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ABSTRACT Coronavirus Disease 2019 (COVID-19) has spread the world resulting in detrimental effects
on human health, lives, societies, and economies. The state authorities mostly take non-pharmacological
actions against the outbreak since there are no confirmed vaccines or treatments yet. In this paper,
we developed Suspicious-Infected-Death with Non-Pharmacological policies (SpID-N) model to analyze
the properties of the COVID-19 casualties and also estimate the future behavior of the outbreak. We can
state the key contributions of the paper with three folds. Firstly, we propose the SpID-N model covering
the higher-order internal dynamics which cause the peaks in the casualties. Secondly, we parametrize the
non-pharmacological policies such as the curfews on people with chronic disease, people age over 65, people
age under 20, restrictions on the weekends and holidays, and closure of the schools and universities. Thirdly,
we explicitly incorporate the internal and coupled dynamics of the model with these multi-dimensional non-
pharmacological policies. The corresponding higher-order and strongly coupled model has utterly unknown
parameters and we construct a batch type Least Square (LS) based optimization algorithm to learn these
unknown parameters from the available data. The parametric model and the predicted future casualties are
analyzed extensively.

INDEX TERMS COVID-19 casualties, non-pharmacological approaches, pandemic, parametric model,

prediction, SIR model, SpID model, SpID-N model.

I. INTRODUCTION

An epidemic of cases with unexplained low respiratory infec-
tions are classified as ‘“pneumonia of unknown etiology”
detected in Wuhan, was first reported to the World Health
Organization (WHO) country office in China on Decem-
ber 31, 2019. This new virus, whose etiology is attributed
to the coronavirus (CoV) family, was named “COVID-19”,
which stands for *“coronavirus disease 2019 by the WHO
[1]. CoVs are classified as alpha-(infected from bats), beta-
(infected from bats), gamma-(infected by birds and pigs),
and delta- (infected by birds and pigs) coronaviruses [2], [3].
In the past two decades, several viral outbreaks that pose a
serious public health risk have been reported by the WHO.
The Severe Acute Respiratory Syndrome (SARS) coron-
avirus from 2002 to 2003, Influenza A (HINT1) in 2009, and
the Middle East Respiratory Syndrome (MERS) coronavirus
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in 2012 have been reported [1], [4]. The current COVID-19
outbreak has both similarities and differences when com-
paring to SARS and MERS outbreaks where they had both
zoonotic transmission (SARS: likely from bats via palm
civets, MERS: likely from bats via dromedary camels). All
3 viral infections usually occur with fever and cough causing
the lower respiratory [5]. COVID-19 is considered a deadlier
epidemic than SARS and MERS because it has affected more
people over a period of time compared to the other two
outbreaks (SARS; 8,437 cases, 813 deaths, 9.63% mortality
rate. MERS; 2,499 cases, 861 deaths, 34.45% mortality rate,
according to the report on March 3, 2020) [6], COVID19;
19,131,120 cases (increasing), 714,873 deaths (increasing),
3.73% mortality rate, by 8 August 2020) [7]).

In the early stages of an infectious outbreak, understand-
ing the transmission dynamics of the infection can provide
insights about its behavior and determine whether the out-
break control measures are yielding a significant impact on
the casualties [8],[9]. Mathematical and statistical modelling
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is a valuable tool to comprehensively analyze the dynamics
of infectious diseases, population behavior, the availability of
public health resources, and the effectiveness of public health
interventions (such as social distancing) [10], [11]. Such
modelling based analysis can provide predictions about the
future growth potential of the epidemic, guiding estimation
of risk to other countries, and planning the alternative poli-
cies [12]-[14]. To develop models, training data (epidemi-
ological, non-pharmacological, population, and travel) and
model validation data are required where the resulting models
can estimate the local and global spread of the infectious
diseases [15]. There are several mathematical approaches to
perform parametric modelling of the outbreaks (e.g. CoVs
family: COVID-19, SARS, MERS) such as Susceptible-
Infectious (SI), Susceptible-Infectious-Susceptible (SIS),
Susceptible-Infectious-Recovered (SIR), which is one of the
most widely considered mathematical models for predict-
ing the spread of pandemics, and the variants of SIR are
Susceptible-Infectious-Recovered-Susceptible (SIRS), and
Susceptible-Exposed-Infectious-Recovered (SEIR) models
[16]-[18].

SEIR model-based infection model characterization of
pandemic disease is shown in Fig. S1 [18]. Ignoring the
exposed people reduces the SEIR model to the SIR model.
The SI model is the simplest form of all disease models and
matches the behavior of diseases such as cytomegalovirus
(CMV) or herpes. In this model, susceptible individuals
remain infected and infectious throughout their lives and
remain in contact with the susceptible population if they are
infected and receive no treatment [18], [19]. The SIS model
is suitable for infections recurring frequently, such as the
common cold (rhinoviruses) or sexually transmitted diseases
such as gonorrhea or chlamydia, where infected individuals
return to a susceptible state after infection [18], [19]. SIRS
representing the transmission of an infectious disease through
individuals has 4 possibilities such as susceptible, infectious,
recovered, and again being susceptible where susceptible is
monitored and large epidemics affecting the world can be
modelled more effectively compared to SI and SIS models.
Recovery rate and the time scale of infection are the two key
quantities that govern epidemic dynamics at the population
level for SIS, SIR, and SEIR. The time scale of the infection
is measured by the infectious period of SIS and SIR models or
by a mixture of exposed and infectious periods of the disease
with the SEIR model [18]. In the SIS model, individuals move
from susceptible to infections and then return to susceptible
upon recovery, and recovery does not provide immunity.
If individuals recover and gain permanent immunity, the
model becomes a SIR model. If individuals recover with
transient immunity and eventually become susceptible again,
the model becomes a SIRS model, whereas if individuals do
not recover, the model is an SI model [20]. A study mod-
eling the exposure of residential areas to epidemics by syn-
thesizing climatic, environmental, demographic, and health
risk factors with an Index ¢ whose value ranges from 0 to
1 and defines the severity of transmission of the epidemic
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was proposed [21]. A stochastic transmission model param-
eterized to the COVID-19 was developed to investigate if
the contact tracing and the isolation of cases could control
the SARS-CoV-2 pandemic [22]. Kucharski, et.al., in their
study, modeled the stochastic transmission dynamics of the
infection as a geometric random walk process implementing
COVID-19 data in a mathematical model SARS-CoV-2 trans-
mission. They made inferences for transmission rate and for
the numbers of cases and recovers over time using sequential
Monte Carlo simulation [23]. The potential for continued
human-to-human transmission of COVID-19 can be modeled
by estimating the basic reproduction number [24]. The effects
of air pollution-to-human transmission and human-to-human
transmission on COVID-19 dynamics were investigated for
epidemiological data arranged by The Ministry of Health in
Italy. The data analysis was performed based on statistical
methods with a multiple regression model such as the linear
log-log method and the quadratic model for considering the
relationship between dependent (like infected individuals)
and independent (predicted from dependent) variables [25].
The effects of strict bans to prevent the transmission of
COVID-19 in Italy were examined based on testing of the spa-
tially explicit type that takes into account the spreading wave
of infection leaping from the first exit point to all areas. The
critical contribution of asymptomatic and presymptomatic
transmission was estimated by analyzing the mobility net-
work parameters of 107 provinces with the SEIR-like model,
in which the epidemiological reporting uncertainty and the
time dependence of human mobility matrices were taken into
account [26].

