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ABSTRACT An adaptive potential field is designed to adapt the acceleration/deceleration and mass of
the obstacle. The potential fields are established in a transformed road coordinate system to improve the
feasibility and robustness. A path planning method is proposed based on the designed adaptive potential
field to improve the driving safety and the ride comfort of autonomous vehicles in complex driving scenarios,
which including the cut-in, emergency braking, obstacle sudden accelerating during overtaking and the curve
road driving scenarios. The effectiveness of the proposedmethod is validated by simulations with constructed
and real data, respectively. The TTCs (Time-to-Collision) and the maximum lateral accelerations are used
to evaluate the improvements on safety and ride comfort. The results show that both the driving safety and
ride comfort are efficiently improved by using the proposed approach in emergency braking and accelerating
scenarios. Meanwhile, the proposed method can be well applied in a curve road driving environment.

INDEX TERMS Autonomous vehicles, adaptive potential field, path planning, complex driving scenario,
model predictive control.

I. INTRODUCTION
A. MOTIVATION
Path planning as an important component of autonomous
driving techniques has been widely researched in recent
years [1]. Various algorithms have been developed for path
planning according to the application scenarios [2], e.g. RRT
methods for structured [3] and unstructured driving scenar-
ios [4], A∗ algorithm for off-line path planning [5], [6],
polynomial interpolation approaches for real-time motion
planning [7], etc. Meanwhile, the driving safety is essen-
tial for autonomous driving which should be ensured and
improved [8]. Considering the improvements on driving
safety during obstacle avoidance, the potential field-based
approaches have been popularly used for path planning of
autonomous vehicles (AVs) [9].

The main idea behind the conventional potential field-
based path planning (CPF-PP) is to design a repulsive
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potential field (PF) around the obstacle and an attractive PF
around a target point [10], respectively. The repulsive PF
will enforce the approaching vehicles keep a safe distance
to the obstacle for avoiding collision [11]. Being different
from the function of repulsive PF, the attractive PF is con-
structed to lead the ego vehicle driving towards the target
position [12]. Road boundaries are also handled with the
repulsive PF to prevent the ego vehicle driving out of the
road edges. Based on the repulsive and attractive PFs, there
are usually two methods for path generation under different
application situations, i.e. the generated route with minimum
PF [13] and the generated route along the descent direction
of PF’s gradient [14]. The former method depends on the
constructed repulsive and attractive PFs and can be uniquely
generated when the positions of obstacles are determined.
Combining with the nonholonomic constraints, the latter
method is usually to sampling along the descent direction
of PF’s gradient to generate a drivable reference path [15].
Furthermore, the PFs can also be independently applied as
driving safety fields for the risk assessment of autonomous
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driving [16]. According to the definition of safety field, the PF
values around the obstacles are used to declare the risk degree
of collision [17]. However, these applications of the PF are
based on the assumption that the shape of the PFs are sym-
metric distribution [18], and the PFs are only constructed
and applied in a straight road environment. While driving
on curve roads, the performances of previous PFs methods
may not be ensured, which will result in the failure of AVs
to acquire the expected trajectory and thus a traffic accident
may occur. Therefore, an appropriate design of PF needs to
be examined on both straight and curve road environment
to demonstrate the effectiveness of the proposed method in
various situations.

Meanwhile, the collision risk of an obstacle to the subject
vehicle is different when it is with different position (e.g.,
in the front or rear) from the subject vehicle. For example, its
rear vehicle will take an emergency braking or sharp steering
for safety when a vehicle suddenly decelerates, while its front
vehicle will not be influenced. This phenomenon indicates
that the dangerous degree in the rear of the obstacle vehicle
is higher than that of the front when the obstacle vehicle is
decelerating [19]. Similarly, the left side of the obstacle has
a higher collision risk than that of the right side in the left
steering process of the obstacle [20]. These indicate that the
collision risk around an obstacle is not symmetric distribution
when the obstacle is accelerating/decelerating. Furthermore,
the collision risk can be influenced by themass of the obstacle
as well, e.g. the collision risk of the rock to the vehicle is
obviously higher than that of the same sized plastic box to
the vehicle. These illustrate the acceleration/deceleration and
the mass of an obstacle should be taken into consideration
for the PF definition.

