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ABSTRACT Gas chromatography is a widely used method in analytical chemistry and metabolomics. Using
gas chromatography, vaporizable compounds can be separated for their further identification. Retention
indices are standardized values that depend only on a chemical structure of a compound and on a stationary
phase and characterize the retention of a compound in a chromatographic system. Retention index prediction
is an important task because databases contain experimental values for a small fraction of all possible
molecules, while this information is usable for untargeted analysis. In this work, we consider four machine
learning models for retention index prediction: 1D and 2D convolutional neural networks, deep residual
multilayer perceptron, and gradient boosting. String representation of the molecule, 2D representation of
the chemical structure, molecular descriptors and fingerprints, and molecular descriptors are used as inputs
of these four models, respectively, along with information about the stationary phase. The first and third
models show the best performance, while the other two perform slightly worse. The models predict retention
index values for various standard and semi-standard non-polar stationary phases. Further improvement in
performance was achieved using a linear model that uses the results of four previous models as inputs
(model stacking). The models were tested using various diverse data sets: flavor compounds, essential oils,
metabolomics-related compounds. Achieved accuracy: median absolute and percentage errors — 6-40 units
and 0.8-2.2%. Accuracy depends on a test data set. The stacking model outperforms previously reported
approaches for all test data sets. Parameters of a pre-trained model and some source code are provided.

INDEX TERMS Analytical chemistry, convolutional neural network, deep learning, gas chromatography,

gradient boosting, residual neural network, retention index, untargeted chemical analysis.

I. INTRODUCTION

Gas chromatography (GC) is an important method for sepa-
rating compounds and chemical analysis and is widely used in
metabolomics, environmental analysis and other fields. Using
gas chromatography, mixtures of vaporizable compounds can
be efficiently and rapidly separated for their further detection
and identification using electron ionization mass spectrome-
try (MS) or other methods. A mixture of vapors of the com-
pounds to be separated moves with a stream of gas (mobile
phase) along the surface of a non-volatile liquid (stationary
phase). Separation is achieved due to different volatility and
affinity of different compounds to the stationary phase. This
leads to the fact that different compounds are retained in the
chromatographic system for a different periods of time. The
retention time depends on all parameters of chromatographic
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separation (such as temperature and mobile phase flow) and
is not transferable between different systems and conditions.
Retention indices (RI) are dimensionless standardized values
that depend only on a chemical structure of a compound and
on a stationary phase and characterize the relative retention
of compounds. There are many systems of retention indices:
Kovats RI [1]-[3], Lee RI [4], RI based on fatty acid methyl
esters (FAME) [5]. The most commonly used system is
Kovats RI system, which is based on the relative retention
time of a compound compared with the retention times of
n-alkanes.

The combination of gas chromatography and mass spec-
trometry (GC-MS) is a common method of analysis of
complex mixtures. Using mass spectrometry, it is possible
to determine the molecular weight of the unknown and
make a reasonable assumption about its structure basing on
fragment ions. It is usually made using a search in mass
spectral databases [6]-[8]. Since only a fraction of organic
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molecules is contained in such databases, methods that do
not depend on experimental reference spectra are under
development too [9]-[11]. In both cases (with or without
a database of experimental mass spectra), the accuracy of
identification can be improved using RI as an additional con-
straint [8], [9], [12]. Many millions of organic molecules are
described; experimental mass spectra are available for several
hundred thousand of them. The number of compounds for
which experimental RI is available does not exceed 200000.
The largest RI database (will be released soon) — the NIST
20 database will contain RI for ~140 thousand compounds.
The previous release — NIST 17 contains RI for 99400 com-
pounds. Other databases [5], [6], [13]-[15] are orders of
magnitude smaller and significantly overlap [16] with NIST.
Accurate RI prediction and the use of predicted RI as
a reference can significantly expand the application of RI
for GC-MS identification. Current RI prediction methods
that are intended to be near-universal (applicable to diverse
organic compounds rather than to one narrow class of
molecules) are much less accurate than experimental RI from
databases [8], [16], [17]. Mean absolute errors (MAE) and
median absolute errors (MdAE) for the most accurate and
versatile RI prediction methods are in the range 30-100
and 17-50 RI units, respectively [16]-[19]. For experimental
RI from the NIST database, an error was previously reported
in the range 11-13 RI units [8], [17]. This value strongly
depends on the way how it was calculated: experimental
values in a database are given for very different chromato-
graphic systems, and such values are compared together
for all “standard” and “‘semi-standard” non-polar stationary
phases without distinction [8], [17]. For the majority of com-
pounds, there is only one experimental value in a database,
and it is difficult to really estimate how reliable it is. RI devi-
ation between experiments with different column instances of
exactly the same column type and the same experimental con-
ditions is 1-4 RI units [1]. The deviation is up to 20 RI units
for exactly the same column type but various experimental
conditions (temperature, sample concentration) [1].
Predicted RI are inaccurate in comparison with experimen-
tal ones but can be used as reference for GC-MS library
search [8], [12], [16], [20]-[22]. The use of RI prediction
makes GC-MS identification more reliable both when a spec-
tral database is used or not [9]. The dependence of the con-
fidence of identification on the reference RI accuracy was
recently discussed [8]. The development of more accurate
RI prediction methods will improve GC-MS identification.
Rl is usually predicted with machine learning methods. Most
publications devoted to this subject usually use quite small
training and test sets (<200 compounds), which are not really
diverse and cover only one narrow class of chemical com-
pounds. Such works use molecular descriptors that are gen-
erated with various, often proprietary, software. It is not really
possible to cover diverse categories of chemical compounds,
such as metabolites, with several such models. Many such RI
prediction models were extensively reviewed [16], [23], [24].
The most notable works [9], [16]-[22], [25]-[30] about RI
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TABLE 1. Retention index prediction using machine learning for large and
diverse data sets.

Compounds N Year Ref.
Diverse set of toxicologically relevant 846 2004 [25]
compounds
Terpenes 573 2007  [26]
NIST 05 25296 2007  [17]*
NIST 05 24509 2009 [21]
Diverse set of toxicologically relevant 846 2009 [27]
compounds
Flavor-related compounds 656 2012 [28]*
Flavors and fragrances 1208 2015 [29]
Flavors and fragrances 1184 2015 [30]**
Diverse set of volatile compounds 560 2016  [20]**
Metabolomics-related compounds. 337 2017 [22]
Mostly trimethylsilyl- derivatives
Metabolites, essential oils 2196 2018 [9]
Components of essential oils 791 2018 [19]
NIST 08, PubChem were used for Atk 2019 [16]

training; metabolites, essential oils,
flavors were used for testing

NIST 17 was used for training;
essential oils, flavors were used for
testing

N — data set size; * — RI were predicted for both non-polar and polar
stationary phases; ** — RI were predicted only for stationary phases other
than standard and semi-standard non-polar; *** — complex training
scheme with two training sets, multiple data sets for testing.

72976 2019 [18]
(training)

prediction, which claim to be more universal and use large
and diverse data sets, are summarized in Table 1.