In our recent paper, we introduced the SpID model which
includes second-order suspicious (S)), infected (1), and death
(D) sub-models [27]. The developed SpID model is homoge-
nous since its sub-models do not consider any external
impacts such as the non-pharmacological policies. However,
Suspicious-Infected-Death with Non-Pharmacological poli-
cies (SpID-N) model proposed in this paper is inhomoge-
neous as its sub-models consider the non-pharmacological
policies (N) as external impacts. Therefore, with the SpID-N
model, it is possible to incorporate the role of the non-
pharmacological policies and analyze the contribution of the
each policy.

Although the casualties of the outbreaks all over the world
vary in terms of the numbers, peak times, and settling times;
they also carry similar characters such as having a peak
value and known or unknown uncertainties. Moreover, state
authorities apply policies such as curfews on people having a
chronic disease, age over 65, and school closures to annihilate
the viruses. In this paper, without losing the generality of
the developed model, we refer to COVID-19 casualties in
Turkey, but since the developed SpID-N model is adaptive
and the unknown parameters are learned from the available
data, it can be easily modified for the casualties in other
countries.

We can
paper as

summarize the key contributions of the
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1) The SpID-N model covers the higher order internal
dynamics together with the coupling dynamics,

2) The SpID-N model takes into account the multi-
dimensional uncertain non-pharmacological policies,

3) The SpID-N model has completely unknown parame-
ters and the LS-based optimization algorithm is formed
to learn these unknown parameters from the available
data,

4) The SpID-N model is parametric; hence, it allows
extensive analysis of the future casualties and impacts
of each non-pharmacological policy on the casualties.

In the rest of the paper, Section II reviews the SIR model

and then introduces the proposed SpID-N model, Section III
presents the parameterized models of the multi-dimensional
non-pharmacological policies, Section IV formulates the
LS-based parameter learning approach, Section V analysis
the COVID-19 casualties in Turkey, Section VI provides the
key insights of the SpID model and presents the predicted
future casualties for Turkey, Section VII mentions the limi-
tations of the study and finally, Section VIII summarizes the
work.

Il. THE SpiD-N MODEL

In this section, we firstly review the SIR model, which is
extensively considered for estimating casualties of the various
outbreaks such as SARS and COVID-19. Then, we express
the proposed SpID-N model, which is a comprehensive form
of the SIR model, covering the non-pharmacological policies
in an explicit way.

A. THE SIR MODEL

Highlighting the key properties of a well-known model plays
an important role in developing a new model. Thus, in this
sub-section, we provide the SIR model and its properties that
we take into account in the proposed SpID-N model.

1) REPRESENTATION OF THE SIR MODEL
The SIR model is represented with ordinary differential
equations (ODE) as
S =—-pSOI1{)
I(t) =—BS (1)) —yR{)
R(t) = yR() (1)
where
o S (¢) is the number of the Susceptible (S) individuals,
o I (1) is the number of the Infected (/) individuals,
e R(t) is the number of the Recovered (R) individuals,
o B is the transmission rate,
o y is the infectious rate.

2) PROPERTIES OF THE SIR MODEL

The SIR model given by Equation (1) has these properties;
Property 1: It consists of the first order ordinary differential

equations (ODEs), where the total order of the model is three.
Property 2: It has certain dynamics (without parametric

or non-parametric random variables), since the 8 and y

parameters are known constants.
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Property 3: It is homogenous (does not consider external
impacts such as curfews on the weekends), as the model does
not have forcing terms which can be a function of the S, 7, R
or utterly independent.

Property 4: It has time-invariant dynamics since  and y
are constants, where these two parameters play the key roles
in shaping the character of the model.

Property 5: It has slightly coupled dynamics because S and
I ODEs feed each other, but not the R.

Property 6: The SIR is continuous, implying there are
infinite amount of available data between two-time intervals
t and t + At, where At is a small amount of time increment.

Next sub-section introduces the SpID-N model.

B. THE SpID-N MODEL

In this part of the paper we introduce the SpID-N model by
considering the properties of the SIR model discussed in sub-
section A.2). We can briefly summarize the key properties
of the SpID-N model as 1) It takes into account the number
of the suspicious S, casualties rather than the number of
the susceptible S casualties as in the SIR model since the
proposed model focuses on estimating the future tests and
quarantine requirements instead of the whole population,
2) It considers the death D rather than the recovered R casu-
alties to use the model as the background parametric model
for the artificial intelligence-based policy-making algorithm
which aims to minimize a cost function consisting of the
pandemic casualties, 3) Its sub-models are second-order
rather than first-order since the pandemic casualties exhibit
second-order properties such as the distinctive peaks in the
casualties, 4) Its sub-models are discrete since the pandemic
casualties are reported daily.