Therefore, an adaptive potential field (ADPF) method is
proposed in this paper by comprehensively considering the
mass and acceleration/deceleration behavior of the obstacle
and the road curvature. It is expected that the proposed ADPF
will be more mimic to the practical driving scenarios, and
the robustness and feasibility of the path planning approach
will be improved for autonomous driving. To examine its
effectiveness and to evaluate the improvements of the pro-
posed algorithm, three typical complex traffic scenarios are
constructed. Furthermore, a crowd highway scenario with
real information of surrounding vehicles is extracted from the
highD dataset [21] for further validation.

B. CONTRIBUTIONS
1) A novel adaptive potential field is designed to adapt

the vary of acceleration/deceleration and mass of the
obstacles. The dynamic feature of ADPF can be well
used to present the intention of the obstacle to mimic
the practical driving situation.

2) The ADPF-based path planning (ADPF-PP) is pro-
posed to improve the driving safety and ride comfort of
the autonomous vehicles in various scenarios including
emergency braking, fast cut-in, and sudden acceleration
of the obstacle vehicle.

3) A road coordinate system is transformed and used to
establish the PFs, which makes the proposed ADPF-PP
useful for both straight road and curve road scenar-
ios. To the best of our knowledge, this is one of the
first attempts to apply innovatively proposed potential
field-based methods in curve road scenarios.

C. PAPER ORGANIZATION
This paper is organized as follows: The adaptive potential
field of the obstacle is designed in Section II. Section III
introduces the path planning process based on the ADPF.
Various driving scenarios are constructed for path planning
and tracking simulation in Section IV to examine the effec-
tiveness and improvements of proposed algorithm. Finally,
the conclusions are presented in Section V.

II. THE DESIGN OF ADAPTIVE POTENTIAL FIELD IN ROAD
COORDINATE SYSTEM
The vehicle position can be described with a static Carte-
sian coordinate (Xo,Yo) or a moving road coordinate (so, do)
as illustrated in Fig.1. The on-board positioning system
(GPS/BeiDou) of AVs can directly obtain the current position
of the vehicle in the world Cartesian coordinate system.
To detect whether a lane departure is happening, the relative
position of the ego vehicle to the centre line of the target lane
is required to calculated in real-time with a road coordinate
system.

A. A ROAD COORDINATE
Based on the Frenet-Serret formulas [22], a moving road
coordinate is transformed with the Cartesian coordinates of
a given road. Fig.1 indicates that the descriptions of the
relative position between the ego vehicle and obstacle in two
coordinate systems are different as (1) and (2).

FIGURE 1. Descriptions of relative positions in different coordinate
systems.

In global Cartesian coordinate system (X ⊥ Y ):{
1X = |Xo − Xe|
1Y = |Yo − Ye|.

(1)

In a moving road coordinate system (Es ⊥ Ed):{
1s = |so − se|
1d = |do − de|,

(2)
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where Es and Ed are the tangential and normal directions in
the road coordinate, 1s and 1d denote the relative distances
between the ego vehicle and obstacle vehicle in the two
orthogonal directions of the road coordinate, respectively.

B. COORDINATE TRANSFORMATION
1) GLOBAL X-Y TO MOVING ROAD S-D COORDINATE
For coordinate transformation purpose, the given path should
satisfy the drivable characteristics described as

∀x ∈ R
∃ : x → y = f (x)
x → ḟ (x), x → f̈ (x).

(3)

The arc length (S) is monotonically increasing and can be
calculated by

S(x, y) =
∫ x

x0

√
1+ ḟ (x)2dx, (4)

where (x0, y0 ) is the start point of the path.
The heading angle of tangential direction θ (S) is defined

by

θ (S) = arctan ḟ (x). (5)

Based on (3), (4) and (5), the affine transformation between
the two coordinates is obtained by{

∀(x, y) ∈ �x,y

∃ : (x, y)→ S(x) ∈ �S , θ(S) ∈ �θ ,
(6)

where �x,y ∈ R2 denotes the full point-set of the given path,
�S ∈ R and �θ ∈ [0, 2π ] denote the arc length-set and the
tangential angle-set of the path, respectively.

According to (6), the moving road coordinate system
(Es ⊥ Ed) can be constructed and attached to the points of
the given path. For example, there is a known point O with
(Xo,Yo) described in global coordinate system in Fig. 1. The
transformation process of pointO from X -Y to s-d coordinate
is shown as 

so = S(xA, yA)

do = |
−→
AO|

(xA, yA) ∈ �x,y

S(xA, yA) ∈ �S ,

(7)

where pointA is a point of the given path with the shortest dis-
tance to point O, (xA, yA) is the global coordinate of point A,
(so, do) denotes the transformed s-d coordinate of point O.

