17]. For example, to enhance recommendation perfor-
mance, Zhang et al. proposed a graph-based semi-supervised
learning algorithm for indoor localization by utilizing
crowd-sourced data [13]. To reduce the word error rate
in speech recognition, semi-supervised learning was used

to improve model generalization with limited available
data [14]. For visual ranking, a semi-supervised learning
algorithm, the SSLPP, was developed by incorporating infor-
mation into the degree of relevance [15]. For scintilla-
tion detection, a semi-supervised detection system based on
the DeepInfomax approach was developed [16]. Besides,
Semi-supervised learning can be combined with active learn-
ing to improve the efficiency of classification. Stikic et al.
proposed combining self-training, co-training, and active
learning for human activity recognition [17], and Wang et al.
proposed a semi-supervised learning algorithm that combines
active learning with transductive SVM for applications with-
out sufficient labeled data [7]. For learning to rank without
sufficient labeled data in information retrieval, many studies
have verified the benefits of using transductive learning [4],
[8], [17], [18].

Transductive learning, a self-training-based semi-
supervised learning approach, has been widely used in appli-
cations where there only a small amount of labeled data are
available, or none are available at all [5]. In the scenarios
mentioned above, transductive learning is often utilized to
create pseudo-labels for learning to rank in information
retrieval, where it needs to only train a learning model to
predict the pseudo-label of the given set in test examples,
instead of all unobserved examples, as explained in [6]. The
algorithm iteratively generates pseudo-examples from the
remaining unlabeled data to construct a pseudo-training set
for learning to rank algorithms. This section briefly explains
the general setup of transductive learning in information
retrieval, as described in [7], [8], and [18].
• Extraction of initial pseudo-labels. The top-ranking
and bottom-ranking documents in the initial results of
content-based retrieval are chosen as the initial positive
and negative labels, respectively. The remaining doc-
uments in the initial results of retrieval are taken as
unlabeled examples.

• Construction of a learning model. A classifier is built by
making using of the initial pseudo-labels.

• Selection of new pseudo-labels. The classifier learned
above is used to classify the remaining unlabeled exam-
ples, and more pseudo-relevant and irrelevant examples
are added to the original training data.

• Reconstruction of a learned model. A new learned
model is trained by utilizing the most recently updated
pseudo-labels.

The processes of the selection of the new pseudo-labels
and reconstruction of the learning model are iterative, and
continue until the halting criterion has been satisfied. For
learning to rank applications where human labels are rare or
unavailable, the pseudo-labels are generated iteratively by the
transduction-based approach described above [19], [20].

The effectiveness of the transductive learning approach
depends mainly on the quality of the pseudo-examples, which
in turn is affected directly by query quality. However, the tra-
ditional transductive method does not consider the quality of
individual queries, and its retrieval performance is affected if
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queries with poor quality are included in the training query
set for learning to rank.

B. IMPROVING QUALITY OF TRAINING DATA
The quality of the training data has a significant impact
on retrieval performance in information retrieval [21]–[24].
Previous research on the quality of the training data has
focused mainly on supervised learning, including supervised
classification and supervised learning to rank [25]–[27].
Research on handling noise-related data in classification can
be divided into three categories: methods of feature selection,
data selection, and establishing noise-tolerant models. In this
paper, we present research on improving the training data in
learning to rank.

Given that the click logs of a web user can accurately
reflect the relevance of a given document to the corresponding
query, Xu et al. used document click logs to correct noisy data
for learning to rank [24]. Insisting that not all labels of the
training data are reliable, they proposed two dependent mod-
els (a sequentially dependent model and a fully dependent
model) to predict the pseudo-labels of the training data again.
If the predicted label and the original label of a document
were significantly inconsistent, the data was judged to be
noisy and their labels were corrected manually. Carvalho
and Elsas proposed the sigmoid loss function to replace the
hinge function in RankSVM to reduce the impact of noise on
document pairs [25]. Geng et al. proposed a feature selection
method in which the relevant documents to a given query
are re-ranked to ensure the hierarchy of the query and the
documents in learning to rank [26]. Geng et al. proposed
a probabilistic graphical model by introducing an implicit
variable to identify the true annotation of a document [27].