1) SpID-N MODEL: SUSPICIOUS Sp,
The suspicious S, part of the SpID-N model is
Sprsz = @1Spiyy + aoSp, + b3k + crui (@)
where
« aj is the internal unknown parameter for the first mode
of the suspicious S,
e qap is the internal unknown parameter for the second
mode of the suspicious S,
o b3 is the unknown coupling parameter of the infected /,
« ¢y is the unknown parameter of the non-pharmacological
policies,
o uiis the sum of the multi-dimensional non- pharmaco-
logical policies,
o k is the sample of discrete time (here k is the days)
These unknown parameters will be learned from the avail-
able S), I, and D data in Section IV. In the next sub-section,
we introduce the infected part of the SpID-N model.

2) SpID-N MODEL: INFECTED /
The infected I part of the SpID-N model is
Iet2 = bilg41 + bolx + a3Sk + d3Dy + couy 3)

where
o by is the internal unknown parameter for the first mode
of the infected I,
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e bg is the internal unknown parameter for the second
mode of the infected /,
¢ a3 is the unknown coupling parameter of the suspicious
Sp,
e d3 is the unknown coupling parameter of the death D,
o (7 is the unknown parameter of the non-pharmacological
policies uy,
Similarly, these unknown internal, coupling, and policy
parameters will be learned in Section IV. Finally, in the next
sub-section, we express the death part of the SpID-N model.

3) SpID-N MODEL: DEATH D
The death D part of the SpID-N model is
Dyy2 = d1Di+1 + doDy + bali + c3ug “

where
o d is the internal unknown parameter for the first mode
of the death D,
e do is the internal unknown parameter for the second
mode of the death D,

o by is the unknown coupling parameter of the infected 7,

« c3isthe unknown parameter of the non-pharmacological

policies uy,

Again, these unknown internal, coupling, and policy
parameters will be learned in Section IV by using the
LS-based optimization algorithm. In the next section, we con-
struct the parametrized non-pharmacological policies uy
step-by-step.

lll. SpID-N MODEL: THE NON-PHARMACOLOGICAL
POLICIES N

In this section, we construct the multi-dimensional
non-pharmacological policies step by step which can be
easily modified for different cases. Parametrizing these non-
pharmacological policies is necessary since their correspond-
ing data are not directly available. Therefore, by using the
well-known facts and intuitive insights about the pandemic
diseases, parametric models of the non-pharmacological poli-
cies are derived by using signal processing and mathematical
approaches.

A. THE NON-PHARMACOLOGICAL POLICIES

The multi-dimensional non-pharmacological model covers
curfews on people 1) with chronic disease, 2) people age over
65, 3) people under age 20, 4) restrictions on weekends and
holidays, 5) closure of the schools and universities.

1) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON
PEOPLE WITH CHRONIC DISEASE
State authorities primarily focus on protecting people with
chronic diseases as they are much more vulnerable to out-
breaks. Therefore, curfews on them are implemented for a
duration of time. Note that the symptoms of being infected
can appear in 14 days where the peak point of probability
occurs around day 7, which is reported by the WHO [28],
as shown in Fig. 1.

As can be seen in Fig. 1, when an action is taken against the
outbreak, its positive impact (response) will appear in 14 days
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FIGURE 1. The probability distribution of appearance of the symptoms,
where k is the day that the curfew starts.

with a possible transient ascent and a transient descent part.
The transient ascent part of the response can be mathemati-
cally modelled as

up = n° (1 —ak) ®)
where

o uf is the response of the curfew on the people with
chronic disease,
o n°is the scaling factor of the number of the people with
chronic disease,
o « is the discount factor of the impact,
o k is the sample of discrete time (here k is the days)
« c represents chronic disease
Note that for « = 0.71 and k = 7, the response (impact)
in Fig. 1 reaches its maximum. In reality, since the response
is not certain, we add random non-parametric uncertainty o “
in Equation (5) as

u,i=n6<1—a’<—’<i+a€), fork =kis ..., ky  (6)

where k; represents the start day of the curfew, k,, = k; +7 for
this case. In terms of the transient descent part of the response
in Fig. 1, the mathematical model is

W = n (ak—kn—l +oC), fork =ky+1,...k (7)

where k; = k,, + 7.

So far in this sub-section,

« We have modelled the impacts (response) of only a
one-day curfew, which has an impulse effect on fighting
the COVID-19 (Fig. 1).

« However, curfews on the people with chronic disease
have been implemented for a duration of time, which has
a constrained step input effect on fighting the COVID-19
(Fig. 2).

In Fig. 2;

« Step input represents the duration of the curfews on
people with chronic diseases.

o The impact (response) is now uncertain due to
added randomness ¢ in Equations (6) and (7). This
uncertainty represents the unmeasured or undetected
casualties and people who violate the curfew.
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FIGURE 2. Impact of the curfew on the people with chronic disease,
where k is the day that the curfew starts.

e To extend the model with steady-state, modifying
kn = ki +kj,, with k7 is the start day and kj; is the duration
of the curfew, is enough.

o In this case, k; = k, + 14.

The next sub-section presents the non-pharmacological

model for the curfew imposed on people age over 65.

2) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON
PEOPLE AGE OVER 65

A further group of people prone to be infected from the out-
breaks is age over 65. Thus, the state authorities implement
curfews on these people primarily. The model of the curfew
on the people age over 65 is closely related to the model
for people with chronic diseases. Henceforth, we can slightly
modify the model transient ascent and steady-state parts as

ugs =n® (1 —ozkfkiﬁ5 +065>, for k =kl-65, o ky
(®)

where

. ugs is the response of the curfew on the people age over
65,

o 1% is the scaling factor of the number of people with age
65,

« « is the discount factor of the impact,

o 0% is the random uncertainty in the response,

o k= ki65 + k8 where ki65 is the start day and k% is the
duration of the curfew,

« 065 represents age over 65

Now we can present the transient descent part as
u®S = n (akfknfl 4 065) ’

where k, = k, + 14. The next sub-section provides the
modified model for the curfew on people age under 20.

fork =k,+1,...k (9)

3) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON
PEOPLE AGE UNDER 20

Even though the young people are much more resistant to
the outbreaks, since they spread the virus more than others,
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curfews on people aged under 20 have been implemented.
The model of the curfew on the people age under 20 is closely
affiliated with the model for the people with chronic diseases.
Therefore, we can slightly modify the transient ascent and
steady-state parts of the model as

i = (1= 4 0), fork =k, ..k
(10)
where
. u,%o is the response of the curfew on the people age under
20,

« n?0 is the scaling factor of the number of people age
under 20,

o « is the discount factor of the impact,

020 is the random uncertainty in the response,
o ky = kP + k20 where k7 is the start day and k2° is the

duration of curfew,

« 20 represents age under 20

The transient descent part as

i = (A1 0™) fork =k, + 1, ki
(11

where k; = k;,+ 14. The next sub-section expresses the model
for the curfews applied on weekends and holidays.

4) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON
WEEKENDS AND HOLIDAYS

Since people travel and visit each other during the weekends
and holidays, viruses can spread to the mass populations.
Therefore, curfews are taken into account during the week-
ends and holidays. Since this kind of curfews are imple-
mented at certain intervals, it is modelled with piecewise
impulses as

_wh
u:’v,? = n*h (1 — ok h +ol~Wh) 8,

k=k"™ .. . k
for {6, =0, curfew (12)
6 =1, without curfew
where
« §; is the impulse representing the existence of the cur-
fews,

. ulwl? is the response of the curfew on the weekends and
holidays,

o n"! is the scaling factor of the number of the people
under curfews on weekends and holidays,

o « is the discount factor of the impact,

. ai‘”h is the random uncertainty in the response,

o ky =k + kMM where kM1 is the start day and k¥ =7
is the half duration of the impact,

« wh represents weekends and holidays

The transient descent part as

A (ak—k,l—l +Uwh> 5,

k=k,+1,...k
for {6, =1, curfew (13)
8, =0, without curfew
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wh

k

FIGURE 3. Total response of the curfews on weekends and holidays,
where k is the day that the curfew starts.

where k; = k, 4+ 14. Fig. S2 shows the weekend and holiday
curfews and their corresponding individual responses.
wh

The total response u,‘fh is the sum of each response u;"; as

k
wh wh
U = E u; 14
k i=k—14 " bk (14)

Fig. 3 shows the sum of the responses at each sample k.

As can be seen from Fig. 3, the response of the curfews on
the weekends and holidays has multiple peaks and multiple
steady-states due to their impulse type effects. The next sub-
section expresses the model for the schools and universities
closure.

5) THE NON-PHARMACOLOGICAL POLICIES: SCHOOLS AND
UNIVERSITIES CLOSURE

As the school and universities are the mass gatherings places
for the students where they actively engage with each other,
the schools and universities’ closure plays a crucial role to
control the spread of the virus. Since it is not a curfew, its
role is mainly removing a negative effect and acting positively
for a duration of time. Therefore, it has a similar modelling
approach of single positive impulse as

it = (1= AR o) fork =Kk,
(15)

where

o u)" is the response of the single impulse representing the
schools and universities closure,

o n*" is the scaling factor of the number of students,

« «o is the discount factor of the impact,

o o is the random uncertainty in the response,

o ky = kM + k;",where k" is the start day and ;" is the
duration of the curfew,

« su represents schools and universities

The transient descent part as
0 = ™ (ak—kn—l + os”) . fork=ko+1,...k (16)

where k; = k, + 7. The next sub-section expresses the overall
responses of the non-pharmacological policies.
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B. TOTAL RESPONSES OF THE NON-PHARMACOLOGICAL
POLICIES

To form a base in Section IV, we should specify the u; in
the sub-models given by Equations (2), (3), and (4). The total
responses of all non-pharmacological policies introduced in
Section III. A.1)-5) as

up = ug + u,?s + u,%o + ukWh + " (17)

Even though they are summed up with equal importance in
Equation (17), their importance is shaped by the unknown
but learned ¢, ¢z, and c3 parameters in Equations (2), (3),
and (4). The next sub-section expresses the key properties of
the developed SpID-N model.

C. KEY PROPERTIES OF THE SpID-N MODEL
The key features of the SpID-N model are;

Property 1: Each ODE of the SpID-N model given by
Equations (2), (3), and (4) is the second order. So that together
with the stable and unstable modes of the COVID-19, damp-
ing and natural frequencies of the outbreak can be considered.

Property 2: The model of the non-pharmacological poli-
cies has non-parametric uncertainties o, 0%, 520 Wb and
0. So that the SpID-N model covers the random variations,
too.

Property 3: The SpID-N model takes into account the
non-pharmacological actions against the outbreaks such
as the curfews and restrictions. Therefore, the ODEs are
inhomogeneous.

Property 4: The SpID-N model does not cover the known
parameters such as the transmission rate 8 and infectious
rate y which are likely to change seasonably. However, the
SpID-N model assigns all the parameters as unknown and
learns them from the available S, /, and R data by performing
an LS-based optimization.

Property 5: The number of suspicious people affects the
number of infected people and also the number of recovered
and dead people. Henceforth, the model is strongly coupled.

Property 6: Since it is a fact that the casualties are revealed
daily, not every moment of time At¢, the SpID-N model is
discrete-time instead of continuous-time.

In the next section, we provide an LS-based optimization
approach to determine the unknown parameters of the pro-
posed SpID-N model.

IV. LS-BASED PARAMETER LEARNING

This section formulates the bases and the unknown parameter
vectors of the SpID-N model together with the labeled real
output. This section also provides a derivation of the batch
type LS-based unknown parameter estimation approach to
learn the unknown parameters offline.