2) MOVING S-D TO X-Y COORDINATE
The information described in a moving coordinate system
may require to be transformed into that of the global coor-
dinate system for more convenient comparison and analysis.
For example, Fig. 1 shows that based on the given road

coordinate (so, do) of point O, the inverse transformation is
Xo = xA + sign(θA − π )do sin θA
Yo = yA + sign(π − θA)do cos θA
so→ (xA, yA) ∈ �x,y

so→ θA ∈ �θ ,

(8)

where θA is the angle between the moving s-d coordinate
systemfixed in pointA and the globalX -Y coordinate system.

C. ADAPTIVE POTENTIAL FIELD DEFINED IN ROAD
COORDINATE SYSTEM
The PF defined in the global coordinate system may not
adaptive to the curve road scenarios because of the different
relative distances (1s ≥ 1X ; 1d ≤ 1Y ). For the general
application, the PF functions are defined under the road coor-
dinate system in this paper.

The PF function of target lane is defined as

UTargL(s, d) = a
(
d − dTrgL

)2
, (9)

where d and dTrgL denote the lateral distances of ego vehicle
and target lane, and a is a shaping parameter.

The PF function of road boundary is defined as

URBd (s, d) =


b (d − dBr )2 d ≤ dBr
b (dBl − d)2 d ≥ dBl
0 d ∈ (dBr , dBl) ,

(10)

where b is a shaping parameter, dBl and dBr denote the lateral
positions of left and right road boundaries, respectively.

The obstacle PF (OPF) is designed to ensure the ego vehi-
cle to keep a safe distance to the obstacle. The constructed
OPF will guide the ego vehicle to take a lane-change or
braking for safety while approaching to the obstacle. Based
on the two-dimensional joint probability density distribution
function (2D-PDF), the OPF can be defined as

N (`|µ,6) =
aobs

2π
√
|6|

e

(
−

1
2 (`−µ)

T6−1(`−µ)
)
, (11)

where N is a 2D-PDF, aobs is a comprehensive coefficient
affected by the shape and type of the obstacle, ` = (s, d)T is
the position of ego vehicle in the road coordinate system, µ
and6 denote the mean and covariance matrix of the 2D-PDF,
respectively.

Based on (11), the ADPF is designed to adaptive the accel-
eration/deceleration of the obstacles as

UADPF = w1N1(`|µ1, 61)+ w2N2(`|µ2, 62), (12)

where

w1 ∈ [0.5, 1], w1 + w2 = 1,

µ1 = (s1, d1)T , 61 =

[
σ 2
s1 0
0 σ 2

d1

]
,

µ2 = (s2, d2)T , 62 =

[
σ 2
s2 0
0 σ 2

d2

]
,
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N1 and N2 are two independent 2D-PDFs, UADPF is the
adaptive potential field of obstacle, w1 and w2 denote the
weights of two 2D-PDFs, µi and 6i (i = 1, 2) are the mean
and covariance matrix of the corresponding 2D-PDF, σsj and
σdj (j = 1, 2) denote the variance terms of the corresponding
covariance matrix, respectively.

The definitions of the mean and covariance corresponding
to N1 are designed as

s1 = so, d1 = do
σs1 = Ss −1s
σd1 = Sd −1d,

(13)

where (so, do) is the position of obstacle in road coordinate
system, Ss and Sd denote the safe distances along the two
directions of road coordinate system, 1s and 1d represent
the biases relative to the obstacle position in two directions,
respectively.

The corresponding mean and covariance of N2 are defined
as 

s2 = so + sign(aso )1s
d2 = do + sign(ado )1d
σs2 = Ss, σd2 = Sd ,

(14)

where aso (m/s
2) and ado (m/s

2) denote the longitudinal and
lateral accelerations of the obstacle along road coordinate
system, respectively.

The safe distance [23] is defined and calculated as
Ss = S0 + uT0 +

1v2s
2an

Sd = D0 +
1v2d
2an

,

(15)

where S0 andD0 denote the minimum longitudinal and lateral
distance decided by the geometric shape, T0 is the safe time
gap, 1vs and 1vd are the approaching velocities along the
longitudinal and lateral directions of the road coordinate
system, respectively; an is a tunable acceleration for optimiz-
ing the comfortable of ego vehicle, u is the velocity of ego
vehicle.

