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ABSTRACT This article presents a two-stage method for beam hardening artifact correction of dental cone
beam computerized tomography (CBCT). The proposed artifact reduction method is designed to improve
the quality of maxillofacial imaging, where soft tissue details are not required. Compared to standard CT,
the additional difficulty of dental CBCT comes from the problems caused by offset detector, FOV truncation,
and low signal-to-noise ratio due to low X-ray irradiation. To address these problems, the proposed method
primarily performs a sinogram adjustment in the direction of enhancing data consistency, considering
the situation according to the FOV truncation and offset detector. This sinogram correction algorithm
significantly reduces beam hardening artifacts caused by high-density materials such as teeth, bones, and
metal implants, while tending to amplify special types of noise. To suppress such noise, a deep convolutional
neural network is complementarily used, where CT images adjusted by the sinogram correction are used
as the input of the neural network. Numerous experiments validate that the proposed method successfully
reduces beam hardening artifacts and, in particular, has the advantage of improving the image quality of
teeth, associated with maxillofacial CBCT imaging.

INDEX TERMS Cone beam computed tomography, metal-related beam hardening effect, sinogram incon-
sistency correction, deep learning.

I. INTRODUCTION
In clinical dentistry, dental cone beam computerized tomog-
raphy(CBCT) has been gaining significant attention as a
crucial supplement radiographic technique to aid diagno-
sis, treatment planning, and prognosis assessment such
as diagnosis of dental caries, reconstructive craniofacial
surgery planning, and evaluation of the patient’s face [18],
[33], [47], [48]. In particular, with relatively low-dose radi-
ation exposure, dental CBCT allows the provision of high
quality 3D maxillofacial images, which can be used in a
wide range of clinical applications in order to understand
the complicated anatomical relationships and the surrounding
information of the maxillofacial skeleton. Nevertheless, max-
illofacial CBCT imaging still suffers from various artifacts
that significantly degrade the image quality regarding bone
and teeth. Compared to standard multi-detector CT (MDCT),
the additional difficulty of artifact reduction in most dental
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CBCT is caused by the use of low X-ray irradiation and a
small-size flat-panel detector in which the center axis of rota-
tion is offset relative to the source-detector axis to maximize
the transaxial FOV [8], [9].

As the number of patients withmetallic implants and dental
filling is increasing, metal-induced artifacts are common in
dental CBCT [12], [44], [49], [50]. These metal-related arti-
facts are generated by the effects of beam hardening-induced
sinogram inconsistency and different types of complicated
metal-bone-tissue interactions with factors such as scattering,
nonlinear partial volume effects, and electric noise [5], [21],
[32], [51]. Furthermore, reducing metal-induced artifacts,
which is known to be a very challenging problem in all kinds
of CT imaging [11], [19], ismuch difficult in the dental CBCT
environment owing to additional problems arising from offset
detectors, FOV truncations, and low X-ray doses.

There have been extensive research efforts for beam-
hardening artifact correction (BHC), which reduce metal-
induced streaking and shadow artifacts without affecting
intact anatomical image information. In the dental CBCT
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environment, the existing BHC methods are not applica-
ble, do not reduce the metal artifacts effectively, may intro-
duce new streaking artifacts that didn’t previously exist,
or require huge computational complexity. Dual-energy CT
[1], [30], [56] requires a higher dose of radiation compared
with single-energy CT [10]; therefore, this approach is not
suitable for low-dose dental CBCT. In raw data correction
methods, unreliable background data due to the presence of
metallic objects can be recovered using various inpainting
techniques such as interpolation [2], [6], [26], [31], [45],
normalized interpolation (NMAR) [35], Poisson inpainting
[39], wavelet [36], [57], [58], tissue-class model [4], total
variation [13], and Euler’s elastica [17]. These methods
might introduce new artifacts that did not previously exist.
Moreover, these techniques tend to impair the morpholog-
ical information in the areas around the metal objects in
the reconstructed images. Various iterative reconstruction
methods have been developed for BHC [14], [15], [34],
[38], [54]. This approach requires extensive knowledge about
the CT system configuration, and the associated computa-
tion time for full iterative reconstructions can be clinically
prohibitive.