A. CONSTRUCTION OF THE BASES

To learn the unknown parameters of the SpID-N model,
we perform the LS-based optimization. Therefore, we cre-
ate unknown functions with unknown parameters, but with
the known bases, which carry crucial information about the
unknown parameters. In terms of the basis of the suspicious
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model, consider the right-hand side of the discrete model
given by Equation (2) and form the corresponding basis @,
as

s, = [Sp(2.....N—=1)S,(1,....N —2)
I(1,....N=2u(1,....N=21" (18)
where N is the length of the data. Similarly, to construct the
basis for the infected @J;, consider the right-hand side of the
discrete model given by Equation (3) which yields
o=@ ....N-DI(,....N=2)S,(1,...,N=2)
D{A,....N=2u(,....N=2]" (19)
Lastly, take into account the right-hand side of the discrete
model given by Equation (4) to construct the basis for the
deaths @Jp as
bp=[DQ2,....N—1)D(,...,N —=2)
I(,....,N=2u(1,....,.N=21" (20

The bases (18), (19), and (20) are multi-dimensional
and carry information about the internal dynamics of the
COVID-19 and also the non-pharmacological policies. Since
these bases are constructed by utilizing the facts-based
insights, the unknown model parameters associated with
these bases are exact as discussed next.

B. ESTIMATED AND PARAMETRIZED CASUALTIES
The estimated model consists of the unknown parameter

vectors representing the unknown parameters of the highly
coupled SpID-N model defined as

ws, =[a1 ao b3 al”
wi=[b1 by a3 d3 )"
wp=1[d do by c3]" 1)

where ws,, WI, and wp are the unknown parameter vectors of
the suspicious, infected, and death models respectively. The
estimated individual models are

A T

Ys, = W, @S,,

51 = w9

b = wp¥p (22)
where Js,, 1, and Jp are estimated outputs or future casual-
ties for the suspicious, infected, and death models. To perform

the LS optimization, the next step is to label the real outputs
presented next.

C. THE REAL OUTPUTS

To construct the real outputs, which carry correlated

information about the past casualties and non-pharmacological
policies, consider the left-hand sides of the discrete mod-

els (2), (3), and (4). The real outputs (non-parametrized) are

s, =8B, ....N)"

yi=13,....,N)

ypo =D@3,...,N)T (23)
where ¥y VI and yp are the real outputs. Finally, the next

sub-section formulates the LS approach.
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D. LS FORMULATION

Consider the real outputs (23) and estimated outputs (22) by
reducing the indices of the parameters and variables. The
error between the real and estimated outputs reveals infor-
mation about the unknown parameter vector (21). The error
vector e is

e=y—9% (24)

T ~ A an T
where y = [ys,yiyp]" and § = [J5,9/9p] . To ensure
positive definiteness in the estimates, square the error e in (24)
and expand as

e = (y - wT@>T (y - WT@)
=Yy —wty =y W+ wp"w'p (25)

The slope in error determines both the direction and mag-
nitude of the unknown parameters w and moving towards the
direction of the error slope minimizes the squared error (25).
For the gradient descent based optimization, take the gradient
of (25) as

de?
ow

The unknown parameter vector w setting (26) to zero is
obtained as

= 20"y + 207w (26)

w= (@T@)_l o7y 27)

This formulation of the unknown parameter vector (27) can
now be used to analyze the developed model and to predict
the future casualties of the COVID-19 in Section VI.

E. PSEUDO-CODE FOR THE SpID-N MODEL
Inputs: Reported casualties Sy, I, and D with length N

Constructed non-pharmacological policies uy

Initialized unknown parameters in Equation (21)
Outputs: Estimated parameters of the SpID-N model

1. Construct the bases in Equations (18), (19), and (20).
Construct the unknown parameters in Equation (21).
Construct the estimated outputs in Equation (22).
Construct the real outputs in Equation (23).
Determine  the  unknown  parameters
Equation (27).

V. ANALYSIS OF THE DATA: COVID-19 CASUALTIES IN
TURKEY

We shortly provide and analyze the COVID-19 casualties
in Turkey between 12 of March 2020 to 8 of August 2020.
This section is mainly for gaining insights about the COVID-
19 casualties and reflecting these insights into the compre-
hensive model derivation process in Sections II, III, and I'V.
In addition, the discussions in this section help understanding
the analysis of the model and predicted future casualties in
Section VI.

A. SUSPICIOUS CASUALTIES

Fig. 4 shows daily suspicious casualties, which is only the
number of daily tests, reported by the Health Ministry of
Turkey [29]. It can be clearly seen that the number of sus-
picious people has risen sharply without a distinctive peak.

Al e

with
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FIGURE 4. Daily suspicious casualties of Turkey, Sp represents the
number of the suspicious casualties.
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FIGURE 5. Daily infected casualties of Turkey, / represents the number of
the infected casualties.

Even though there is a small reduction in the suspicious
casualties between 40 and 70 daily samples as a result of
various curfews and restrictions, it continues to be large.

However, considering the infected casualties shown
in Fig. 5 and death casualties in Fig. 6, it can be deduced that
the suspicious casualties are mostly for searching people who
might be infected or taking pre-cautious actions to prevent
people such as the military stuff. It is expected that this fact
reduces the coupling effect among the suspicious, infected,
and death casualties.

B. INFECTED CASUALTIES

Fig. 5 shows daily infected casualties reported by the Health
Ministry of Turkey [29]. Fig. 5 also shows a distinct and sharp
peak with random oscillations due to uncertainties. This peak
implies the second-order dynamics discussed in Sections II
and III. It is also noticeable that after the peak, infected
casualties settle down a region as a result of the impacts
of the non-pharmacological policies. However, the infected
casualties do not converge zero and they fluctuate around a
bounded equilibrium. This is highly likely due to removing
all the restrictions and curfews on 1 of June. This has caused
improving uncertainty as well.

C. DEATH CASUALTIES

Fig. 6 shows the number of deaths stemmed from the COVID-
19 reported by the Health Ministry of Turkey [29]. It is
clear that the number of deaths (Fig. 6) and the number of
infected people (Fig. 5) have a significantly similar character
as opposed to the number of suspicious people (Fig. 4). It is
clear that the number of deaths has reduced from 130s to 20s,
but it fluctuates around a non-zero equilibrium point.
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FIGURE 6. Daily death casualties of Turkey, D represents the number of

the death casualties.

TABLE 1. Population characteristics of Turkey [30].

Total population 83.154.000
People with chronic diseases 26.567.000
People age over 65 7.550.000
People age over 65 with chronic diseases 6.032.000
People age over 65 without chronic diseases 1.517.000
People age under 20 25.573.000
Remaining people under curfews 29.497.000
Number of the school and university students 26.048.000

VI. ANALYSIS OF THE SpID-N MODEL
This section provides an insightful analysis of the coupled
and higher-order parametric SpID-N model.