The RI prediction task is the prediction of one number (RI)
basing on the structure of a molecule. There are many ways
how a molecule can be represented. The most common input
features for machine learning driven prediction of molecule
properties are various molecular descriptors (MD) — relevant
features that can be calculated basing on the structure and
are interconnected with properties of compounds. There are
many proprietary and free software packages for calculating
MD [31], [33]. Types of MD and their usage, in particular
for RI prediction, were extensively reviewed in previous
works [24], [33]-[36]. A typical diverse set of MD con-
tains features that are very diverse in nature: integer and
real numbers, categorical features with different meanings.
MD-based RI prediction can be made using all variety of
machine-learning regression methods that work with tabular
input. Linear regression [17], [19]-[22], [25], [28]-[30], neu-
ral networks [9], [26], [27], k-nearest neighbors [20], support
vectors regression [20], [21], and gradient boosting [18] were
used.

Another type of features that can be used as input for
molecule properties prediction using a machine learning
model is molecular fingerprints (MF). These features can be
considered as a type of molecular descriptors. MF is a set
of binary [37], [38] or, rarely, integer [10], [39] features that
contains a few hundred or even thousands of features of the
same nature. MF are usually based on substructure counts or
local topological features of a molecule [37], [38].

Besides these features, there are many research works that
use more raw representations of a molecule. A SMILES
string representation of a molecule can be used as input
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for 1D convolutional [16], [40]-[42] or recurrent neu-
ral network [42], [43]. This approach performs well in
chromatography-related tasks [16], [44]. It was recently
shown [16] that 1D convolutional neural network (CNN)
outperforms all MD-based approaches for the RI prediction.
A depiction of a molecular structure with some preprocessing
can be used as input for 2D CNN [45], [46]. This represen-
tation was never applied for RI prediction but gives good
results for prediction of other molecular properties. Finally,
there are more complex methods for using a deep neural
network directly with a molecular graph [47]-[49], such as
molecular graph convolutional networks. A molecule can be
featurized in many ways, as shown above, and each of these
ways can be used as input for a model, and the simultaneous
use of various representations and machine learning mod-
els will give better results than using only one model and
representation [42], [45], [50].

The term ‘“‘multimodal machine learning” means that
a machine learning model simultaneously uses different
“modalities” of the input object, for example: for video
classification, different ‘“modalities” can be sound and
visual components [51]; for biochemical activity of a
small molecule, ‘“modalities” are information related to the
molecule and to the biological system [52]. When predict-
ing the property of a single molecule, the use of different
representations of the structure (MF, SMILES, 2D sketch) is
often called multimodal machine learning [50], [53]. These
representations give different information about the structure
and can be considered as different “modalities”. The joint use
of different representations of a molecule can significantly
improve the performance of a model. Considering RI predic-
tion task, information about the chromatographic stationary
phase can be regarded as the additional “modality”’. Usually,
when a model is called multimodal, features from different
“modalities” are processed by different input layers of the
neural network rather than concatenated together at the input
stage. Multimodal machine learning was not used for accurate
RI prediction before.

Model stacking is a technique when predictions of mul-
tiple models are used as input for a second-level model
(or meta-model) that makes the final prediction [54], [55].
This improves the accuracy of prediction. Model stacking
is often used in tasks related to chemistry and biology. For
example, it was used for prediction of small molecule-protein
interactions [56], for disease prediction [57], and for other
biochemistry-related tasks [58]. Model stacking was success-
fully used for prediction of retention time in liquid chro-
matography [59], [60]. To the best of our knowledge, model
stacking of multiple models was not used for RI predic-
tion. Works comparing multiple different machine learning
methods for RI prediction [16], [21], [61] usually do not
discuss their stacking or simultaneous usage. However, there
are works that use the average of outputs of two RI prediction
models for GC-MS library search [8], [20]. It should be
noted that terms ““model stacking” and “multimodal machine
learning” are near-orthogonal. Model stacking can use the

223142

same ‘“‘modality” for all base-level models, in this case it will
be model stacking but not multimodal machine learning.

The aim of this work is development and comparison of
several different machine-learning models that use different
representations of a molecule to predict gas chromatographic
RI, the joint use of these models with a linear meta-learner
for model stacking for even more accurate prediction, and
testing for various external test data sets to determine the
domain of applicability. For external testing, several data
sets with flavor compounds, essential oils, metabolites and
metabolomics-related compounds were selected. Unlike pre-
vious works [16]-[18], [21], our models take into account
information about a stationary phase instead of considering
all non-polar stationary phases as equal. Such model can
be considered as multimodal machine learning since it uses
different representations of the structure (those can be con-
sidered [50], [53] as separate ‘“‘modalities’) and considers
both GC-related modalities: the molecule structure and the
stationary phase. The purpose of this work is to create the
most accurate RI prediction method at the moment that uses
only free and open source libraries for MD computation
and that can be directly used in analytical chemistry and
metabolomics.

Il. METHODS
A. DATA SETS
The NIST 17 database was used as a primary data source for
training, validation, and testing. Initially, NIST 17 contains
404045 RI data records for 99400 compounds. Some of them
are stereoisomers (cis-trans and optical). We excluded some
of these data from our data set. For 210 compounds, Chem-
istry Development Kit (CDK), version 2.3 [62] encounters
problems when processing their structures from a structure
file. This number includes cases when InChl-key generated
on the basis of the parsed structure is different from InChlI-key
given directly from the NIST database. This means that CDK
processes the structure inadequately. 152 compounds were
excluded because they contain unsupported symbols in their
SMILES string. Only C, ¢, N, n, H, O, o, E, B, 1, r, S,
L+ G6)hL)L-=%#123,456,7,8,95s P %,1,
s symbols are supported. This set covers all common organic
elements. Compounds excluded due to this reason contain
uncommon elements (such as selenium), metals or consist of
several parts that are not bonded by covalent bonds. 18 com-
pounds were excluded because they have SMILES string
representation longer than 250 symbols, or have 2D represen-
tation (depiction) larger than 6565 units (see below). Also
for 1174 compounds, we encountered problems extracting
explicit chemical structures from the NIST 17 database.
Stereoisomers (cis-trans and optical) were treated and
counted as identical compounds. All RI data records that
correspond to standard polar stationary phases were also
excluded. Finally, we obtained a data set with 309756 RI
data records for 88675 compounds that contain RI for
standard non-polar and semi-standard non-polar stationary
phases.
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TABLE 2. Data sets used for external testing of the model.

Designation Description Stationary phase rl;{gocll-?ltsa* Ref ** Source
ESSOILS Essential oils DB-5 2073 [14]
OUF Metabolomics-related compounds. Mostly derivatives with high CP-SIL 8 CB 337 [22]

trimethylsilyl- groups content

FLAVORS Flavors and fragrances OV-101 1208 [29] [63]
FLNET1 Flavor-related compounds OV-101 297 [28] [15]
FLNET5 Flavor-related compounds DB-5 405 [28] [15]
SET184 Aliphatic hydrocarbons, alcohols, ethers, ketones, and esters Squalane and OV-1 184 [64] [65-67]
GMD Metabolomics-related compounds 5%-Phenyl methylsiloxane 531 [13]
FIEHNLIB Metabolomics-related compounds RTX-5Sil 601 [5]

* — Number of data records that were actually used in this work after exclusion of unsupported compounds. For most (but not all) compounds, there is
one RI data record in one data set. ** — This column contains references to the source from which the data used in this work were actually collected. In
four cases, there is a secondary source that provides ready-to-use data with SMILES strings. A reference to the original source of the data is given in the

next column for such cases.