In the context of semi-supervised learning, some research
has been published on improving the quality of the training
data. Mallapragada et al. proposed an active query selection
method by using the min–max criterion for semi-supervised
clustering [28]. Considering that graph-based methods are
limited in their ability to jointly model graph structures and
data features, Wu et al. proposed a graph-filtering frame-
work that injects graph similarity into the data features by
considering them to be signals on the graph and applying a
low-pass graph filter to extract useful data representations
for classification, where labels can be efficiently assigned by
conveniently adjusting the strength of the graph filter [29].
Some research has also considered filtering the training
queries for semi-supervised learning in learning to rank
[19]–[21]. Rahangdale and Raut proposed a clustering-based
semi-supervised learning method and combined it with the
non-measure-specific listwise approach for learning to rank
in case no labeled data are available [19]. Zhang et al.
proposed a two-step clustering approach to filter the quality of
the query in semi-supervised learning for learning to rank in
case no labeled data are available [20].Muandet et al. selected
the example which led to the largest perturbation in the labels
of the other examples, and used active learning to query a
label for an unlabeled data [21].

We think that the quality of pseudo-labels should be
enhanced in transductive learning. Besides, considering that a
small number of reliable samples and unconfident examples
are obtained in our application, we propose to improve the
quality of the pseudo-labels by constructing a query quality
estimator using semi-supervised learning algorithms instead
of unsupervised learning.

III. FRAMEWORK OF PROPOSED TRANSDUCTIVE
LEARNING WITH LIMITED RELIABLE LABELS AND
EXAMPLES WITH LOW CONFIDENCE
In this section, we provide details of the proposed trans-
ductive learning method that learns a query quality estima-
tor based on a few reliable examples, and examples with
low confidence located close to the classification boundaries
(unconfident examples) to select high-quality queries. All
queries available are filtered by the query quality estimator,
thus high quality queries are selected from these candidate
queries. These selected queries were utilized to generate
pseudo-labels iteratively for learning to rank. In general, our
proposed algorithm was composed of three phases:
• estimating query quality with a few reliable examples;
• tagging the unlabeled data with transductive learning,
where only high quality queries were utilized;

• retrieval documents by learning to rank and generating
the results of retrieval using the tagged pseudo-labels for
learning to rank.

The last phase is a common step in semi-supervised
learning to rank, in which the pseudo-labels generated by
transduction are used as input in learning to rank to train a
ranking model for predicting the relevance of each document
of a given query. The framework of our proposed approach is
illustrated in Fig. 1.

FIGURE 1. The framework of the proposed transductive learning
approach.

A. ESTIMATING QUERY QUALITY
The quality of queries in a dataset differs. The relevant doc-
uments obtained for some queries were highly ranks in the
initial (content-based) retrieval results, whereas other queries
may have few relevant documents scattered around the initial
results. Queries with high-ranking relevant documents were
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believed to have a high mean average precision, and were
defined as high quality in this paper. In contrast, queries with
few relevant documents were considered low quality as they
had a low mean average precision. Our proposed method
aims to improve transductive learning involved selecting high
quality queries.

1) FEATURES OF QUERY QUALITY
To estimate query quality, we needed to extract features that
could indicate it. Query quality prediction, the task of estimat-
ing the effectiveness of a retrieval system given a search query
in the absence of any feedback from the searcher [30], has
been proven to be very challenging [30]–[33]. The methods
of estimating query quality are diverse, such as clarity [31],
weighted information gain (WIG) [32], NQC [33], and QPP
for microblog search [30]. As in [21], [22], we used NQC in
our method because it was easy to compute while still being
effective in estimating query performance, as reported in [33].
The NQC measures the amount of query drift in the results
list. As shown in [33], NQC is computed as follows:

NQC((Q) =
σR

|Score(Q,C)|
(1)

where R is the commitment of documents related to query Q,
σRσR is the standard deviation of the retrieval scores of the
documents in R, and Score(Q, C) is the retrieval score of the
collection.