The bias function is defined by1q =
Sb,q

e−k(|aq|−0.5aq,max )
Sb,q = kqSq

, (q = s, d), (16)

where Sb,q denotes the tunable maximum bias along each
direction of the road coordinate system, aq,max (m/s2) denotes
the maximum acceleration/deceleration of obstacle in each
direction, k is a positive comprehensive coefficient.
Meanwhile, considering themass of obstacle will influence

the ADPF, i.e. the ADPFs of a car and a big box with the same
accelerations should be different. The coefficient kq is defined
as

kq =


0 m ∈ [0, 100)

e
0.3
( m
1000

−5
)

m ∈ [100, 5000)
1 m ∈ [5000, 12000),

(17)

wherem (kg) is the mass of obstacle, which is limited to under
12 tonnes [24] according to the vehicle categories of Mi and
Ni, i = 1, 2, 3.
Table 1 demonstrates the related parameters for determin-

ing the ADPF. For example, considering the general driv-
ing situations, the longitudinal and lateral accelerations are
limited in [−0.3g, 0.3g] [25], respectively. The ADPFs with
different accelerations/decelerations for the obstacle vehicle
are shown in Fig. 2. The 5© in Fig. 2 shows that the OPF
is symmetric when the longitudinal and lateral accelerations
are equal to 0. The 4© and 6© of Fig. 2 show that the
OPFs are asymmetric in the longitudinal direction when the
obstacle vehicle is accelerating/decelerating along the longi-
tudinal direction. Namely, the OPF values of its rear side is
higher/lower than its front side in deceleration/acceleration
scenarios, respectively. The OPFs are also asymmetric in the
lateral direction when the lateral acceleration/deceleration
happens ( 2© and 8© in Fig. 2). For example, the OPF value
to the left is obviously higher than that of the right side when
the obstacle vehicle turning left. Meanwhile, subject to the
nonholonomic constraints of the plane motion, the obstacle
vehicle usually has both the longitudinal and lateral acceler-
ation/deceleration while turning or changing lane, etc. The
ADPFs in these longitudinal and lateral coupling situations
are also shown in Fig. 2 (accelerating and steering: 3© and 9©;
decelerating and steering: 1© and 7©), which illustrate OPF
values are asymmetrically distributed both in the longitudinal
and lateral directions.

TABLE 1. Parameters of ADPF.

The mass of moving obstacle determines its inertia, which
can be used to indicate the difficulty of state-changing. Since
the difficulty of state-changing can be equivalent to the that
of the collision-avoidance, the working range of the ADPF
should be adaptive to the mass varying of the moving obsta-
cle. Although the mass of obstacle vehicle cannot be detected
by the on-board sensors, it can be estimated by the tech-
niques of vehicle type recognition and classification. Fig. 3
shows the ADPFs of different obstacle vehicles with the same
accelerations (aso = −0.3g, ado = 0). Fig. 3 indicates
that the working range of ADPF will be enlarged with the
vehicle’s mass increase (Truck>Pickup>Car). Furthermore,
the asymmetric feature of ADPF is more obvious when the
mass is larger.

III. AN ADAPTIVE POTENTIAL FIELD BASED PATH
PLANNING
The path planning and tracking for AVs can be solved
separately as a hierarchical framework with two indepen-
dent parts or integrated as an entire part. In a hierarchical
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FIGURE 2. ADPFs with different longitudinal and lateral accelerations: (aso , ado ) ∈ [−0.3g, 0.3g].

FIGURE 3. ADPFs of different vehicles with the same accelerations: aso = −0.3g, ado = 0.

framework, a reference path is planned firstly, then a con-
troller is designed to track the planned path [26], [27]. The
integrated solution method aims to improve the time delay of
tracking by directly outputting the reference control variables
rather than the expected reference route [28]. Considering the
computation cost and simplicity for validation, the hierarchi-
cal framework is applied for the path planning and tracking
based on the ADPF in this paper.

A. THE ADPF ESTABLISHING
The potential field-based path planning is likely to be
trapped into local minima, especially in an unknown environ-
ment [29]. To avoid the local optima problem in the proposed
path planning method, both the driving environment and the
obstacles (vehicles) are assumed to be known, thus we can
design and establish the potential fields more appropriately.
Besides, we design the attractive potential field with the
center line of the target lane to attract the ego vehicle driving

to the target lane instead of with only one target point, which
will reduce the chance to trap into the local optima by solving
a series of optimization subproblems.