For external testing and establishing the applicability
domain, we used 8 data sets from various sources. Table 2
summarizes these data sets and shows the designations
of the data sets that are used in this work. GMD and
FIEHNLIB data sets consist of metabolomics-related com-
pounds. The structures of the compounds in these data sets
are given in the non-derivatized form, while RI for most of
the compounds are actually given for the derivatized form.
Derivatization (for example, substitution of -OH groups with
-OSi(CH3)3; groups) was made to increase volatility of polar
compounds. We retained only those RI data records that are
given for trimethylsilyl- derivatives or underivatized com-
pounds. Other types of derivatization were not supported.
Also, we retained only those derivatized forms for which the
number of -OH groups in a molecule before derivatization
is equal to the number of attached -OSi(CH3)3 groups. Other
data records were excluded because it is not possible to deter-
mine the exact structure of the derivatized form for which
RI was measured. We assumed that all -OSi(CH3)3 groups
replace all -OH groups (not -NH; or other functional groups)
if numbers of -OH groups in the non-derivatized molecule
and -OSi(CH3)3 groups in the derivatized molecule match
each other. For some molecules, this assumption may not be
true, but there is no way to determine the exact structure of
the derivatized form using the available data. Also, several
compounds were excluded from GMD and FIEHNLIB data
sets using the same criteria that were used for the NIST
17 data set.

Lee retention indices [4] and FAME-based retention
indices [5] were converted to Kovats retention indices using
previously reported polynomial equations [5], [17], see also
the Supplementary material, section S1. Stereoisomers were
treated as identical compounds. We stored structures of com-
pounds in data sets as SMILES strings without symbols that
designate cis-trans and geometric (e.g., optical) isomers. Our
script ensures that identical SMILES strings are created for
identical structures. The data sets used for testing are shown
in Fig. 1.

B. INPUT FEATURES FOR MACHINE LEARNING MODELS
For 1D CNN, we used one-hot encoded SMILES strings,
as was previously published [16]. The number of possible
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OUF FLNET1
FIEHNLIB FLNET5
GMD ESSOILS
871 SET184

2674

FLNET5

FLAVORS
896

FIGURE 1. Area-proportional Venn diagrams for the data sets used for
testing in this work. Stereoisomers (cis-trans and optical) are counted as
identical compounds.

symbols was the number of CNN channels (each possible
symbol — one channel). For 2D CNN we created 2D coor-
dinates of each atom and of the middle of each bond. 2D
coordinates were created using CDK [62], and these coordi-
nates correspond to the coordinates in 2D depiction (sketch)
of the chemical structure. Molecules with depictions that do
not fit into a square with dimensions 65*65 units were not
considered. Other molecules were centered in this square,
the square was split into cells with dimensions 0.5*0.5 units.
This results in 130*130 cells. For each cell, 29 features were
created. 26 one-hot features encode the type of an atom (if
any atom is located in this cell), and 3 one-hot features encode
the order of a bond if the center of any bond is located in this
cell. If the cell does not contain bonds and atoms, all features
are zero.

MD set includes all descriptors that are supported by CDK
2.3, except for 3D descriptors (i.e., descriptors that require
pre-computed 3D coordinates) and two more descriptors:
nAtomLAC and MolIP. These descriptors were not used
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because they are computed impractically slow with CDK
2.3 for some molecules. All other descriptors supported by
CDK 2.3 were used. Some of them give NaN or throw
exception for a small number of molecules. We use 0 as the
value of descriptor in such rare cases. In addition to 243
descriptors computed by CDK, we used functional groups
counters according to previous works [17], [68]. 84 fea-
tures were created for each molecule, each feature means
the number of occurrences of the respective fragment (func-
tional group). It is implemented using 84 simple SMARTS
queries. Fragments are not mutually exclusive. For exam-
ple, a molecule that contains >N—N=O fragment also con-
tains >N—, —N=0 fragments. 243 MD created with CDK
2.3 and 84 functional groups features were concatenated
together and are referred below as MD features or descriptors.
We use additive extended-connectivity circular molecular fin-
gerprints [10] with a diameter of 4 and a length of 1024.
These MF are similar to usual extended-connectivity circular
molecular fingerprints ECFP_4 [38] but consist of integer
features instead of binary features.

Each RI data record in the NIST 17 database contains
information about a stationary phase. There are 14 standard
non-polar stationary phases and 20 semi-standard non-polar
stationary phases for which there are at least 1000 data
records. Stationary phases for which there are less than
1000 records are grouped into two types: ‘“‘other standard
non-polar’” and “‘other semi-standard non-polar”. As aresult,
we consider 36 stationary phase types. Features containing
information about the stationary phase consist of one-hot
encoded stationary phase type (36 features) and informa-
tion on whether the stationary phase is standard non-polar
or semi-standard non-polar (an additional one-hot encoded
feature).

Detailed information on input features for 2D CNN, sup-
ported and unsupported CDK descriptors, SMARTS patterns
that correspond to the fragments used in this work, additive
extended-connectivity circular molecular fingerprints, and
types of stationary phases that are considered is given in the
Supplementary material, section S2.

C. RETENTION INDEX PREDICTION USING MACHINE
LEARNING

Three deep neural networks were used: 1D CNN, 2D CNN,
and deep residual multi-layer perceptron with two inputs
(MLP). Neural networks are shown in Fig. 2. Both CNN
have a few convolutional layers followed by a global average
pooling layer. Its output is concatenated with information
about a stationary phase. MLP consists of two subnetworks
with two separate inputs: the first one uses concatenated MD
and information about a stationary phase, and the second one
uses additive MF. Later there is a concatenation layer. The
fingerprints-related subnetwork in MLP consists of an input
dense layer followed by two residual blocks with two dense
layers each. Four layers in two residual blocks use dropout
with rate 5% (95% of connections are retained). Blocks are
followed by an element-wise addition.
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After a concatenation layer, in all three neural networks,
there are two fully connected (dense) layers with 600 and
1 output nodes, respectively. The first fully-connected layer
in the first neural network in MLP uses the hyperbolic tangent
activation function. All three output layers use the iden-
tity (linear) activation function. Everywhere else, the ReLU
activation function is used.