A direct sinogram inconsistency correction method [32]
was proposed recently to alleviate beam-hardening factors,
while keeping a part of the data where beam hardening effects
are small. This approach has an advantage over conven-
tional image processing-based methods in that it does not
require any segmentation of the metal region. Unfortunately,
this method cannot be directly applied in our case because
of problems caused by offset detector and FOV truncation.
In [42], a deep learning-based sinogram correction method
is used to reduce the primary metal-induced beam-hardening
factors along the metal trace in the sinogram. This method
was applied to the restricted situation of patient-implant-
specific model, where the mathematical beam hardening
corrector [40], [41] of a given metal geometry effectively
generates simulated training data. This type of approaches
may not be suitable for the dental CBCT case, in which
the sinogram mismatch is intertwined by complex factors
associated with various geometry of metals, metal-bone
and metal-teeth interaction, FOV truncation, offset detector
acquisition, and so on.

To overcome the aforementioned difficulties arising in
low-dose offset-detector CBCT, this article proposes a
two-stage BHC method that mainly focuses on improv-
ing the quality of maxillofacial imaging, where soft tissue
details are not required. In the first stage, we apply sinogram
inconsistency correction by adjusting the sinogram intensity
to reveal the anatomical structure obscured by the artifact.
To perform the sinogram adjustment under the offset-detector
CBCT environment, the proposed method uses a sinogram
reflection technique and the data consistency condition [7]
related to the sinogram consistency in the presence of FOV
truncation. In the second stage, a supplemental deep learning
technique is employed to eliminate the remaining streaking
artifacts.

Numerical simulations and real phantom experiments
show that the proposed method effectively reduces beam
hardening artifacts and offers the benefit of improving the
image quality of bone and teeth associated with maxillofacial
CBCT imaging.

II. METHOD
The proposed method is for the most widely used dental
CBCT systems shown in Figure 1, which use an offset
detector configuration and an interior-ROI-oriented scan. Let
P(β, u, v) denote an acquired sinogram, where β ∈ [0, 2π ) is
the projection angle of the X-ray source rotated along the cir-
cular trajectory, and (u, v) is the coordinate system of the 2D
flat-panel detector. Because the effective FOV does not cover
the entire region of an object to be scanned, the sinogram P
can be expressed by

P = S ub(P full) (1)

where P full is the corresponding sinogram acquirable with
non-offset and wide-detector CBCT providing a whole infor-
mation of a sinogram and S ub is a subsampling operator
determined by the size and offset configuration of a detector.
More precisely, let a 2D flat-panel detector be aligned in
[−ε, `] with respect to u-axis. As shown in Figure 1, sinogram
P is truncated by

P = S ub(P full) =

{
P full if u ∈ [−ε, `]
0 if u ∈ [−`′,−ε] ∪ [`, `′]

(2)

where [−`′, `′] is the support of P full with respect to the u-
axis. This missing information in P along the u-axis makes
the application of existing methods difficult.

Metal-related beam hardening artifacts are caused by the
polychromatic nature of the X-ray source beam. According
to the Beer-Lambert law [3], the sinogram P is given by

P = S ub(−ln
∫
E
η(E) exp(−R�µE )dE) (3)

where R� is a cone beam projection associated with 3D
Radon transform, and µE is a three-dimensional distribution
at an energy level E . In the presence of high-attenuation
objects such as metal, the sinogram inconsistency between
P and the reconstruction model (based on the assumption
of the monochromatic X-ray beam) generates streaking and
shadowing artifacts in a reconstructed image [41].

As described in Figure 2, the proposedmethod is composed
of the following four functions:

f = f dl ◦R
−1
� ◦ f cor ◦ f rf (4)

where
• f rf is a sinogram reflection process, which estimates
missing data in P by the offset detector configuration
(see Figure 3).

• f cor is a sinogram inconsistency corrector, which allevi-
ates a beam hardening-induced sinogram inconsistency
while considering FOV truncation (see Figure 4).

225982 VOLUME 8, 2020



T. Bayaraa et al.: Two-Stage Approach for Beam Hardening Artifact Reduction in Low-Dose Dental CBCT

FIGURE 1. Beam hardening artifact reduction in dental CBCT is to find a reconstruction function f that recovers a local ROI � of a desired
beam hardening artifact-free image R−1

� P∗ from a dental CBCT sinogram P. Owing to the offset detector configuration and
interior-ROI-oriented scan, P can be viewed as a subsampled sinogram from a fully sampled sinogram P full acquirable in the standard
CBCT. This subsampling causes sinogram truncation and asymmetry.