1) THE ACCELERATION/DECELERATION ESTIMATION OF
MOVING OBSTACLE
The longitudinal and lateral accelerations of ego vehicle
(ax , ay) in the global coordinate system can be obtained
with the on-board sensors (GNSS/INS). Meanwhile, based
on the other on-board sensors (camera/radar/lidar), the rel-
ative accelerations/decelerations (1ase ,1ade ) between the
ego vehicle and the moving obstacle can be calculated in
the road coordinate system. To achieve the acceleration of
moving obstacle in the road coordinate system (aso , ado ),
a rotation in the road coordinate system (Ese ⊥ Ede and Eso ⊥ Edo)
is required.

Fig. 4 shows that (se, de, θe) and (so, do, θo) are the position
descriptions of the ego vehicle and obstacle vehicle in the

225298 VOLUME 8, 2020
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FIGURE 4. The acceleration/deceleration detection of moving obstacles.

moving road coordinate system, respectively. Ese ⊥ Ede and
Eso ⊥ Edo denote the corresponding moving coordinates of ego
vehicle and obstacle vehicle, respectively.

The rotation matrix is defined as

M(θ ) =
[
cos θ − sin θ
sin θ cos θ

]
, (18)

where θ (rad) is the angle between two coordinate systems.
The accelerations/decelerations of ego vehicle (ase , ade ) in

corresponding road coordinate system is calculated as[
ase
ade

]
= M(θe)

[
ax
ay

]
, (19)

where ax and ay denote the longitudinal and lateral acceler-
ations of ego vehicle in the global X-Y coordinate system,
θe (tangential angle of the road ) is the angle between the
road coordinate system of ego vehicle and the X-Y coordi-
nate system, ase and ade are the tangential and perpendicular
accelerations of ego vehicle in corresponding road coordinate
system, respectively.

The accelerations/decelerations of obstacle (aso , ado ) in
corresponding road coordinate system are estimated as[

1ase
1ade

]
=

[
ase
ade

]
−M(θo − θe)

[
aso
ado

]
, (20)

where θo is the angle between the road coordinate system of
obstacle vehicle and the global coordinate system, aso and ado
are the tangential and normal accelerations in corresponding
Eso ⊥ Edo road coordinate system, 1ase and 1ade are the rel-
ative accelerations between ego vehicle and obstacle vehicle
calculated in the road coordinate system of ego vehicle.

B. PATH GENERATION WITH ADPF
The PFs are updated in real-time with the position and accel-
eration/deceleration ofmoving obstacle during path planning.
Meanwhile, the ADPF-PP generates the collision-free path
with the minimum PF by solving

min
(smin,dmin)

{
UTargL + URBd + UADPF

}
, (21)

where (smin, dmin) denotes the point-set of planned path.
As shown in Fig. 5, the planned paths of ADPF-PP vary

with the obstacle vehicle’s decelerations. The planned paths
are highlighted in red and blue when the decelerations of the
obstacle vehicle are (aso = −0.3g, ado = 0) and (aso = 0,
ado = 0), respectively. The generated paths show that the ego

FIGURE 5. The planned paths of ADPF-PP with different decelerations of
the obstacle vehicle on straight roads.

vehicle will take a lane-change to avoid the yellow obstacle
vehicle. However, the lane-change points are different in the
two trajectories (point A vs point B), which indicates that the
different braking severity of the obstacle vehicle will result in
different driving maneuvers of the following vehicle.

In a lane change or a cut-in driving scenario of the obstacle
vehicle, both acceleration and steering maneuvers would fre-
quently occur [30]. Thus, the ego vehicle would take different
responses (e.g., braking, steering, and lane keeping) accord-
ing to the velocity and acceleration of the obstacle vehicle.
Fig. 6 shows the cut-in of the obstacle vehicle with different
accelerations while driving on curve roads. Both of the two
routes will lead the ego vehicle to depart the target path for
safety when the obstacle vehicle is laterally approaching from
the left lane. However, the departure moment is different
between the examined situations, indicating that the driving
maneuver of the ego vehicle depends on the acceleration and
steering aggressiveness of the obstacle vehicle. The illus-
trated blue trajectory will result in an earlier departure of the
ego vehicle than that of the red one (point A vs point B), which
indicates that a smaller acceleration of the obstacle vehicle
should correspond to an earlier lane departure behavior for
driving safety.

FIGURE 6. The planned paths of ADPF-PP for cut-in with different
accelerations of the obstacle vehicle on curve roads.