Neural networks were trained using Eclipse Deeplearn-
ing4j framework [69], version 1.0.0-beta6. Optimization
algorithm: Adam, weights initialization: ReLU, learning rate:
0.0003, objective loss function: mean absolute error, batch
size: 16. All other hyperparameters are shown in Table 3.
After running a given number of iterations, the parameters
for that iteration for which there was the best MAE value
for the validation set were saved and used for further testing.
XGBoost [70], version 1.0.0 via XGBoost4j was also used.
Concatenated MD and information about a stationary phase
were used as input features. We made an extensive random
search of hyperparameters. The actually used hyperparame-
ters are shown in Table 3. Root mean square error was used
as the objective function. 800 estimators were used without
early stopping.

TABLE 3. Hyperparameters and designations of base-level models.

Model Hyperparameters
CNN1D 36 input channels; 2 1D convolutional layers. For both:
kernel = 6, stride = 1, output channels = 300. Max number
of iterations = 200000
CNN2D 29 input channels; 3 2D convolutional layers. For all:

kernel = 4*4, stride = 1. Output channels: 50, 300, 300.
First 2 2D convolutional layers are followed by MAX-
pooling subsampling layers. Kernel and stride: 2*2 for
both. Max number of iterations = 100000
MLP In the descriptors-related subnetwork: 2 dense layers, first
uses the TANH activation function. Both have 300 output
nodes. In the fingerprints-related subnetwork: 5 dense
layers with 1200 output nodes. Max number of iterations
=120000
eta = 0.05, gamma = 0.05, lambda = 0.05, max_depth =
21, min_child_weight = 21, subsample = 0.5,
colsample_bytree = 0.5

XGBoost

The outputs of all four base-level models are used as
input for a linear meta-model (so called model stacking), see
Fig. 2. Base-level models are listed in Table 3. The linear
model was also trained using Deeplearning4j in order to
minimize MAE.

Molecular descriptors were scaled in such a way that all
descriptor values for compounds from the training set were in
the range [0, 1]. However, it is possible that for compounds
from the test set, MD will be slightly outside of this range.
For training of the linear meta-model and for training of the
neural networks, all RI values were divided by 1000.

For each of data sets used for testing, all compounds that
are contained in the test set were excluded from the NIST
17 data set (all RI records for each compound). We ensure that
there is no overlapping between the test set and the data sets
that are used for training and validation. Then, the remaining
training-validation data set was split into a training set for
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Dense layer
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I
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convolutio Convolution and subsampling

[ I ] e — ]

Input for 1D CNN Input for 2D CNN

cc(o)c
Cll|1|{0[0|0[1 Bond type
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one-hot features
SMILES strin
CC(0)C g OH

OHj Centers of bonds
1
I sp3 carbons

N

Stationary phase Molecule

Input data for retention
index prediction

FIGURE 2. Machine learning models used in this work. From left to right: 1D and 2D convolutional neural networks, deep residual multilayer
perceptron, and gradient boosting (CNN1D, CNN2D, MLP, and XGBoost). Input data: one-hot encoded information about the stationary phase
and various representations of the molecule structure. Outputs of four base-level models are used as inputs for a meta-learner.

Test . -
the linear meta-model and a training-validation set for four set 1 2 Main training set
first-level models (1:10, i.e., 10% of compounds were used
for the linear meta-model). This training-validation set was
split into a validation set (which is used for validation and 1:20 split

>

monitoring of training) and a training set (1:20). Splits are 1N € >
e 1:10 split
shown in Fig. 3. - >
AH first_level models make more accurate predictions for FIGURE 3. The data set Split into the main training set, the meta-model
ds fi h .. h h f training set (1), the validation set (2), and the test set. All splits are
compounds Irom t € tralmpg set rather than . or unseen compounds-based, i.e., all data records for each compound are in one
compounds, but this effect is observed to varying degrees subset.

for different models. If the same training set is used for
first-level models and for a meta-learner, the meta-learner overfitted model) rather than to the actually most accurate

will assign the largest weight to that first-level model which model. To avoid this effect, we use separate training sets for
shows the best accuracy for the training set (i.e., to the most first-level models and for a meta-learner.
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All splits are compounds-based. This means that all RI
records for each compound (i.e., for each SMILES string)
are contained in only one of the subsets. We used 10-fold
cross-validation for the NIST 17 data set. It was split into
10 subsets, each of them was used for testing. All models
were retrained from scratch for each of these subsets and
for each of the external test sets. On average, for cross-
validation splits, the training set, the meta-model training
set, the validation set, and the test set contain 237512.7,
28345.2, 12922.5, 30975.6 data records and 68235.5, 7981,
3591, 8867.5 different compounds, respectively.

Supplementary material, section S3, contains further
details about implementation and instructions about compil-
ing and usage of pre-trained models. Some source code and
pre-trained models are provided online:

https://www.doi.org/10.6084/m9.figshare.12651680

Ill. RESULTS AND DISCUSSION

A. MODELS DEVELOPMENT

We tried multiple possible options during the development
of the models. Using MD as an input for single-input MLP
(without different subnetworks for MD and MF) does not
allow achieving good accuracy [18]. We tried multiple setups
for single-input MLP: we varied the number of layers in the
range 2-5, nodes per layer (up to 2000), activation functions,
regularization methods (L2, L1, dropout), residual connec-
tions. In all cases that we considered, single-input MLP per-
forms worse than gradient boosting using the same data set
and using the same feature set. Mean percentage error (MPE)
is more than 3-3.2% for such models and subsets of NIST 17.
For gradient boosting, MPE is about 2.7%. The error grows
with the addition of more layers: 1-2 hidden layers work
better for MD generated using CDK than deeper networks.

We noted that when MF (with multiple hundred to thou-
sands of features of the similar nature) are used as input for
MLP, deep neural networks with 5-10 layers and residual
connections perform better than more shallow networks. The
dual-input MLP that uses MF and MD together, with different
network depth in these subnetworks, gives better accuracy
(MPE is 2.0-2.3%) compared with single-input neural net-
works using the same input features.

It can be explained in the following way. MD and MF
input feature vectors have a different nature. MD is a more
relevant feature set, many MD are strongly correlated with
RI value and characterize the molecule as a whole. MD are
very heterogeneous, some of them are integer values, others
are continual, and physical meanings of the features are very
different. MF are much less relevant features — none of them
are directly related to RI prediction. MF is a sparse vector
of integers that count specific local structural features. This
vector is less relevant but much more comprehensive and
contains detailed information about a structure. For these
feature vectors, very different configurations of a neural net-
work are optimal: relatively shallow MLP with the TANH
activation function (as proposed in previous works [9], [18])
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after the input layer and much deeper residual MLP with
the ReLU activation functions after all layers. The use of a
neural network with two inputs allows using both MD and
MF with near-optimal neural network depth and hyperparam-
eters, and probably these features contain information that is
complementary.

Finally, we made some random hyperparameters optimiza-
tion. We tried other types of MF (PubChem fingerprints,
MACCS fingerprints, binary extended-connectivity circular
fingerprints) and tried different MF length (512-4096) and
diameter. The advantage of additive MF over binary MF can
be explained by the regression nature of the task. Binary MF
are more suitable for classification tasks. RI nearly linearly
depends on the number of some substructures [17]. We varied
the number of hidden nodes (500-2000), the number of layers
in the residual block (2-4), the number of residual blocks
(1-4), the activation functions (TANH and ReLU), and the
dropout value.