• R−1� is a standard FDK algorithm [16] given by

R−1� P(x, z)=
∫ 2π

0

∫
R

P(β, u, vβ,x,z)R3h̄(uβ,x − u)

4πU2
β,x

√
R2 + u2 + v2β,x,z

dudβ

with the addition of the sinogram extrapolation method
[53]. Here, x = (x1, x2), R is the distance from the X-ray
source to the isocenter, h̄ is the inverse Fourier transform
of a 1D ramp filter,Uβ,x = R+x ·θ⊥β , vβ,x,z = zR/Uβ,x,
uβ,x = R(x · θβ )/Uβ,x, θβ = (cosβ, sinβ), and θ⊥β =
(− sinβ, cosβ).

• f dl is a deep learning network, which further improves
the reconstruction image (see Figure 6).

The proposedmethod is designed to generate a reconstruction
function f : P 7→ R−1� P∗| ROI, where R−1� P∗| ROI repre-
sents a local ROI reconstruction with P∗ being a corrected
sinogram of P. Here, ROI is the region of interest that is deter-
mined by the truncated sinogram. The ROI is represented at
the right-middle side of Figure 1. The sinogram P∗ can be
P∗ = R�µ∗ for an attenuation coefficient distribution µ∗ at
a mean energy level E∗. The following subsections explain
each process in detail.

1) SINOGRAM REFLECTION
The sinogram reflection process provides the missing part of
P (i.e. missing information in u ∈ [−`,−ε]). This filling
should be based on the following approximate identity of
P full in (1):

P full(β, u, v) ≈ P full(βu,−u, v), ∀ u ∈ [0, `] (5)

where

βu = β + π + 2 tan−1(−
u
R
) (6)

Note that the above approximation becomes the equality as
v→ 0.

Based on (5), the filled sinogram P] is obtained as follows:

P](β, u, v)=


P(β, u, v) if u ∈ [ε, `]
ω(u)P(βu,−u, v)
+(1− ω(u))P(β, u, v) if u ∈ (−ε, ε)
P(βu,−u, v) if u ∈ [−`,−ε]

(7)

where ω is a weighting function given by

ω(u) =
1− cos(π (−u+ ε)/(2ε))

2
(8)
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FIGURE 2. The proposed two stage method for beam hardening artifact reduction in dental CBCT. The proposed method comprises (stage 1) sinogram
reflection and sinogram adjustment and (stage 2) deep learning. The sinogram reflection f rf is used to recover a missing data in P caused by the offset
detector acquisition. After then, the proposed method alleviates the beam hardening-induced sinogram inconsistency by applying the sinogram
adjustment algorithm f cor. Using a trained deep learning network f dl, the reconstruction image is further improved.

FIGURE 3. The sinogram reflection process. The missing part of P is recovered using the relation (5) and a sinogram P. The filled sinogram P] is
obtained based on the relation (7). This process is repeated in all sinogram slices.

The weighting function ω is used to address the partial data
redundancy due to the offset detector geometry of dental
CBCT, where projections between u = −ε and u = ε are
measured twice. The weighting function is designed to reflect
the original projection data as much as possible, while the
normalized projection P] is continuous across the boundary
of the redundant region. The function f rf in (4) is the map
from P to P].

2) SINOGRAM INCONSISTENCY CORRECTION
The sinogram inconsistency correction alleviates the beam
hardening-induced sinogram inconsistency in P] by develop-
ing the sinogram inconsistency corrector f cor. The goal is to
find the corrector function f cor : P] 7→ P∗ that maps from
the inconsistent sinogram P] to a consistent sinogram P∗,

which lies in the range space of the CBCT model. Note that
the corrector acts in the restricted interval u ∈ [−`, `].
The proposedmethod is based on the following polynomial

approximation:

P∗ ≈ f cor(P]) =
n∑
i=0

λiPi] (9)

where the coefficients λ0, · · · , λn are determined in the way
that f cor(P]) satisfies the data consistency condition [7].
To be precise, λ = (λ0, · · · , λn) can be determined by solving
the following minimization problem:

λ = argmin
λ

k∗∑
k=0

∫ ∣∣∣∣ ∂k+1∂xk+1
Tk,y0 [f cor(P],0)](x)

∣∣∣∣2 dx (10)
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FIGURE 4. Sinogram inconsistency correction process. To determine an unknown set of parameters λ in the correction function f cor,
the optimization procedure involving the data consistency condition taking the situation of FOV truncation into consideration is used with
a sinogram slice P](β,u,0). After finding λ, a whole sinogram is adjusted by f cor.

FIGURE 5. Data consistency condition for a truncated fan-beam sinogram data. For a fan beam sinogram P],0 possessing truncation issue
and any nonzero integer k , if P],0 is consistent, the function Tk,y0

[P],0] becomes a polynomial with degree k .

where P],0(β, u) = P](β, u, 0) and

Tk,y0 [f cor(P],0)](x)

=

∫ βr

−βl

f cor(P],0)(β, uβ )R2(R sinβ + x)k

(R2 + u2β )
1
2 (R cosβ − y0)k+1

dβ (11)

Here, as seen in Figure 5, y0 is the height of a line L lying
inside the ROI but not intersecting with a scanned object,
βl = cos−1(y0/R), βr = 2π − βl , and uβ = (x cosβ +
y0 sinβ)/(R + x sinβ − y0 cosβ). The function Tk,y0 is a
weighted back projection of the sinogram f cor(P],0), which
is equivalent to a weighted back projection by tank (ϕ)/ cos(ϕ)
of the corresponding parallel beam sinogram to f cor(P],0),
where ϕ is the source angle of the parallel beam and the
weight tank (ϕ)/ cos(ϕ) is associated with the point response

function ψk given by ψk (x, y) = (−x)ksgn(y)/yk+1. Further
details can be found in [7]. Note that, for the artifact-free
sinogram P∗ (i.e., consistent sinogram), Tk,y0 [P∗,0](x) is a
k-th order polynomial, where P∗,0(β, u) = P∗(β, u, 0) (see
Figure 5). Hence, if f cor(P],0) = P∗,0 (i.e., ideal sinogram
correction), Tk,y0 [f cor(P],0)] satisfies

∂k+1

∂xk+1
Tk,y0 [f cor(P],0)](x) = 0, ∀ k = 0, 1, 2, . . . (12)

This motivates the minimization problem (10).
In practice, this method can not be directly used and should

be greatly simplified. To reduce the number of unknowns,
the proposed method uses only zero order condition
(i.e., k∗ = 0) and the following simplified approximation [32]
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FIGURE 6. Deep Learning process is used for improving the quality of a reconstructed image. Using a training data set {(µ(k,j )
]

, µ
(k,j )
∗ )}k,j ,

the convolutional neural network U-net learns a function f dl that maps a reconstructed image µ] by sinogram adjustment algorithm to
our desired image µ∗.

FIGURE 7. This figure shows the reconstructed image R−1
� f cor(P]) by the sinogram corrector f cor varies with the thresholding value 3 =

0.1,2,2.5,3,6. The beam hardening artifacts are considerably alleviated with 3 between 2 and 3.

with only four parameters λ = (λ0, λ1, λ2, λ3):

f cor(P]) =


P] if P] ≤ 3

hλ0,3(P])+
3∑
i=1

λi(P] −3)i if P] > 3

(13)

where 3 is a suitably chosen constant and

hλ0,3(t) =
λ03− 1
2λ0e−λ03

e−λ0t +
λ03+ 1
2λ0eλ03

eλ0t (14)

That is, f cor in (13) is determined by

λ = argmin
λ

∫ ∣∣∣∣ ∂∂x T0,y0 [f cor(P],0)](x)
∣∣∣∣2 dx (15)

The function hλ0,3, which is the solution of the ordinary
differential equation h′′ − λ20 h = 0 for P] ≥ 3 with the

boundary condition h(3) = 3 and h′(3) = 1, is utilized
for the smooth connection of the correction function f cor at
P] = 3.