Therefore, as illustrated in the trajectories in Fig. 5 and
Fig. 6, our proposed ADPF-PP can adaptively adjust the
moments of lane change and lane departure according to the
different behaviors of the obstacle vehicle.

IV. SIMULATION AND DISCUSSION
A. COMPLEX DRIVING SCENARIOS FOR SIMULATIONS
1) CUT-IN AND DECELERATING DRIVING SCENARIO
A cut-in and decelerating scenario is established in the
straight road environment in Fig. 7. The blue vehicle as a

VOLUME 8, 2020 225299
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FIGURE 7. Driving scenario A for simulation: cut-in & emergency
decelerating.

moving obstacle will cut into the target lane at the time
of t1, furthermore, the blue vehicle will take an emergency
decelerating at the time of t2 after the lane change as Fig. 7a
shown. The relevant states are presented in Fig. 7b, which the
red and black solid lines denote the speed and lateral position
of the blue vehicle. It illustrates that the blue vehicle will
accelerate to cut into the target lane from time of 0s to 2s
and decelerate to 5m/swith a deceleration of−0.8g after the
time of 3.8s.

2) OVERTAKING WITH OBSTACLE ACCELERATING DRIVING
SCENARIO
The velocity and acceleration of the front car are essential
for the ego vehicle to make a decision of lane change or lane
keeping in practical driving scenarios as shown in Fig. 8a.
A complex driving scenario is designed to reveal this phe-
nomenon, i.e. the ego vehicle need to decide whether to take

FIGURE 8. Driving scenario B for simulation: The obstacle is accelerating
during overtaking.

an overtaking when the front car is accelerating. The velocity
and lateral position of the blue car are shown in Fig. 8b,
which denotes that the initial and final velocities are set to
14 m/s and 27 m/s, respectively. Meanwhile, the blue car is
accelerating to the final velocity with a 2 m/s2 acceleration
at the beginning.

3) CURVE ROAD DRIVING SCENARIO
TheADPF-PP should be adaptive to both the straight road and
curve road scenario. To examine the robustness of ADPF-PP,
a curve road scenario is designed in Fig. 9. There are three
vehicles in the curve road driving scenario, i.e. a green pas-
senger car, a light blue pickup and a red truck, are used as
the obstacles in front of the red ego vehicle on the target lane.
The speeds of the obstacles (5m/s) are smaller than the target
speed of the ego vehicle.

FIGURE 9. Driving scenario C for simulation: Curve road environment.

4) AN ACTIVE LANE CHANGE SCENARIO WITH REAL DATA
A crowd highway driving scenario with real information of
surrounding vehicles is extracted from the highD dataset to
further examine the effectiveness of the proposed method.
The scenario is shown in Fig. 10a. Four obstacle vehicles are
driving in Lane #1 and Lane #3, and the ego vehicle needs
to take a lane change from the current lane to the target lane
(Lane #3) because of a slow driving truck far ahead which
is not illustrated in Fig. 10a. The far distance with the lead
slow truck allows the ego vehicle to move laterally to the left
lane when it is safe instead of to take a dangerous sudden lane
change. The speed profiles of the four obstacle vehicles are
shown in Fig. 10b.

B. MPC-BASED PATH TRACKING
TheMPC controller is used as a path trackingmodule. To bal-
ance the computation cost and themodel accuracy, the 3-DOF
vehicle dynamics model in Fig.11 is used as the prediction
model.

The formulations for 3-DOF dynamics model [31] are
presented as

m
(
v̇x − ωvy

)
= Fx cos δ

m
(
v̇y + ωvx

)
= Fy,r + Fy,f cos δ

Izω̇ = Fy,f Lf cos δ − Fy,rLr .

(22)

The motion formulations of the vehicle are shown as{
Ẋ = vx cosϕ − vy sinϕ
Ẏ = vx sinϕ + vy cosϕ,

(23)
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FIGURE 10. Driving scenario D: A scenario with real data based on highD
dataset.

FIGURE 11. The 3-DOF vehicle dynamics model.

where vx , vy and ω are the longitudinal, lateral velocity and
yaw rate of the vehicle, respectively. X , Y and ϕ denote the
longitudinal and lateral positions, and the heading angle, m
and Fx represent the vehicle mass and longitudinal force of
the front-driving tire based on the linear tire model [32], Fy,f
and Fy,r denote the lateral force of front and rear tires, Lf , Lr
and Iz represent the front and rear wheelbases, and the vehicle
inertia around vertical axis.