Considering that the datasets we used had different fields,
including title, body, anchor, URL, and the entire given
document, we extracted query features for different fields:
query features based on title, body, anchor, URL, and the
whole document. We also collected the content-based sores
of the corresponding fields by applying TF∗IDF, BM25,
LMIR.ABS, LMIR.DIR, and LMIR.JM, and then computed
the NQC scores of the different query features. Therefore,
in our proposed method, 25 query features were used to
indicate query quality, as listed in Table 1.

2) SELECTING HIGH QUALITY QUERIES
Queries used to represent different users’ information-related
needs had unique characteristics [34]. Some queries were
popular and the top-ranking retrieval results could supply
informative messages, whereas some queries were not pop-
ular and the retrieval results of these queries were not sat-
isfactory. Intuitively, popular queries may be highly precise
in ranking documents, and thus have a high mean precision.
We called these queries high quality queries; they were
expected to provide pseudo-examples with little noisy data.

During the selection of high quality queries, all queries
available were divided into three categories without over-
lap: training, validation, and testing queries. For each query-
document pair, we exploited query features on the basis of the
NQC to represent its quality. Note that it was assumed that
a small number of reliable examples could be obtained for
each query-document pair to train a query dataset. We first
trained a ranker by utilizing a few reliable samples, and then

TABLE 1. NQC features used to estimate query quality.

greedily added a small number of samples with low confi-
dence randomly to the original training data to re-construct
the learning ranker. Because the LETOR 4.0 dataset, with
about 1,700 queries onMQ2007 and 800 queries onMQ2008,
was large, the enumeration-based sampling of examples with
low confidence located close to the classification bound-
aries was infeasible. Thus, random sampling was conducted
10 ∼ 15 times, and achieved near optimal results. Finally,
the learning ranker with the highest mean average precision
was chosen, and its effectiveness was tested on the validation
queries. We then obtained the mean average precision α

by applying the ranker to the validation queries. Before the
ranker was applied to the validation dataset, a content-based
retrieval model was used on the validation queries to obtain
a mean average precision β. We thus obtained a subtracted
value of mean average precision δ,α-β. A query quality
estimator was then built by using the query-related features
and the difference in mean average precision (δ) between the
ranker and the content-based retrieval model on the set of the
validation queries set.

The query quality estimator was then applied to each test
query in the test queries’ collection to assess its ability to
enhance retrieval performance. If a query enhanced the effec-
tiveness of retrieval on the test queries, namely, if the mean
average precision obtained by the query quality estimator
was greater than zero, it was considered a high-quality query.
Queries that enhanced themean average precisionwere added
to the high-quality queries’ set. It was expected to enhance
the effectiveness of retrieval when extracting the top-ranking
and bottom-ranking documents. Because documents ranked
high by a high quality query were likely to be mostly
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TABLE 2. Query types and their roles during the selection of high-quality queries.

related to the query topic, these queries created effective
pseudo-labels through the iterative procedure of transductive
learning. Table 2 shows the query types and their correspond-
ing roles while selecting high-quality queries. To balance the
distributions of high-quality and low-quality queries in the
training/testing/validation sets, three-fold cross-validation
experiments were conducted while selecting high quality
queries. Note that during the process of building the ranker
to predict retrieval performance in terms of mean aver-
age precision, each query-document pair was represented
by predefined document features. When constructing the
query quality estimator, each query-document pair was rep-
resented by the exploited quality-related features, namely the
NQC-based features.