Owing to the sinogram inconsistency correction, we obtain
the artifact-reduced image µ = R−1� ◦ f cor(P]). Here,
the sinogram extrapolation method [53] is additionally used
to reduce cupping artifacts caused by FOV truncation. Unfor-
tunately, as seen in the third column of Figure 8, the sino-
gram correction tends to amplify noise-induced streaking
artifacts, while reducing beam hardening-induced artifacts.
Due to the nature of the increasing function f cor (see f cor
in Figure 7), noises in a sinogram can be further increased
and, therefore, noise-induced streaking artifacts can be ampli-
fied. Fortunately, the corrected image R−1� ◦ f cor(P]) has
a more deep-learning friendly image than the uncorrected
image R−1� P], as shown in the first and third column of
Figure 8.
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FIGURE 8. Numerical model experiment results. Model 1 simulates patient with metal implants and Model 2 resembles patient with metal implants
along with brackets. From each model, sinogram data is generated with different noise levels. Each column displays reconstruction results by FDK
algorithm (first), linear interpolation + FDK algorithm (second), and the proposed method (third and fourth), and a reference image (fifth). All images are
displayed in the window is [C = 500HU/W = 5000HU].

3) DEEP LEARNING PROCESS
The deep learning process is designed to suppress
noise-induced streaking artifacts inR−1� ◦ f cor(P]). The pro-
posed method uses the convolutional neural network U-net
[46], which is known to effectively reduce streaking artifacts
[22], [23], [25].

Let {(µ(k)
] ,µ

(k)
∗ )}Nk=1 be a training dataset, where µ(k)

] is a
noisy 3D CT image reconstructed by the sinogram inconsis-
tency correction and µ(k)

∗ = R−1� P(k)
∗ is the corresponding

noise-reduced image. The function f dl can be learned by the
following training process:

f dl = argmin
f dl∈U net

N∑
k=1

M∑
j=1

‖f dl(µ
(k,j)
] )− µ(k,j)

∗ ‖
2
`2

(16)

where U net is a set of all learnable functions from U-net,
µ
(k,j)
] is the j-th slice of µ(k)

] on z-axis, µ(k,j)
∗ is the j-th slice

of R−1� P(k)
∗ on z-axis, and M is the total number of z-axis

slices of µ] and µ∗.
The overall structure of the U-net is described in Figure 6.

The architecture of theU-net comprises two parts; contracting
and expansive path. Extracting feature maps from an input
image, the contracting path is a repeated application of a 3×3
convolution with a rectified linear unit (ReLU) activation
function and max-pooling. In the expansive path, a 3×3 con-
volution with ReLU and an average un-pooling is repeatedly
applied and each un-pooled output is concatenated with the
corresponding feature map in the contracting path to prevent
loss of detailed information in the image. In the last layer of
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FIGURE 9. The figure shows the profile and standard deviation of ∂
∂x T0,y0

(x) for target consistent sinogram, uncorrected sinogram,
and corrected sinograms by linear interpolation and the proposed sinogram correction method in Stage 1. The proposed method
provides the standard deviation which is similar level with that of the target sinogram.

the expansive path, 1 × 1 convolution is applied to integrate
the multi-channel feature map into one output.

III. RESULT
A. EXPERIMENTAL SETTING
To evaluate the capability of the proposed method, several
numerical simulations and real phantom experiments were
performed in a MATLAB environment. Real phantom exper-
iments were conducted using a commercial CBCT machine
(Q-FACE, HDXWILL, South Korea). All numerical simu-
lations were designed on the same scale and detector con-
figuration according to those of a real CBCT machine. For
cone-beam projection and back projection, we modified the
open-source algorithm [28].

An acquired 3D sinogram comprises 658 sinogram slices
with respect to the v-axis whose size is 720 × 654. Here,
720 is the number of projection views sampled uniformly in
[0, 2π ) and 654 is the number of samples measured by the
detector for each projection view. Among 654 samples, 605
samples were measured in the larger arm of the offset detec-
tor. In the reconstruction process, a sinogram was converted
by the standard FDK algorithm into a CT image voxel of size
800× 800× 400.
The value of the constant 3 in (13) is empirically chosen

by observing tissue values in a sinogram. The constant3 does
not have to be an exact value, because a small change in3 has
little effect on the correction function, as shown in Figure 7.
For deep learning, a training dataset was generated as

follows. Metallic objects were inserted in metal-free images,
by virtue of which simulated sinograms were obtained.