A. PARAMETERS OF THE SpID-N MODEL
We provide parameters of the SpID-N model for the case
of casualties in Turkey to make insightful comments about
the COVID-19 analysis. However, since the developed model
is flexible, providing corresponding parameters yields a
specific model for that country.

Based on the knowledge given by Table 1 [30], we can now
specify the corresponding SpID-N parameters in Table 2 [30].

B. COMMENTS ON THE SpID-N MODEL
The learned parameters of the SpID-N model with the LS
estimator (27) are

Spers = 0.94538; 41 + 0.00475,, + 0.57941; + 0.0153u
Liya = 1.05450; 1 — 0.04431; — 0.0004S,,
—0.5334D; — 0.0001 1k
Dyy2 = 1.0465D; 11 — 0.1576D; + 0.00331; + 0.00002u
(28)

Insight 1: Correlation among the internal effects of the S,
I, D casualties get stronger from S, to I and D, respectively.
This can be seen from the 0.0047S,, , 0.04431;, and 0.1576Dy,
which grow 10 folds of each other. This confirms the consis-
tency of the infected I and death D data, but not the suspicious
S, data since it covers the tests performed without strong
suspicions.

Insight 2: The infected number of people has quite strong
effects on the number of suspicious people due to 0.57941;
in (28).
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TABLE 2. Parameters of the SpID-N model [30].

Symbol Values Explanation
e 26.567.000 Pgople with chronic
diseases
65 1.517.000 People age over 65 without
n T chronic diseases
n? 25.573.000 People age under 20
o 29.497.000 Remaining people under
o curfews
su Number of the school and
n 26.048.000 university students
k 23/02/2020 First COVID-19 casualty
i kl. =1 has seen
21/03/2020-01/06/2020 ~ Start and end dates of the
¢ ¢ curfews for the people with
kf =28
anld i T chronic diseases and their
. k=100 corresponding day
kn n numbers
21/03/2020-01/06/2020 Starft andf eni dates ;)f the
65 65 _ curfews for the people age
ki ki =28 over 65 and their
and k5 =100 corresponding day
65 n numbers
n
03/04/2020-01/06/2020 ~ Start and end dates of the
kX 2 =41 curfews for the people age
1‘1 q i under 20 and  their
a 20 k° =100 corresponding day
kn n numbers
16/03/2020 — cont. Start and end dates of the
kiS“ =23 schools and universities
and (A closures and their
e =24 corresponding day
n numbers
n
10/04/2020-12/04/2020
ke =48
kM =49
17/04/2020-19/04/2020
k™ =55
k™ =56
23/04/2020-26/04/2020
k™ =61
kK™ =63
o 01/05/2020-03/05/2020 Start and end dates of the
i M =69 curfews for everyone and
and ! their corresponding day
jAl k:, " =70 numbers
n
08/05/2020-10/05/2020
k™ =176
kM =77
16/05/2020-19/05/2020
k™ =84
K™ =86
29/05/2020-31/05/2020
K =97
wh __
k™ =98

Insight 3: However, the role of the number of the
suspicious people on the number of the infected people is
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FIGURE 7. Eigenvalues of the discrete SpID-N model.
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FIGURE 8. Estimated future COVID-19 casualties for Turkey, a) suspicious,
b) infected, c) death.

limited (0.0004S,,) due to widely performed precautious
tests for the people who start their duties (i.e. soldiers,
workers).

Insight 4: In terms of non-pharmacological policies u,
it plays an important role in all the casualties. Note that even
though it has small coefficients such as 0.0153u, 0.0001u,
0.00002uy, since the uy have large bases weighted with the
corresponding populations, its impact is significant.

C. EIGENVALUE BASED ANALYSIS OF THE SpID-N MODEL
Eigenvalues of the coupled and 6th order discrete model (28)
can be used to reveal important knowledge about the future
behavior of the COVID-19 casualties (decrease or increase
unboundedly and the time to reach a certain level). Therefore,
in Fig. 7 we provide the eigenvalues of the model without the
external non-pharmacological effects.

As the model is discrete, any eigenvalue larger than unity
leads all coupled outputs to blow up. Thus, all the eigenvalues
of the model must be inside the unit circle for convergent
outputs. As can be seen from Fig. 7, all the eigenvalues
of the SpID-N model are inside the unit circle. However,
two of the eigenvalues inside the dashed rectangle are close
to 1; henceforth, with slight incremental changes either
in the internal dynamics or external effects, the eigenval-
ues might move towards the unstable region. In this case,
if no non-pharmacological actions are taken, the casualties
increase unboundedly.

D. ESTIMATED FUTURE COVID-19 CASUALTIES
We provide the estimated future COVID-19 casualties
in Fig. 8 for Turkey by using the model given by Equa-
tion (28).

It is clear that all the S, I, and D casualties decrease to
zero around 100 days, but they jump back. This reveals two
properties of the COVID-19:
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FIGURE 9. Expanded future casualties, a) suspicious, b) infected, c)
deaths.

1) The natural frequency of the model is large: This
implies that the rise time of the virus is small and also
it has an aggressive response.

2) The damping factor of the model is small: This
implies that the lately removed restrictions and cur-
fews have reduced the damping factor of the casualties.
If no non-pharmacological policies are imposed, then
fluctuations in casualties are expected.

To clearly see the convergent regions of Fig. 8, we provide
its expanded form around the convergent regions in Fig. 9.
It can be seen that the suspicious casualties reach zero at day
100, but it jumps back to 480s casualties (Fig. 9a). In 300
days, it reduces to 30s and its slope information confirms
the convergent behavior of the future suspicious casualties
in the further days. In terms of the infected casualties, it hits
zero around day 70 and rises back to 62 casualties (Fig. 9b).
Similarly, the death casualties reach zero around day 60 and
rise back around 2 casualties (Fig. 9c). Both the infected and
death casualties seem to converge zero around 300 days under
the current conditions.

Next sub-section analyzes the impacts of the individual
non-pharmacological policies on the future estimates of the
COVID-19.