Parameters of the 1D CNN model were very similar to
previously reported [16]. We tried L2-regularization constant
(o) values 0, 1077, 1076, 1073, 10~%, 1073. There is almost
no difference in accuracy in the range 0-10~°. The accuracy
decreases with the growth of /5. In our previous work [16],
we made a random search of hyperparameters and obtained
the best result for I, = 107°. This difference in behavior
can be caused by the fact that we use a larger and less noisy
data set in this work. This allowed us to increase the num-
ber of nodes and get rid of L2-regularization. The achieved
MPE value is about 2.0%. More detailed comparison with
previous works is given below. No additional methods to
prevent overfitting (besides validation-based early stopping)
were used. A more detailed study on regularization methods
and hyperparameters of 1D CNN can be the subject of further
research. We also tried to increase the number of layers
but did not achieve considerable growth of the performance.
Average pooling gives better accuracy than max pooling. This
can also be explained by the regression, continual nature of
the RI prediction task, similar to the advantage of additive MF
over binary MF.

We tried multiple 2D CNN configurations and 2D repre-
sentations of the molecule. We tried to use human-readable
depiction of the molecule as neural network input, and a few
simplified depictions, but all these models did not allow us to
achieve MPE lesser than 3-3.5%. The important problem is
the presence of structures with very long structural formulas
in the NIST 17 library. There are many molecules with very
long (20-50 atoms) linear chain fragments, so we should use
a large (500*500 and more) input image or scale the image,
or distort such “long” structures. Finally, we found that a
multi-channel representation with a low spatial resolution
containing some chemical information is more suitable for
our task (MPE is about 2.9%). However, with the low spatial
resolution, the rounding of atom coordinates significantly
affects them. This “distorts” the 2D geometrical shape of
functional groups and sometimes leads to the fact that dif-
ferent unconnected atoms have “identical” coordinates.
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The relatively poor accuracy of 2D CNN compared with
ID CNN can be explained by the fact that a larger part
of a molecule fits into the convolution kernel for 1D CNN
compared with 2D CNN. Kernel = 6 for 1D CNN allows
the neural network to extract at the input layer features with
a size of 3-6 atoms. These are substructures the size of
which is comparable with the size of substructures accounted
by typical MF. This allows relatively shallow and easy-to-
train 1D CNN without subsampling layers to extract enough
relevant and coarse-grained features. 2D CNN requires a
kernel with dimensions at least 4*4 to extract features the
size of a functional group. The 2D CNN filter has many
more parameters and extracts smaller features compared
with the 1D CNN filter. The low spatial resolution, deeper
network, and subsampling layers partially solve this prob-
lem. However, the low resolution leads to other problems,
as described above. Detailed neural network interpretation,
such as visualization of feature maps, search of inputs leading
to maximal activation of certain CNN channels, was outside
the scope of this work. However, it is possible for both 2D
CNN and 1D CNN. Some recent works [71], [72] are devoted
to interpretable neural networks that predict molecular
properties.

We tried to construct neural networks with 3 and 4 inputs,
i.e., to combine our networks together the similar way as
we did with MD and MF subnetworks in our MLP model.
However, such combination does not allow us to achieve
significantly better results than usage of model stacking and
simple linear meta-model. As we noted above, single-input
MLP does not give enough accuracy when MD are used as
input representation. We tried other machine learning meth-
ods: random forest, regression tree, support vectors regres-
sion. The best results were achieved using gradient boosting.
We also tried to use more input features (e.g., concatenate the
input vector with MF), but there was no large performance
gain.

MLP and CNNID models are the most accurate and
have close accuracy (MPE is about 2.0-2.1%). CNN2D and
XGBoost are less accurate and also have similar accuracy
(MPE is about 2.7-2.9%). Model stacking gives signifi-
cant accuracy gain and allows achieving MPE about 1.8%.
Detailed data on achieved accuracy of the finally developed
models are given below in the following sections.

All base-level models are prone to overfitting but are prone
to overfitting to varying degrees. We selected such values of
hyperparameters that provide the best accuracy for the valida-
tion set. The accuracy for the training set is much better using
these hyperparameters. The XGBoost model demonstrates
the largest difference between accuracies for the training
and test sets (MPE 1.0% and 2.4%, respectively). When we
used the same training data set for base-level models and for
a meta-learner, we observed that the meta-learner severely
overweights XGBoost and assigns the largest weight to it.
At the same time, for the unseen compounds, XGBoost is less
accurate than CNN1D and MLP. As a result, model stacking
gives almost no accuracy gain in this case, and only the use of
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separate training sets for base-level models and meta-learner
allows achieving the best accuracy.
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FIGURE 4. Correlation plots between prediction errors obtained using
various RI prediction models. Three plots at the left show errors for all
data records in the considered test set, and three plots at the right show
errors only for those data records for which at least one model gives a
prediction error of less than 100 units. Random 10% subset of the NIST
17 library is used as a test set.

For successful using in model stacking, models must
be accurate and their errors (differences between predicted
and reference values) should not be strongly correlated.
Fig. 4 shows correlation plots between errors obtained using
CNNID and errors obtained using other three models. In gen-
eral, the errors are strongly correlated. Three plots at the left
in Fig. 4 show that there are many cases when all four models
produce RI values that deviate from reference values very
significantly: hundreds and even thousands of units. We call
such cases “outliers”. The most probable explanation is that
in these cases the database contains wrong experimental data
or wrong chemical structures, since for many of them all four
models give a very similar prediction.

We did not use any ‘‘accuracy-based” exclusions of data
records and included these values when computing accuracy.
Preliminary experiments also show that removing outliers
from the training set does not give significant accuracy gain
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for the test set (with outliers). We consider ““accuracy-based”
exclusions from the test sets as unfair. However, to consider
correlations between errors, we excluded all data points for
which all four models give an error of more than 100 units.
The correlation plots for this case are shown in three plots at
the right in Fig. 4. Errors are still moderately correlated.

TABLE 4. Correlation coefficients between RI prediction errors for
different models. Only those data records were used for which at least
one of the four models gives an error of less than 100 units.

CNN1D CNN2D MLP XGBoost
CNN1D 1.00 0.45 0.53 0.31
CNN2D 0.45 1.00 0.34 0.30
MLP 0.53 0.34 1.00 0.28
XGBoost 0.31 0.30 0.28 1.00

The correlation coefficients are given in Table 4. XGBoost
errors are less correlated with neural network errors than
neural network errors with each other. The XGBoost model
uses local structural peculiarities less than other models.
20 MD with the largest feature importance are: BCUTp-11,
BCUTec-11, BCUTc-1h, ATSc4, ATSc5, ECCEN, ATSc3,
AMR, BCUTp-1h, MDEC-23, ATSpl, ATSc2, ATScl,
WTPT-2, MDEC-22, MDEC-12, AlogP, XlogP, tpsaEffi-
ciency, WPATH. The meaning of the descriptors is explained
in CDK 2.3 documentation. Each of them characterizes the
molecule as a whole rather than any spatially local fea-
tures. Most of them are complex topological descriptors. The
XGBoost model mostly relies on such features, while other
models mostly rely on spatially local features. This is one of
the possible causes why errors of the XGBoost model are less
correlated with errors of other models. There are multiple pre-
vious works discussing the causes why RI strongly depends
on certain descriptors [24], [28], [29].
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FIGURE 5. Mean and median absolute errors obtained using considered
RI prediction models. These box-and-whiskers plots show the distribution
of mean and median errors for 10 subsets of NIST 17 that were used for
10-fold cross-validation. Boxes and whiskers show the distribution
through quartiles (full data range). The stacking model is more accurate
compared with other models.