B. TAGGING UNLABELED DATA BY TRANSDUCTIVE
LEARNING
It is common for documents relevant to different queries to
have diverse distributions, and ignoring the quality of queries
used for training may hurt the effectiveness of retrieval in
learning to rank because it leads to the aggregation of low
quality pseudo-labels during the iterations of transductive
learning. After the selection of the high quality queries,
all queries were divided into two classes, high quality and
low quality queries. The former enabled learning to rank to
improve its effectiveness of retrieval because they can gener-
ate pseudo-labels with a higher average quality. In contrast,
the latter brought about only a minor improvement in perfor-
mance, or can even degraded retrieval performance. Thus, the
pseudo-labels created by these low quality queries were unre-
liable. In the proposed method, the 100 highest documents in
the initial content-based retrieval were treated as unlabeled
examples. For high quality queries, we extracted the highest
and lowest ranked documents as input, and trained a learner
by applying learning to rank algorithms. The remaining unla-
beled documents of the top 100 documents were re-ranked by
our learner, and we picked the most relevant and irrelevant
examples from this list to update the training data. A new

learner was then retrained by the most recent training data
to re-rank the remaining unlabeled examples once again.
The procedure of training and selecting pseudo-labels was
iterated until the halting criterion was met. The algorithm
for tagging the unlabeled data is shown in Fig. 2. Finally,
the pseudo-examples iteratively generated by the transductive
learning algorithm were provided as input for learning to
rank.

FIGURE 2. The procedure of transductive learning, in which only
high-quality queries are used.

C. RETRIEVAL DOCUMENTS BY LEARNNING TO RANK
To examine the retrieval performance of our proposed
method, the pseudo-labels aggregated iteratively by it were
used in learning to rank. We now introduced the query
partitions in the learning to rank procedure. Four types of
queries were used in our experiments: training, validation,
target, and test queries. Both relevant and irrelevant examples
were extracted from the documents retrieved by the training
queries as initial pseudo-training data to train the ranking
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model. The queries in the validation set were used to deter-
mine the settings of the tunable parameters for learning to
rank. Thus the optimal parameters of the learning to rank
algorithm were obtained and used for the target queries
to iteratively generate the final pseudo-examples. Finally,
the ranking model learned from the pseudo-training exam-
ples generated by the target queries was used to generate
document rankings for each query in the test set.

In our experiments, the high quality queries selected by the
proposed transductive learning method were randomly split
into three parts: a training queries’ set, a validation queries’
set, and a test queries’ set. The low quality queries were in
turn arbitrarily split: the remaining part of the validation set,
and the test queries. There was no intersection among the
training, validation, and testing sets, but there was an over-
lap between the target and the test queries. While manually
assigned labels were used for the validation set during the
optimization of the parameters, there was no overlap between
the validation query set and the training/testing query set.
Such an experimental setup is common for semi-supervised
learning to rank approaches, such as in [18], [40].

D. MACHINE LEARNING ALGORITHMS FOR LEARNING
TO RANK AND CLASSIFICATION
In this section, we introduced the classification algorithms
used to select high quality training queries, and the learning
to rank algorithm to process the tagging of unlabeled data and
searching the results of retrieval for a given query.

1) LEARNING TO RANK ALGORITHMS
Three major learning to rank algorithms, the pointwise,
pairwise, and listwise approaches, are commonly used in
information retrieval, and where the pairwise and listwise
methods have been shown to outperform the pointwise
approach in terms of retrieval performance [35]–[38]. In this
paper, RankSVM [39], a classical pairwise approach, was
chosen to train the ranking algorithms. The literature has
shown the benefits of RankSVM in search tasks [39], [40].

Given a query Q and the set of documents D relevant to
it, RankSVM transforms the ranking task into a classification
task by leveraging the relative relevance of each document
pair in D. As a classical pairwise learning to rank approach,
RankSVM took a pair of documents in D as input, and its
optimization was similar to that of SVM, where it added an
SVM regularization for margin maximization to the objective
and a parameter C that allowed a trading-off margin against
training error:

minw,ξ
1
2
||w||2 + C

∑m

i=1
ξi

s.t.
〈
x(1)i − x(2)i

〉
≥ 1− ξi and ξi ≥ 0 (2)

where w is a weight vector adjusted during the learning
procedure, x is a vector of documents, y is the relevance of
a document to the given query, and ξ is a slack variable.