E. ANALYSIS OF THE NON-PHARMACOLOGICAL POLICIES
Fig. 10 shows differences in casualties without an individual
non-pharmacological policy where the numbers represent the
curfews on people

1) with chronic disease,

2) age over 65,

3) under age 20,

4) during the weekends and holidays,

5) impacts of closures of the schools and universities

and

o S, represents the average impacts of all non-
pharmacological policies on the suspicious casualties,

o S; represents the impact of the non-pharmacological
policies on the suspicious casualties without the ith
non-pharmacological policy,

e I, represents the average impacts of all
non-pharmacological policies on the infected casualties,
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FIGURE 10. Average differences for the future COVID-19 casualties

without individual non-pharmocological policies. 1) with

chronic disease, 2) age over 65, 3) under age 20, 4) during the
weekends and holidays, 5) impacts of closures of the schools and
universities.

o [; represents the impact of the non-pharmacological
policies on the infected casualties without the ith
non-pharmacological policy,

e D, represents the average impacts of all
non-pharmacological policies on the death casualties,

o D; represents the impact of the non-pharmacological
policies on the death casualties without the ith
non-pharmacological policy,

As can be seen from Fig. 10,

1) Without the curfews imposed on the people with chronic
disease: Although its contribution to the number of sus-
picious casualties is significantly limited, its impacts on
the number of the infected and also deaths casualties
are significant. This shows that people with chronic
diseases are more vulnerable to COVID-19 (number 1).

2) Without the curfews imposed on the people age over 65
without a chronic disease: Despite their moderate role
in the number of suspicious casualties, their impacts on
the infected and death casualties are not strong. This
is because of the population of the people age over
65 (1.517.000 over 83.000.000 population as presented
in Table 1) (number 2).

3) Without the curfews imposed on the people age under
20: It is clear that the young people cause a consid-
erable increment in suspicious casualties. However,
since they are less prone to be infected, its impacts on
infectious and deaths are insignificant (number 3).

4) Without the curfews imposed on the weekends and hol-
idays: Since this type of restriction is for everyone, its
role on all the casualties is consistent (number 4).

5) Without the closures of the schools and universities:
Its impacts are consistent on all the casualties due to
two reasons: a) as can be seen from Table 1, almost
1/3 of the Turkish population is student, b) as can be
seen in Table 2, when the schools and universities were
closed, it was the only non-pharmacological policy
(number 5).

VIl. LIMITATIONS OF THE STUDY

In the proposed model, the suspicious, infected, death

casualties, and non-pharmacological policies were taken into
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consideration, however, the intensive care and intubation
casualties, pharmacological policies, and unknown uncertain-
ties were not taken into account. In addition to this, the study
does not focus on the risks of infections depends on some
factors such as the environmental effects, the demography of
cities, and the mobility of nations.

VIil. CONCLUSION

In this paper, we have proposed the SpID-N model to predict
and analyze the future COVID-19 casualties. Firstly, we pro-
vide an insightful analysis of the well-known SIR model
and we have determined the internal and coupled structure
of the SpID-N model. Secondly, we have derived the math-
ematical models of the non-pharmacological policies and
represented them in terms of known bases and their unknown
contributions to each part of the SpID-N model. Thirdly,
we formulate the LS-based optimization approach to obtain
the unknown parameters of the SpID-N model. The predicted
model parameters confirm that the COVID-19 casualties in
Turkey are inside the stable region, but two of the modes are
close to the instability region. The model also provides that
the number of infected and death casualties will converge zero
in 300 days, whereas the number of suspicious casualties will
require more time. In addition, we have analyzed the impacts
of the individual non-pharmacological policies and showed
that people with chronic diseases are considerably prone to
be infected and even deaths. However, even though young
people spread the virus, the number of infected and death
casualties among young people is low.

Thus, by using our developed and proposed SpID-N model,
authorities of the countries can plan new measures against
the virus in the short-medium-long term, and accordingly,
update their regulations in the fields of economy, travel, and
health systems according to the data analysis of the model we
propose.

In our future studies, it will be possible to develop new
versions that take the problems mentioned in the section of the
limitations of the study into account in the model, according
to our current proposed approach. Models to be developed
should be combined with artificial intelligence approaches in
order to determine policies for other future pandemics that
humanity may encounter.

Acknowledgment

This work was supported by TUBITAK, the Scientific and
Research Council of Turkey, under the project number:
576708.

REFERENCES

[1] M. Cascella et al., “Features, evaluation, and treatment of coro-
navirus. [updated 2020 Oct 4], in StatPearls [Internet]. Treasure
Island, FL, USA: StatPearls Publishing, Jan. 2020. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK554776/

[2] D. Yang and J. L. Leibowitz, “The structure and functions of coronavirus
genomic 3’ and 5’ ends,” Virus Res., vol. 206, pp. 120-133, Aug. 2015.

[3] K. S. Lee, “Pneumonia associated with 2019 novel coronavirus: Can
computed tomographic findings help predict the prognosis of the disease?”
Korean J. Radiol., vol. 21, no. 3, pp. 257-258, Feb. 2020.

225282

[4]

[51

[6]

[7

—

[8

—

[9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

E. I. Azhar, D. S. Hui, Z. A. Memish, C. Drosten, and A. Zumla,
“The middle east respiratory syndrome (MERS),” Infectious Disease Clin-
ics, vol. 33, no. 4, pp. 891-905, Dec. 2019.

A. Bernheim, X. Mei, M. Huang, Y. Yang, Z. A. Fayad, N.Zhang,
K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, and M. Chung,
“Chest CT findings in coronavirus disease-19 (COVID-19): Relation-
ship to duration of infection,” Radiology, vol. 295, no. 3, pp. 685-691,
Feb. 2020.