Based on the optimal control theory, a quadratic cost func-
tion is designed for MPC tracking control. The optimization
problem can be described as follows:

min
1Ut

Np∑
k=1

‖yt+k,t − ydest+k,t‖
2
Q + ‖1ut+k−1,t‖

2
R

s.t. (k = t, .., t + Np − 1)

xk+1t = Adxkt + Bdukt
yk,t = Cdxkt
ymin ≤ yk,t ≤ ymax
umin ≤ uk,t ≤ umax
1uk,t ∈ [1umin,1umax]

uk,t = uk−1,t +1uk,t (24)

where Q and R are the weights of the cost terms, k repre-
sents the prediction of k th step ahead of t; Ad and Bd are
the discrete matrices of the state-equation based on Euler
method [33]; Cd denotes the output matrix, ydest+k,t repre-
sents the reference path generated by ADPF-PP; yt+k,t is the
real-time position of the ego vehicle. The Optimal problem
is solved by an open-source solver qpOASES [34]. The basic
parameters of the vehicle model are in the Table 1 of [32]. The
relative parameters of the MPC controller are described and
configured in Table 2.

TABLE 2. Parameters for MPC controller.

C. RESULTS AND DISCUSSIONS
An improved potential field-based path planning (IPF-PP)
method [35] and the classical CPF-PP method are used for
comparison with the proposed approach in this study. The
results are presented as follows.

The initialization parameters of scenario A are shown
in Table 3. The initial and target velocities of the ego vehicle
are set as 25m/s. The corresponding results in scenario A are
shown in Fig. 12, where the lateral positions and the speeds
of the ego vehicle when using different methods are com-
pared in 12a and Fig. 12b, respectively. The lateral position
results indicate that these methods are sensitive to the lateral
approaching of the obstacle, because the lane departures
happen during the lateral approaching process (0s ∼ 2s)
of the obstacle. Differently, the planned path of ADPF will
guide the ego vehicle to take a lane change earlier than the
two compared methods for better driving safety performance
during the emergency braking of the lead car from 3.8 s to
6.2 s. The comparison of tracking velocities indicates that the
driving efficiencies of these approaches are almost the same.
These results show that the proposed ADPF can improve the
driving safety without decreasing the driving efficiency.

TABLE 3. Initialization parameters of scenario A.

The quantitative indexes shown in Table 4 (i.e., ωmax , V̄x ,
ay,max and TTC) are used to evaluate the performance of the
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FIGURE 12. The results comparison of scenario A.

TABLE 4. Results of different methods in scenario A.

examined methods from different aspects including vehicle
stability, driving comfort, and driving safety. The detailed
descriptions of these indexes are given in Table 4, as well as
the corresponding results when using different methods. The
comparison results onωmax show that the proposed ADPF-PP
method can achieve a better vehicle stability performance
than the other two compared methods. The V̄x is almost the
same across these three comparedmethods. The lowest ay,max
when using ADPF-PP shows the superiority to the other two
methods on driving comfort, and the TTC results show that
the driving safety with ADPF-PP can be effectively improved
with almost the same passing velocities.

The initialization parameters of scenario B are shown
in Table 5 including the velocities and positions of the ego
vehicle and the obstacle vehicle, respectively. The compari-
son results when using different methods in scenario B are
shown in Fig. 13. The comparison of the lateral positions
shows that the generated paths of CPF-PP and IPF-PP lead
the ego vehicle to take a lane change for overtaking when the
lead vehicle is accelerating. However, this is not reasonable

TABLE 5. Initialization parameters of scenario B.

FIGURE 13. The results comparisons of the driving scenario B.

because the speed of the lead vehicle is already higher than
the target velocity of the ego vehicle before the time of 8 s
(27 m/s vs 25 m/s), thus the lane change is not needed for
safety reasons but may result in worse driving comfort and
increase the risk of sideswipe crashes. The tracking velocity
results show that the driving efficiency when using different
methods are almost the same.

The quantitative results when using different methods are
shown in Table 6. Similar with the results shown in Table 4,
the comparison results on all the examined indexes show the
same trends as in scenario A. The ego vehicle with ADPF-PP
will only take a lane change when the acceleration of the front
vehicle is less than 2.2 m/s2, which is smaller than that of
the CPF-PP (3.5 m/s2) and the IPF-PP (3 m/s2). Since the
ADPF-PP has a lower acceleration threshold, it can efficiently
decrease the unnecessary lane changes to improve the driving
safety and driving comfort of autonomous vehicles.