2) CLASSIFICATION ALGORITHMS
In information retrieval, in case labeled data are available,
many classification algorithms, such as the neuron network,
gradient boosting, logistic regression, and SVM, can be
applied [41]. Because only a small amount of reliable data
was available in our application, we used classification algo-
rithms for predicting the retrieval-related benefits of each
given query while estimating query quality. Both logistic
regression and naive Bayes were used to classify the queries.
We now briefly introduce the two classifications.

The idea of logistic regression was nearly identical to that
of linear regression. However, logistic regression involves
a step that uses the sigmoid function to convert the output
of linear regression to return a probability value that can
then be mapped to two or more discrete classes. The kernel
of classification in logistic regression was that it utilized
the sigmoid function. Similar to linear regression, it had a
cost function obtained by minimizing the final solution [42].
When logistic regression was applied to binary classification,
the parametric model was as follows:

P(Y = 0|X ) =
exp(w0 +

∑n
i=1 wiXi)

1+ exp(w0 +
∑n

i=1 wiXi)

P(Y = 1|X ) =
1

1+ exp(w0 +
∑n

i=1 wiXi)
(3)

where w is the weight of each vector X.
Logistic regression achieved classification by learning

hyper-planes. In contrast, naive Bayes carried out classifica-
tion by taking the unique approach of considering the prob-
abilities of features. The Bayesian method used knowledge
of probability to classify the sample dataset. Because of its
sound mathematical foundation, the false positive rate of the
Bayesian classification algorithm was low. Its characteristic
was to combine the prior probability with the posterior proba-
bility, which helped avoid subjective bias and the over-fitting
phenomenon. The Bayesian classification algorithm yielded
high accuracy when the dataset was large and the algorithm
itself was relatively simple. Naive Bayes classifiers have
worked well in many complex situations [43]–[45]:

P(Ck |x) =
P(Ck)

∏n
i=1 P((xi |Ck )∑k

k=1 [P(Ck )]
∏n

i=1 P((xi |Ck )
(4)

where Ck is a class, x is a vector space, and xi is the feature
that is a part of x.

IV. EXPERIMENTAL SETUP
A. DATASET
To examine the effectiveness of retrieval of our proposed
method, a series of extensive experiments were conducted
on LETOR 4.0, which is a standard dataset for learning
to rank [11]. LETOR 4.0 contains 25 million pages from
the Gov2 dataset, and two query sets from Million Query
track1 of TREC 2007 and TREC 2008. The two query sets are
hereinafter denoted by MQ2007 and MQ2008, respectively.
MQ2007 contained 1,692 queries with labeled documents
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and MQ2008 contained 784 with labeled documents. In the
experiments, we remove those queries having no relevant
documents while evaluating the effectiveness of our proposed
transductive learning approaches, as suggested in [19], [20].
Documents in LETOR 4.0 were represented by predefined
features. Each row in the dataset was a query-document pair,
in which the first column was the relevance label of the
document to the given query, the second column was query
id, and the subsequent columns were 46-dimensional feature
vectors. In each query-document pair, the larger the relevance
label was, the more relevant the document was to the given
query [11].

In the tables provided below, a∗ indicates that a statis-
tically significant difference between the baseline and our
proposed method was observed. Considering that the T-test is
commonly used as a standard statistical test for information
retrieval on LETOR 4.0, our significance test was conducted
using it at a 0.05 confidence level.

B. EXPERIMENTAL SETUP AND EVALUATION MEASURE
The aim of our experiments was to evaluate the effec-
tiveness of the proposed transductive learning, in which
pseudo-examples generated iteratively by utilizing high qual-
ity queries were used to learn a ranking model for learning to
rank. Five-fold cross-validation experiments were conducted
using our proposed method. To examine the retrieval perfor-
mance of the proposed method, four strong baselines were
used.

• Semi-supervised learning approaches. In this approach,
as suggested in [4], [6], [8], all queries despite quality
were utilized and the pseudo-examples were extracted
from the documents ranked high and low. In traditional
transductive learning, all queries were divided into three
partitions: test queries, training queries, and validation
queries.