B. ACCURACY OF THE FINALLY DEVELOPED RETENTION
INDEX PREDICTION MODELS

Fig. 5 shows the distribution of MAE and MdAE for
10 test subsets of the NIST 17 data set that were used for
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cross-validation and for all finally developed models. For
each of the subsets, the stacking model shows better results
than the other four models. The accuracies of CNN1D and
MLP models are very close to each other. The third most
accurate model is XGBoost, and CNN2D is the last one. For
each of 10 subsets, these two models are less accurate than
the other two, but their accuracies are close to each other.
Table 5 shows MAE and MdAE for all finally developed
models and all data sets. For NIST 17, the overall result of
cross-validation is shown. In this work, we use 8 external test
data sets. These test sets differ from each other in the chemical
nature of the compounds that these sets consist of.
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FIGURE 6. The diversity of data used in this work. (A) The distribution of
RI data records in data sets by retention index value. The bars show the
distribution for the NIST 17 data set, the curves for other data sets that
were used for testing. (B) The principal components plot for external test
data sets. Principal components were calculated using molecular
descriptors used in this work (including functional groups counters). The
first and the second principal components are shown. (C) The scatter plot
that shows molecular weights and retention indices of compounds from
external test data sets. Numbers denote data sets: 1 - SET184,
2 - flavor-related compounds (FLAVORS, FLNET1, FLNET5 data sets
together), 3 — ESSOILS, 4 - metabolomics-related compounds (OUF,
FIEHNLIB, GMD data sets together).

Fig. 6 shows the distribution of data records in data sets
by RI value, the principal components plot that shows the
diversity of data used for external testing, and the correlation
plot between molecular weight and RI for external test sets.
Most of the compounds in FLNETS, FLNET1, FLAVORS,
ESSOILS data sets are volatile compounds consisting of
carbon, hydrogen, and oxygen. Oxygen content is low in most
of the compounds. Only ~5% of the data records are given
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TABLE 5. Absolute errors (mean and median) for models and data sets considered in this work.

CNN1D CNN2D MLP XGBoost Stacking model
Data set
MAE MdAE MAE MdAE MAE MdAE MAE MdAE MAE MdAE
NIST 17 31.5 16.5 44.5 25.5 30.8 17.1 41.3 24.2 27.7 14.4
Training set * 24.1 11.9 30.8 14.4 20.8 10.5 16.8 8.1 - -
ESSOILS 36.1 22.0 44.5 28.7 35.4 22.2 41.1 28.6 31.3 18.2
OUF 56.8 39.2 63.8 49.8 54.2 40.6 70.7 57.8 51.7 39.5
FLAVORS 26.8 119 34.9 18.2 27.9 134 38.8 22.8 25.2 10.9
FLNET1 24.5 12.5 30.4 17.2 25.6 13.5 32.6 23.0 22.8 9.8
FLNET5 23.2 13.6 32.3 21.4 25.0 17.1 31.9 21.4 21.8 13.2
SET184 9.6 7.2 19.6 15.6 13.3 8.3 16.6 12.3 10.0 6.3
GMD 65.4 43.4 67.0 42.6 56.7 32.9 72.9 49.5 55.2 31.3
FIEHNLIB 98.6 38.4 103.5 49.9 99.7 39.9 107.3 52.3 92.5 34.7

* — An example of accuracy for a training set. Accuracy for NIST 17 is the result of cross-validation; other than NIST data sets are

hold-out test sets.

TABLE 6. Percentage errors (mean and median) for models and data sets considered in this work.

CNN1D CNN2D MLP XGBoost Stacking model
Data set

MPE MdPE MPE MdPE MPE MdPE MPE MdPE MPE MdPE

NIST 17 2.05 1.18 2.86 1.85 2.04 1.25 2.73 1.76 1.80 1.04
ESSOILS 2.45 1.57 3.04 2.12 2.43 1.62 2.87 2.04 2.13 1.33
OUF 3.11 2.34 3.56 2.93 2.99 2.35 4.00 3.40 2.83 2.20
FLAVORS 2.24 1.03 2.95 1.61 2.36 1.18 3.35 1.94 2.12 0.97
FLNET1 2.28 1.14 2.78 1.61 2.34 1.26 3.07 1.99 2.10 1.03
FLNET5 2.16 1.31 3.01 2.07 2.30 1.46 3.00 2.06 2.00 1.17
SET184 1.40 0.94 2.87 2.00 1.96 1.19 2.49 1.62 1.50 0.84
GMD 3.43 2.27 3.47 2.46 2.92 1.71 3.83 2.71 2.87 1.71
FIEHNLIB 5.06 2.15 5.40 2.68 5.12 2.33 5.71 2.82 4.80 2.01

for nitrogen-containing compounds. None of the compounds
contain silicon.

In OUF, GMD, and FIEHNLIB, on the contrary, most
of the compounds are trimethylsilyl- derivatives of polar
organic compounds in which -OH groups are replaced by -
OSi(CH3)3 groups. ~44% of the data records are given for
nitrogen-containing compounds in these data sets. The accu-
racy for these metabolomics-related highly polar derivatized
compounds is much worse than for compounds from the
other group of data sets. MAE values are strongly dominated
by very few distant outliers. This is especially important
for small data sets. The notable example is FIEHNLIB. For
this data set, value of MAE is 92.5, that is much more
than for OUF data set. MdAE for this data set is close
to values of MdAE for other metabolomics-related data
sets. One of the possible reasons for the low accuracy for
metabolomics-related data sets is the incorrect elucidation
of the structure of the derivatized form. As explained above,
we consider only those compounds for which we can propose
it with a high degree of confidence, but this procedure can still
give wrong structures. However, for OUF data set, the accu-
racy is close to other data sets. Structures of derivatized forms
were manually created by the authors [22] for this data set.

Examples of MAE and MdAE values for base-level mod-
els for the main training set are also given in Table 5.
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The accuracy for the compounds used for training is much
better than for unseen compounds. This is typical for gra-
dient boosting and deep neural networks. For the train-
ing set, XGBoost shows the best accuracy compared with
neural networks. Coefficients of determination (R%) for
ESSOILS, OUF, FLAVORS, FLNET1, FLNETS, SET184,
GMD, FIEHNLIB external test sets and for the stacking
model are 0.98, 0.98, 0.95, 0.98, 0.99, 0.99, 0.98, 0.88,
respectively; and root mean square errors (RMSE) are 52, 72,
72,40, 35, 15, 92, 214, respectively.