In each metal-free image, many simulated sinograms can be
generated by varying the shape and type of the inserted metal
objects. After applying the sinogram inconsistency correction
to each simulated sinogram, a set of training input data was
obtained. To summarize, in the generation of the training
dataset, 14 metal-free images were used. For the metal-free
images, several teeth were roughly segmented using a manual
process and iron metal objects were placed near the teeth
through random translation. The shape of the metal objects
was generated through random rotation and resizing of the
ellipse. We also changed the geometry parameters related to
the ellipse’s shape. Three cases were simulated: implant (the
number of implants was randomly set as 2 or 4), bracket
(the number of brackets was randomly set as 4, 6, or 8), and
both implant and bracket (combination of implant and bracket
case).

All deep learning implementations were performed in a
Pytorch environment [43] with a computer system equipped
with two Intel(R) Xeon(R) CPU E5-2630 v4, 128GB
DDR4 RAM, and four NVIDIA GeForce GTX 2080ti GPUs.
All training weights were initialized by a zero-centered nor-
mal distribution with a 0.01 standard deviation and a loss
function was minimized using the Adam optimizer [27].
Batch normalization was applied to achieve fast convergence
and to mitigate the overfitting issue [24].

B. NUMERICAL SIMULATION
In the numerical simulation, a sinogram was generated by
inserting metal materials in the metal-free CT human head
image voxel and by adding Poisson and electric noise.
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FIGURE 10. Several z-axis slice images of a 3D reconstruction image by the proposed method with a parameter estimation using a center
(v = 0) and a non-center (v = −15) sinogram slice. In the first column, three z-axis slices of an uncorrected image are displayed. The other
columns display three z-axis slices of a reconstructed image by the proposed method using the parameter estimation (15) with the center
(second and third column) and the non-center slice (fourth and fifth column). All images are displayed in the window [C = 500HU/W = 5000HU].

FIGURE 11. Comparison between the proposed method and a deep learning method that directly uses U-net to learn a function
f :R−1

� P 7→ µ∗. The figure shows two experimental results for the case of low (first row) and high noise (second row).

We referred to the attenuation coefficient values of metal
implants in [20] and polychromatic X-ray energy spectrums
in [37].

To test the proposed method, two numerical models
(Model 1 and Model 2) were designed. Each model is gener-
ated by placing metallic objects resembling a dental implant
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TABLE 1. Quantitative comparison for numerical models.

FIGURE 12. Real phantom experimental results. Phantom 1 includes acryl blocks and 2 cylinders filled with a fluid iodine concentration
of 370 mgI/ml and Phantom 2 contains acryl block, tissue-equivalent phantom, root canal filling and cylinders filled with different fluid. Each
column displays a phantom (first) or a reconstruction results by FDK algorithm (second), linear interpolation + FDK algorithm (third), and the
proposed method (fourth and fifth). All images are displayed in the window is [C = 0HU/W = 4000HU].

TABLE 2. Quantitative comparison using NRMSD and SSIM for the proposed method and direct deep learning method.

(Model 1) and bracket (Model 2). In each model, two sino-
grams (low noise and high noise) were generated with two
different ampere settings.

Figure 8 shows results of beam hardening artifact reduc-
tion by using linear interpolation, and the proposed method.
Quantitative comparisons of these methods, based on normal-
ized root mean square difference (NRMSD) and structural
similarity (SSIM) [55] metrics, are listed in Table 1. The
linear interpolation method reduces beam hardening artifacts,
whereas it destroys the morphological structure of tooth.
In contrast, the proposed method reduces not only beam

hardening artifacts, but also improves the quality of the tooth
image.

To evaluate the improvement of the sinogram consistency,
as shown in Figure 9, we compare the profile and standard
deviation σ of ∂

∂x T0,y0 (x) with respect to zeroth order con-
sistency condition (i.e., ∂

∂x T0,y0 (x) = 0). Here, σ can be
viewed as an indicator of the level of inconsistency. The
proposed sinogram correction method significantly improves
the sinogram consistency.