• Clustered-based transductive learning proposed in [19].
In this study, the authors presented a semi-supervised
learning algorithm that used the clustered-based trans-
ductive method combined with a non-measure-specific
listwise approach for learning to rank.

• A training query-filtering approach for semi-supervised
learning to rank, in [20]. In this method, queries were
classified by utilizing only sparse labeled data for
applications.

• The state-of-the-art deep neural ranking models, as pro-
posed in [46], [47]. DeepRank is a deep learning archi-
tecture that models the relevance of a document for a
given query by simulating the process of human judg-
ment [46]. Another neural rankingmodel is HiNT,which
is a hierarchical neural matching model used to cap-
ture diverse patterns of relevance in ad-hoc retrieval.
In HiNT, a deep neural network is employed to support
high-quality relevance signal generation and flexible
relevance assessment strategies [47]. For DeepRank and
HiNT, we used the codes released by the authors.

Standard evaluation measures in information retrieval such as
the mean average precision (MAP) and average normalized
discounted cumulative gain (AVG_NDCG) were used in our
experiments. The MAP, as a standard evaluation measure
for information retrieval, was computed using the mean of
average precisions on all queries. However, precision is the
fraction of the number of relevant documents in all documents
for a given query. Thus, the MAP was given as mean of
precisions all over queries. For the given queries, a high-MAP
was obtained if the relevant documents of the queries were
mostly ranked high. The MAP is given as follows:

MAP(Q) =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Pr ecision(Rjk ) (5)

whereQ is the number of all queries available, |Q| is the total
number of queries, mj is the number of relevant documents
for a given query, and Rjk is the document set in the results
ranked before the relevant document dk in terms of ranking.
The normalized discounted cumulative gain (NDCG) is

also an evaluation measure commonly used in information
retrieval. It leverages the relevance judgment in terms of
multiple order categories. It is given as:

NDCG(Q,K ) =
1
|Q|

∑|Q|

j=1
Zj,k

∑k

m=1

2R(j,m) − 1
log(1+ m)

(6)

where Q is number of all queries available, |Q| is the total
number of queries, R(j,m) is the relevance label for document
m to the given query j, and Zj,k denotes the normalization
factor. In our experiments, the mean NDCG (AVG_NDCG)
was also used as evaluation measure.

V. RESULTS
A. PERFORMANCE COMPARISON BETWEEN PROPOSED
TRANSDUCTIVE LEARNING AND TRADITIONAL
TRANSDUCTIVE LEARNING
We first evaluated the effectiveness of retrieval of our pro-
posed method (PTL) in comparison with traditional trans-
ductive learning (TTL), which used all available queries to
generate pseudo-labels for learning to rank. In our proposed
method, two classification algorithms were used, naive Bayes
and logistic regression. In the details of the experiments
provided below, the proposed methods with the two classi-
fications are respectively denoted by PTL_NB and PTL_LR.
Table 3 shows that a significant improvement over the base-
line was obtained when the proposed method was applied to
the MQ2007 and MQ2008.

An increase of 0.85% in terms of AVG_NDCG on the
MQ2007 was obtained; although a small decrease in terms
of MAP was noted when naive Bayes was used to classify
the test queries. On the MQ2008, the proposed method,
PTL, outperformed the baseline both in terms of MAP and
AVG_NDCG. Improvements of 0.81% in terms of the MAP
and 1.69% in terms of the AVG_NDCG were observed when
PTL_NB was applied to the MQ2008. It also showed signifi-
cant advantages over the conventional method on LETOR 4.0
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TABLE 3. Comparison of performance between the proposed
transductive learning (PTL) and traditional transductive learning (TTL).

when logistic regression was used as the classification algo-
rithm. For example, with MAP as evaluation metric the
proposed method PTL_LR outperformed the baseline TTL
by 1.47%. Furthermore, PTL_LR showed notable advantages
in terms of AVG_NDCG. On the MQ2008, an improvement
of 1.03% in terms of the AVG_NDCG was obtained. The
results thus showed that the query quality had a significant
impact on the quality of pseudo-labels in transductive learn-
ing, and that it was necessary to distinguish high quality
queries from low quality ones.