Taking into account significant differences in RI values
(see Fig. 6) from set to set, we also compared MPE and
median percentage error (MdPE). These values are given
in Table 6. All main trends are the same as for MAE and
MAAE. All these measures can be used to compare the mod-
els. SET184 data set significantly differs from other data sets.
It consists of compounds with lesser RI values and molecular
weights (see Fig. 6). All of them are aliphatic and consist
only of hydrogen, carbon, and oxygen. For this data set, all
models predict retention more accurately than for other test
sets in terms of both mean and median errors. For this data set,
CNNID performs much better than other models and even
outperforms the stacking model in terms of MAE and MPE.
In terms of median errors, the stacking model still performs
better.
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FIGURE 7. Mean and median absolute errors obtained using considered
RI prediction models. These box-and-whiskers plots show the distribution
of mean and median errors for 8 external test sets that were used in this
work. Boxes and whiskers show the distribution through quartiles (full
data range). The relatively large variation of the prediction errors over
various test sets is caused by the diversity of used external test data sets.

For all other test sets, the stacking model performs better
than all other models in terms of all accuracy measures. Box-
and-whiskers plots, similar to Fig. 5 for 8 external test sets,
are shown in Fig. 7. Supplementary material, section S4, con-
tains correlation plots between experimental and predicted
values for various test sets. Fig. 8 shows the distribution of
errors for various data sets for all models.

TABLE 7. Comparison of prediction accuracy with previous works.

Data set Previously reported accuracy AMAE*, %

MAE = 58.4, MdAE = 34.3, MPE = 16.6
3.04%, MdPE = 1.68% [18] (NIST 17);
MAE = 33.2, MdAE = 18.0, MPE =
1.96%, MdPE = 1.03% [16] (NIST 08);
MAAE = 46.0, MdPE = 3.2% [17] (NIST
05); RMSE = 90-115 [21] (NIST 05)
MAE = 43.5, MdAE = 28.6, MPE = 28.0
3.03%, MdPE = 2.08% [16]; MdPE =
~2.5-2.7% [9]
OUF RMSE = 78-88; R?= 0.93 [22] -
FLAVORS  MAE = 34.3, MdAE = 18.8, MPE = 26.5
2.93%, MdPE = 1.54% [16]; RMSE =
88.2 [29]
MAE = 50.3, MdAE = 48.4, MPE = 54.7
4.71%, MdPE = 4.22% [28]
MAE = 51.0, MdAE = 45.7, MPE = 57.3
4.76%, MdPE = 4.03% [28]
MAE = 11.4, MdAE = 8.7, MPE = 12.3
1.67%, MdPE = 1.20% [64]; MPE = 2%
[67]

GMD MAE = 63.6, MdAE = 38.1, MPE = 12.2

3.39%, MdPE = 2.15% [16]; MdPE =
~2.5-2.7% [9]

— Relative accuracy gain achieved in this work compared with the best of
previous works, in terms of MAE (100%*(MAEevious work-MAEis
work)/ MAE previous work)- ** — Different versions of NIST were used in different
works.

NIST**

ESSOILS

FLNET1

FLNETS

SET184

C. COMPARISON OF PREDICTION ACCURACY WITH
PREVIOUS RESULTS

Table 7 shows the accuracy values for the test sets that were
reported in previous works. For ESSOILS, FLAVORS, GMD,
we give both the result of our previous work [16] and the val-
ues that were reported previously. For OUF and FLAVORS
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FIGURE 8. The distribution of RI prediction errors for 5 models and 4 data
sets. Fraction of data records f in a bin is shown. A - NIST 17 (obtained
using cross-validation), B - flavor-related compounds (FLAVORS, FLNET1,
FLNET5 data sets together), C - ESSOILS, D - metabolomics-related
compounds (OUF, FIEHNLIB, GMD data sets together). The bars show the
distribution for the stacking model, the curves for other models. The
boxes denote the median error, the whiskers denote the error range
within which 98% of all data entries fall.

data sets, only RMSE values were reported in previous works
devoted to retention index prediction. We obtained RMSE
values 80.1, 86.5, 74.8, 92.0, 71.9 using CNN1D, CNN2D,
MLP, XGBoost, and the stacking model, respectively, for
OUF data set. For FLAVORS data set, these five values
are: 73.3, 76.9, 73.4, 79.6, 72.1. RMSE values are strongly
dominated by distant outliers (i.e., cases when the prediction
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error is very huge), some of them are errors in the reference
data.

All four of our models perform better or at approximately
the same level as the previously reported models. CNN1D
performs better than all previously reported models for all
data sets except GMD. For GMD, it shows almost the identi-
cal accuracy with the previously reported accuracy [16]. The
CNNI1D model is very close to that model [16] but trained
using a less noisy and larger data set.

The stacking model shows significantly better results than
all previously reported models for all considered data sets.
To our best knowledge, it seems to be the most accurate
versatile RI prediction model at this moment for non-polar
stationary phases. Probably, there are application specific
models that show better accuracy for a limited narrow class
of chemical compounds such as alkylbenzenes or FAME, but
such models do not cover the entire chemical space and do
not work well for diverse compounds. However, we used
SET184 data set to demonstrate that our model performs well
even for narrow data sets for which quite accurate models
were previously developed.

The direct face-to-face comparison of the accuracy of the
NIST data set with previous works is complicated. To the
best of our knowledge, all but one [18] of the compa-
rable previous works [16], [17], [21] used different ver-
sions of NIST. But even more important problem is that
the previous works [16]-[18], [21] calculate accuracy using
compounds-based data set and do not use information about
the stationary phase. This means that for each compound all
data records are grouped, and mean or median value is used
as reference. Unlike the test sets considered above, the NIST
17 library contains multiple values (~4 on average) for each
compound. This number varies from 1 (for most compounds)
to more than 100. We calculate accuracy using individual
RI data records. Using “averaged” data records for testing,
one per compound, will decrease the accuracy of the model
because we use information about the stationary phase. Using
data records instead of averaged values for compounds, on the
one hand, increases the number of distant outliers caused by
incorrect reference data, on the another hand, it increases the
role of well-studied compounds (for which there are many
reference RI values). It is not clear how these factors affect
accuracy.

For comparison with the previously trained models that do
not take into account the exact type of a stationary phase,
we trained two of them [16], [17] using the NIST 17 data
set. We used a data set with one reference RI value for each
compound. Such data sets were used in works [16], [17]. But
we tested these models using the same test set (multiple RI
records for one compound) as for the models reported in this
work. The results of the comparison and further details are
given in the Supplementary material, section S5. CNN1D,
MLP, and the stacking model outperform previously reported
models in this comparison. This is expected because, as far as
we know, the best previously published model [16] is CNN,
which is close to the CNN1D model reported in this work, but
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TABLE 8. Comparison of prediction accuracy and deviations between
data from various sources.