In high noise case, the advantage of using U-net is empha-
sized. In stage 1 of the proposed method, tooth structure
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FIGURE 13. Several z-axis slice images of a 3D reconstruction image by the proposed method (second and
third row). All images are displayed in the window is [C = 0HU/W = 4000HU].

are considerably improved, whereas noise-related streaking
artifacts are amplified (see Figure 8). Owing to the amplified
artifacts, the proposed method achieves poor quantitative
evaluation results in the stage 1, as seen in Table 1. In the
stage 2, however, as shown in Figure 8 and Table 1, U-net
successfully suppresses the streaking artifacts and, therefore,
the proposed method shows good quantitative performance.

Several z-axis slices of a 3D reconstruction image are
provided in Figure 10. The proposed method alleviates beam
hardening artifacts in the entire image domain. We also com-
pare the reconstruction performance of the proposed method
when using a different sinogram slice in the parameter esti-
mation. The proposed sinogram correction method provides
robust results even with parameter estimation in (15) using a
non-optimal sinogram slice (i.e., non-center slicewith v 6= 0).
With the sinogram slice at v = −15, the proposed method

fairly reduces beam hardening artifacts; however its perfor-
mance is worse than that obtained previously.

In Figure 11, we compare the proposed method with the
deep learning method that directly uses an uncorrected image
(i.e. R−1� P) as an input of U-net. Compared to the direct
application of U-net, the proposed method has the advantage
of recovering the tooth structure. This is because the sino-
gram inconsistency correction makes tooth feature in a deep
learning input image salient. Table 2 shows a quantitative
comparison between the proposed method and the direct
deep learning method in terms of NRMSD and SSIM. Our
proposed method exhibits better performance in both metrics.

C. PHANTOM EXPERIMENTS
For real phantom experiments, a real dental CBCT machine
(Q-FACE, HDXWILL, Seoul, South Korea) was used with
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FIGURE 14. Beam hardening artifact reduction results using a numerical model. Each column display a reference (first) and a reconstructed image by FDK
algorithm (second), linear interpolation + FDK algorithm (third), and the proposed method (fourth and fifth). As shown in yellow boxes of the
figure above, the proposed method in stage 1 alleviates beam hardening artifacts related with metal-teeth interaction, but it amplifies noise-related
streaking artifacts. After taking DL, the streaking artifacts are reduced.

a tube voltage 90kVp, tube current of 10mA, and Cu filtra-
tion of 0.5mm. Two phantom models were constructed using
acryl block, tissue-equivalent phantom, root canal filling,
and cylinders filled with a high attenuating fluid (iodinated
contrast media; Dongkook Pharma, Seoul, South Korea).
Figures 12 and 13 present the reconstruction results for the
real phantom experiments. It is observed that the proposed
method significantly reduces beam hardening artifacts while
improving the image quality of scanned objects in the entire
image domain.

IV. DISCUSSION AND CONCLUSION
This article proposes a beam hardening reduction method for
low-dose dental CBCT that overcomes the hurdles caused
by the offset detector configuration and the interior-ROI-
oriented scan. The proposed BHC method is a two-step
method. In the first step, the sinogram corrector f cor in
Section II-2 was applied to reveal the tooth structure that
is obscured by the beam hardening artifacts because of the
sinogram inconsistency. Unfortunately, this sinogram correc-
tor tends to amplify noise-related streaking artifacts. To curb
this, at the second stage, these noise-related artifacts are
significantly eliminated through the deep learning method.

We emphasize that MAR methods for MDCT cannot be
applied directly to low-dose CBCT. The specifications of
commercial dental CBCT are circular cone beam scan, scan
time of 8-24 s, resolution < 0.2 mm, FOV truncation, offset
detector, low X-ray dose, and cost < $0.1 billion. On the other
hand, the specifications ofMDCT are helical cone beam scan,
scan time < 1 s, resolution < 0.3 mm, no FOV truncation,
no offset detector, high X-ray dose, and cost > $1 billion.

Numerical and real phantom experiments were performed
to show that the proposed method is successfully applied in
dental CBCT environment. It is further observed that the pro-
posed method can effectively deal with beam hardening arti-
facts related to not only metallic objects but also metal-bone
and metal-teeth interaction, as shown in Figure 14.
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