B. COMPARISON BETWEEN PROPOSED TRANSDUCTIVE
LEARNING AND CLUSTERED-BASED TRANSDUCTIVE
LEARNING
In this section, we compared our proposedmethod (PTL)with
the clustered-based transductive learning (CTL) proposed
in [19]. As shown in Table 4, when naive Bayes was used to
classify the queries, the proposed method PTL_NB outper-
formed CTL_LISTMLE by 7.77% and CTL_LambdaRank
by 2.57% in terms of AVG_NDCG. However, no significant
advantage was obtained in the other cases. The improvements
on LETOR 4.0 were notable both on the MQ2007 and the
MQ2008 in most cases when logistic regression was used to
assess query quality. For example, in terms of the MAP, the
proposed method PTL_LR outperformed the strong baselines
significantly, by 0.82% compared with the CTL_LISTMLE
and 1.42%with the CTL_LambdaRank. However, no notable
improvement in terms of the MAP was obtained between
PTL_LR and CTL_LambdaRank. The table shows that the
proposed method PTL performed well on the MQ2008.
By contrast, on the MQ2007, the effectiveness of PTL_LR
was superior to that of obtained by PTL_NB. We think that
for naive Bayes classification, the algorithm assumes that
the features are independent of one another, but the docu-
ment features in LETOR 4.0 are intimately related because
features are scores obtained by applying different retrieval
models. Thus, PTL_NB did not perform as well as PTL_LR.
In case a few labeled examples were available, the proposed
approach, PTL, instead of CTLwasmore suitable for creating
pseudo-labels for learning to rank because the quality of the
selected queries obtained is higher. Of course, for scenarios

involving no labeled data, the clustering-based transduction
method is recommended for generating pseudo-labels for
learning to rank.

C. COMPARISON BETWEEN PROPOSED TRANSDUCTIVE
LEARNING AND CLASSIFICATION-BASED TRANSDUCTIVE
LEARNING
Thirdly, we compared our proposed method with
classification-based transductive learning as shown in Table 5.
It shows that our method, PTL, outperformed the
classification-based method in most cases, although the
improvements were not notable on the MQ2008 when naive
Bayes was applied to distinguish query quality. A signifi-
cant advantage was obtained when its performance on the
MQ2007 was evaluated in terms of AVG_NDCG. PTL_NB
significantly outperformed the classification-based method
STL (an improvement of 1.05%), with the exception that the
retrieval performance of our proposed transductive learning,
PTL, was notably worse on MQ2008 when logistic regres-
sion was used as classification algorithm and AVG_NDCG
as evaluation measure. A significant decrease of 1.06%
was observed by applying PTL_LR. In general, the pro-
posed transductive learning PTL_NB performed well when
naive Bayes was applied as classification method, whereas
PTL_LR did not perform as well as expected. It is believed
that the job of sampling most unconfident data nearby the
classification is mainly around the classification boundaries,
which may not bring benefit for logistic regression achieving
classification by learning hyper-planes. However, the param-
eter optimization of naive Bayes is maximum likelihood
estimation and the quantity of the pseudo-labeled data may
increase the precision.

D. COMPARISON BETWEEN PROPOSED TRANSDUCTIVE
LEARNING AND NEURAL RANKING MODELS
Finally, we compared our proposed method with the state-of-
the-art neural ranking models shown in Table 6. Note that we
conducted experiments only onMQ2007 because the number
of queries in MQ2008 was too small for training the deep
neural ranking models. The table shows that with MAP as
evaluation measure, none of the deep neural ranking mod-
els outperformed the proposed transductive learning method.
For example, PTL_LR was superior to the best deep neural
ranking model, HiNT, onMQ2007 by 4.82%; while PTL_NB
was superior to the best deep neural ranking model by 3.03%
on MQ2007. The results show that in terms of information
retrieval, although more complex models were trained using
deep neural ranking, the automatically learned features for
ranking may not be sufficient to improve the effectiveness
of retrieval. Our PTL significantly outperformed the deep
neural ranking models in terms of MAP, which shows that
the improvement in the quality of the training data played an
important role in enhancing the effectiveness of information
retrieval.
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TABLE 4. Comparison of performance between the proposed transductive learning (PTL) and clustered-based transductive learning (CTL).