Deviations of

- Prediction accurac
experimental data y

Data sets

MAE MdAE MAE MdAE
FLNET1- 17.9 6 16.7-22.3 6.9-8.1
FLAVORS
FLNETS5- 13.3 5 17.6-18.8 11.1-12.6
ESSOILS
GMD- 41.2 18.1 47.5-56.8 26.3-31.0
FIEHNLIB
GMD-OUF 11.0 2.6 28.6-41.7 19.4-24.3

it does not take into account information about the stationary
phase, has fewer channels in CNN layers (120 instead of 300)
and nodes in a dense layer (200 instead of 600), and uses
L2-regularization (I, = 1075). We studied how [, value
affects the accuracy of CNN1D. When we use the NIST
17 data set for training, MAE increases with growth of [
value. The best accuracy was observed with I = 0. The
comparison is given in tabular form in the Supplementary
material, section S5.

D. COMPARISON OF PREDICTION ACCURACY WITH
ACCURACY OF REFERENCE DATA

Finally, we attempted to estimate the accuracy of experimen-
tal data. For pairs of data sets that use the same stationary
phases, we selected overlapping subsets, i.e., subsets of the
compounds that are contained in both data sets. For each
subset, two different prediction accuracies can be calculated:
using the first and using the second data set as a source of
reference values. Both prediction accuracy values and devia-
tions of reference (experimental) data are shown in Table 8 for
afew pairs of data sets. Correlation plots for experimental and
predicted data for these subsets are shown in the Supplemen-
tary material, section S4.

The accuracy of prediction is (as expected) still worse than
the accuracy of experimental data. However, for a pair of
FLNET1-FLAVORS data sets, the deviations between refer-
ence and predicted values are only slightly worse than the
deviations between reference values from different sources.
For GMD-FIEHNLIB pair, a quite large deviation between
the experimental values is observed. This pair of data sets uses
different types of semi-standard non-polar stationary phases
and different types of RI: FAME-based RI and Kovats RI.
In this comparison, all RI values were converted to Kovats RI,
but this conversion introduces some error [5]. For GMD-OUF
pair, the deviation between the experimental values is unex-
pectedly low. Despite the fact that predicted RI have worse
accuracy than experimental reference values, the prediction
accuracy closely approaches the accuracy of experimental
data for some data sources and classes of compounds.

Further improvement in prediction accuracy is signifi-
cantly complicated by noise in training data. It seems unlikely
to create a versatile (near-universal) RI prediction method that
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will predict with accuracy of ~5 units in terms of MdAE.
Further possible improvement in accuracy can be achieved
by using more information about the separation conditions
(e.g., temperature), by using molecular graph convolutional
networks, by using support vectors regression and other
machine learning methods together with gradient boosting.
However, all these efforts will be limited by the accuracy of
experimental data.

IV. PRACTICAL APPLICATION AND FURTHER RESEARCH
DIRECTIONS

The primary application of retention index prediction is aug-
menting of spectral libraries for GC-MS library search [8] and
identification of metabolites based on RI, mass spectra, and
list of candidates [9]. In both cases, RI data are used together
with mass spectra. The use of RI for GC-MS library search
was recently discussed in detail as well as the dependence
of search accuracy on RI accuracy [8]. Another important
application of this work is the quality control of experimen-
tal databases and the detection of wrong experimental data.
In this regard, it is important that we develop several different
models that are trained independently. If all models give
results close to each other, which significantly differ from the
“experimental” value in the database, it is probably incorrect
reference data. This approach is not useful for detecting minor
experimental errors but can help detect errors caused, for
example, by wrong structure annotation.

Further research directions can include further improve-
ment in accuracy using more models for stacking and reten-
tion index prediction for stationary phases other than standard
and semi-standard non-polar. These can be polar station-
ary phases, semi-polar stationary phases (such as DB-624,
DB-1701), ionic liquid stationary phases. Only relatively
small data sets are available for these phases. This fact makes
the prediction task more difficult (small training sets) and
even more important. Transfer learning techniques can be
used in this case. These models can also be used for liquid
chromatography, for which large data sets recently became
available [73]. Another direction of further research is the
elaboration of more detailed explanations of how and why
these models work: a more detailed analysis of the impor-
tance of certain descriptors, a detailed research how hyper-
parameters affect accuracy, a study of feature maps. A better
understanding of how models works, rather than using them
as “‘black boxes”, probably will allow achieving better accu-
racy. Graph convolutional neural networks can also be used to
improve accuracy. At the moment this model and most other
models for prediction of retention index consider optical and
cis-trans isomers as identical compounds. The possibility of
stable conformational isomers with different retention time is
also ignored. Taking geometric isomerism into account can
be a direction of further research.

V. CONCLUSION
Four machine learning models were developed for predic-
tion of gas chromatographic retention indices: 1D and 2D
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convolutional neural networks, deep residual multilayer per-
ceptron, and gradient boosting. Each of these models perform
at the same level as the best previously reported models or
better. The linear meta-model can be applied to combine the
results of these models and to obtain even more accurate
predictions. The stacking model outperforms four base-level
models and any of the previously reported machine learning
models for retention index prediction. This is true for various
compounds: both for volatiles with a low content of atoms
other than hydrogen and carbon as well as for trimethylsilyl-
derivatives of highly polar compounds. For some external test
data sets, the accuracy of the model approaches the accuracy
of the experimental data that were estimated by comparing
data from different sources. It was also shown that the use
of information about the type of the stationary phase allows
improving the prediction compared with considering all stan-
dard and semi-standard non-polar phases as equal. Further
model improvement is complicated by random errors in the
experimental data.

Compared with previous works, we achieved significantly
better accuracy for various test data sets and proposed two
new accurate RI prediction models: 2D convolutional neural
network and multilayer perceptron with two inputs. In pre-
vious works, different models were trained for different sta-
tionary phases, or the difference between similar stationary
phases was not made. Unlike previous works, information
not only about compounds but also about the stationary
phase was used by our models. It is the use of different
“modalities”: various representations of the molecule and
information about the stationary phase that allows achieving
the best accuracy. This work is the first application of mul-
timodal machine learning to RI prediction. We share source
code and parameters of the pre-trained models. The models
are ready for use by metabolomics scientists and analytical
chemists. Unlike some of previous works, we do not use
non-free proprietary software for computation of molecular
descriptors.
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FIGURE 9. Graphical illustration of the conception and major findings of
this work. Gas chromatographic separation and the machine learning
model used in this work are schematically depicted. The bar plot shows
the prediction accuracy (MAE) for FLAVORS and ESSOILS data sets
obtained in this and previous works and rough estimation of the accuracy
of the experimental data. The scatter plot shows the correlation between
predicted and reference values for these two data sets.

Graphical illustration of the conception and major findings
of this work is shown in Fig. 9. Developed models can be
used for GC-MS library search, for GC-MS identification of
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compounds using in silico methods, for experiment design
development, and for detection of possible wrong data in
databases. Some source code and pre-trained models param-
eters are provided online:
https://www.doi.org/10.6084/m9.figshare.12651680
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