TABLE 6. Results of different methods in scenario B.

Since the PFs of IPF-PP and CPF-PP are designed under
the Cartesian coordinate system, they cannot be used in a
curve road scenario for comparisons. Therefore, the driv-
ing scenario C is only used to verify the feasibility and
robustness of ADPF-PP. The initial and target velocities of
the ego vehicle are set to 15 m/s and 20 m/s, respectively.
The results when using ADPF-PP in driving scenario C are
shown in Fig. 14. The results of tracking velocity and the
steering command show that the velocity can be well tracked
with ADPF-PP in the curve road scenario, and the planned
path (red route in Fig. 14b) of ADPF-PP shows that ADPF
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FIGURE 14. The results of ADPF-PP in scenario C.

is automatically adaptive to the mass of obstacle vehicles.
Furthermore, the black trajectory shows that the planned path
can be well tracked. These results support that the proposed
path planning approach can be well applied in the curve road
environments. The quantitative results when using ADPF-PP
in scenario C are shown in Table 7. The examined indexes of
ωmax , ay,max and V̄x show that the ego vehicle with ADPF-PP
can avoid the obstacles with a good vehicle stability, ride
comfort and driving efficiency in a curve road environment.

TABLE 7. Results of ADPF-PP in scenario C.

The extracted parameters from a crowd highway driving
scenario in the naturalistic driving dataset highD are used to
design scenario D, and parameter values are shown in Table 8.
As illustrated in Figure 10, the ego vehicle intends to laterally
move to the left lane. According to the extracted information,
the target speed of the ego vehicle is set as 23 m/s and the
target lane is set Lane #3.

The corresponding lateral position and tracking velocity
results of the ego vehicle when using different methods are
shown in Fig. 15. The lateral position results indicate that the
ego vehicle will not take a lane change immediately because
of the current crowd and unsafe situation in the target lane.
The ego vehicle will only take a lane change maneuver when
there is a safe distance gap for lane change in the target lane.
Fig. 15a shows that the moment of lane change when using
ADPF-PP is later than the moments when using the other two
methods, because both the velocities and accelerations of the
obstacles are considered to establish the potential field for
safety improvement in ADPF-PP. Similarly, the velocities of

TABLE 8. Initialization parameters of scenario D.

FIGURE 15. A driving scenario with real data based on the highD dataset.

the ego vehicle shown in Fig. 15b indicate that the driving
efficiencies when using different methods are also almost the
same in scenario D.

The quantitative results when using different methods are
shown in Table 9. The comparison results on the examined
indexes of ωmax , ay,max and V̄x show the same trends as in
scenario A and scenario B. The comparison results of Dsafe
show that the driving safety with ADPF-PP can be effectively
improved with a larger interval distance during lane change.

TABLE 9. Results of different methods in scenario D.

All the above results show that the proposed approach can
be used to improve the driving safety and driving comfort
while retaining the driving efficiency in various driving sce-
narios on both straight roads and curve roads.

V. CONCLUSION
The potential fields are redesigned to establish the PF of
the obstacles by considering the mass and acceleration/
deceleration of the obstacle in a transformed road coordinate
system. A path planning based on the redesigned potential
field (ADPF) is proposed to improve the driving safety and
ride comfort of AVs in complex driving scenarios.
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The complex driving scenarios, which including a cut-in
and emergency braking scenario, an overtaking scenario with
accelerating lead vehicle and a curve road driving scenario,
are constructed to verify the effectiveness and robustness
of the proposed approach. Furthermore, a driving scenario
with real information of the environment vehicles is used to
examine and to evaluate the method. The results in the cut-in
and emergency braking scenarios illustrate that the ADPF-PP
can improve the driving safety with almost 3 times improve-
ment on TTC for obstacle avoidance, and the unnecessary
lane change maneuvers can be efficiently decreased almost
37.14% in the overtaking scenario. The results of the curve
road scenario verified the feasibility and robustness of the
proposed algorithm to the curve road environment.

In our future work, more experiments on a vehicle-in-loop
(VIL) platform or in on-road real driving scenarios should
be further conducted for improvement and validation of the
proposed method. Meanwhile, how the local optima problem
can be completely or sufficiently avoided in more complex
and unknown driving scenarios with more traffic participants
is still a challenging task and should be further addressed in
the future work to improve the robustness of the proposed
methods.
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