TABLE 5. Comparison of performance between the proposed transductive learning (PTL) and classification-based transductive learning (STL).

TABLE 6. Comparison of performance between the proposed
transductive learning (PTL) and deep neural ranking models.

TABLE 7. The precision and recall of the selected queries on MQ2007 and
MQ2008.

VI. DISCUSSION
Table 7 gives the precision and recall of the selected high-
quality queries measured against the ground truth. If a query
yielded a positive benefit for the test queries during the
assessment of the quality of query estimation, it was consid-
ered a high-quality query. Otherwise, it was considered a low
quality one. On the MQ2007, a high precision of 93.2% was
obtained in this way. Although a moderately low accuracy
was obtained on the MQ2008, the high recall (85.82%)
indicated that most high quality training queries were cor-
rectly identified by utilizing the proposed transductive learn-
ing method. Therefore, an effective and robust retrieval
performance was still achieved by using the appropriate
classification algorithm.

The above results showed that the PTL exhibited signifi-
cant advantages in terms of retrieval performance compared
with traditional transduction (TTL) and clustered-based
transduction (CTL). Although enhancements in the effec-
tiveness of retrieval were also noted, PTL was not always
superior to STL. We thus investigated the effectiveness
of classification-based transduction, STL, through iterative

tests. Fig. 3 shows us a comparison between PTL and STL
in terms of the MAP at each iteration from 1 to 15 on the
MQ2007 when logistic regression was used to estimate query
quality. It is clear that PTL outperformed STL in most cases.
Note also that it yielded the highest values in terms of the
MAP in the third and fourth rounds.

FIGURE 3. Comparison between PTL and STL in terms of the MAP in each
iteration from 1 to 15 on MQ2007 when logistic regression was used for
classification.

We also calculated the MAP and AVG_NDCG between
PTL and STL in each iteration from 1 to 15 on the
MQ2008 when logistic regression was used for classification.
Although, PTL did not yielded as high an MAP as STL in
the second round, a high retrieval performance was obtained
when it was applied to the MQ2008. Fig. 3 and Fig. 4 show
that regardless of the datasets, the retrieval performance of
PTL and STL exhibited a downward trend with the number
of iterations. A high value of the MAP was obtained around
the second to fourth rounds, both for PTL and STL, which
also suggests that the pseudo-labels in these rounds were
more likely to supply useful information for semi-supervised
learning when applied to ranking queries.
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FIGURE 4. Comparison between PTL and STL in terms of the MAP of each
iteration from 1 to 15 on the MQ2008 when logistic regression was used
for classification.

VII. CONCLUSION
In this paper, we proposed a transductive learning approach
that distinguished high quality queries from low quality ones
to iteratively generate pseudo-labels for learning to rank.
Specifically, to improve the quality of recognition of relevant
and irrelevant pseudo-labels, we estimated the quality of each
given query by judgingwhether it could enhance retrieval per-
formance with a limited number of reliable labels along with
data with low confidence close to the classification bound-
aries. By building a classifier between features that influence
query quality and performance-related benefits, high quality
queries were extracted by our proposed approach. The pro-
posed transductive method was significantly different from
traditional transduction in that only the selected queries were
used to iteratively aggregate pseudo-labels for learning to
rank. Experiments were conducted on the standard dataset
LETOR 4.0, and the results showed that a statistically signif-
icant improvement over the baselines was achieved by apply-
ing our proposed transductive learning approaches in most of
the cases considered. In addition, our study proved that with
a limited number of labeled examples available, the proposed
approach, PTL, was suitable for creating pseudo-labels for
learning to rank because the quality of the selected queries in
it can supply useful information.
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