J. Wu and D. Chow. (Mar. 5, 2020). Coronavirus Diseases: Compar-
ing COVID-19, SARS and MERS by the Numbers. [Online]. Avail-
able: https://www.nbcnews.com/health/health-news/coronavirus-diseases-
comparing-covid-19-sars-mers-numbers-n1150321

The World Health Organization. (Aug. 8, 2020). Coronavirus Disease
(COVID-19) Dashboard. [Online]. Available: https://covid19.who.
int/?gclid=CjwKCAjwmrn5BRB2EiwAZgL.901DZr-QaDjUfhfl 1isNMnk

EkLB30aJJ-D317j0YQX0oNXKrZIDGjeeBoC1vQQAvD_BWE

S. Funk, I. Ciglenecki, A. Tiffany, E. Gignoux, A. Camacho, R. M. Eggo,
A. J. Kucharski, W. J. Edmunds, J. Bolongei, P. Azuma, P. Clement,
T. S. Alpha, E. Sterk, B. Telfer, G. Engel, L. A. Parker, M. Suzuki,
N. Heijenberg, and B. Reederet, “The impact of control strategies and
behavioural changes on the elimination of Ebola from Lofa County,
Liberia,” Philos. Trans. Roy. Soc. B, Biol. Sci., vol. 372,n0. 1721, pp. 1-11,
May 2017.

A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk,
and R. M. Eggo, “Early dynamics of transmission and control of COVID-
19: A mathematical modelling study,” Lancet Infect. Dis., vol. 20, no. 5,
pp. 553-558, Mar. 2020.

M. Kiskowski and G. Chowell, “Modeling household and community
transmission of Ebola virus disease: Epidemic growth, spatial dynamics
and insights for epidemic control,” Virulence, vol. 7, no. 2, pp. 163-173,
Feb. 2016.

L. Bertolaccini and L. Spaggiari, “The hearth of mathematical and statisti-
cal modelling during the coronavirus pandemic,” Interact. CardioVascular
Thoracic Surg., vol. 30, no. 6, pp. 801-802, Jun. 2020.

A. J. Kucharski, A. Camacho, F. Checchi, R. Waldman, R.F. Grais,
J.-C. Cabrol, S. Briand, M. Baguelin, S.Flasche, S. Funk, and
W.J. Edmunds, “Evaluation of the benefits and risks of introducing
Ebola community care centers, Sierra leone,” Emerg. Infectious Diseases,
vol. 21, no. 3, pp. 393-399, Mar. 2015.

B. S. Cooper, R. J. Pitman, W. J. Edmunds, and N. J. Gay, “Delaying
the international spread of pandemic influenza,” PLoS Med., vol. 3, no. 6,
pp. 0845-0855, May 2006.

C. Viboud, K. Sun, R. Gaffey, M. Ajelli, L. Fumanelli, S. Merler, Q. Zhang,
G. Chowell, L. Simonsen, and A. Vespignani, “The RAPIDD Ebola
forecasting challenge: Synthesis and lessons learnt,” Epidemics, vol. 22,
pp. 13-21, Mar. 2018.

C. E. Walters, M. M. I. Meslé, and 1. M. Hall, “Modelling the global
spread of diseases: A review of current practice and capability,” Epidemics,
vol. 25, pp. 1-8, Dec. 2018.

A. Abou-Ismail, “Compartmental models of the COVID-19 pandemic for
physicians and physician-scientists,” Social Netw. Comprehensive Clin.
Med., vol. 2, no. 7, pp. 852-858, Jun. 2020.

A.J. Arenas, G. Gonzalez-Parra, and B. M. Chen-Charpentier, “Construc-
tion of nonstandard finite difference schemes for the Si and SIR epidemic
models of fractional order,” Math. Comput. Simul., vol. 121, pp. 48-63,
Mar. 2016.

M. J. Keeling and P. Rohani, “Modeling infectious diseases in humans
and animals,” B. Rev. Clin. Infect. Dis., vol. 47, no. 6, pp. 864-870,
Sep. 2008.

Bill & Melinda Gates Found. (Aug. 10, 2020). SI and SIS Models-
Generic Model Documentation. [Online]. Available: https://idmod.org/
docs/emod/generic/model-si.html

H. W. Hethcote, “Three basic epidemiological models,” in Applied Math-
ematical Ecology, vol. 18, S. A. Levin, T. G. Hallam, and L. J. Gross, Eds.
Berlin, Germany: Springer, 1989, pp. 119-144.

M. Coccia, “An index to quantify environmental risk of exposure to future
epidemics of the COVID-19 and similar viral agents: Theory and practice,”
Environ. Res., vol. 191, pp. 110155-110161, Aug. 2020.

J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. L. Jarvis, T. W. Russell,
J. D. Munday, A. J. Kucharski, and W. J. Edmunds, “Feasibility of con-
trolling COVID-19 outbreaks by isolation of cases and contacts,” Lancet
Glob. Heal., vol. 8, pp. 488-496, Feb. 2020.

A.J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funks,
and R. M. Eggo, “Early dynamics of transmission and control of COVID-
19: A mathematical modelling study,” Lancet Infect. Dis., vol. 20, no. 5,
pp. 553-558, Mar. 2020.

VOLUME 8, 2020



O. Tutsoy et al.: Development of a Multi-Dimensional Parametric Model With Non-Pharmacological Policies I E E EACCGSS

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Riou and C. L. Althaus, “Pattern of early human-to-human transmis-
sion of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to
January 2020,” Eurosurveillance, vol. 25, no. 4, pp. 2000058-2000062,
Jan. 2020.

M. Coccia, “Factors determining the diffusion of COVID-19 and sug-
gested strategy to prevent future accelerated viral infectivity similar to
COVID,” Sci. Total Environ., vol. 729, pp. 138474-138493, Apr. 2020.
M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, and
A. Rinaldo, “Spread and dynamics of the COVID-19 epidemic in Italy:
Effects of emergency containment measures,” Proc. Nat. Acad. Sci. USA,
vol. 117, no. 19, pp. 10484-10491, May 2020.

O. Tutsoy, S. Colak, A. Polat, and K. Balikci, “A novel parametric model
for the prediction and analysis of the COVID-19 casualties,” IEEE Access,
vol. 8, pp. 193898-193906, 2020.

D. Cucinotta and M. Vanelli, “WHO declares COVID-19 a pandemic,”
Acta Biomed., vol. 91, no. 1, pp. 157-160, Mar. 2020.

Republic of Turkey Ministry of Health. (Aug. 13, 2020). The Daily
Numbers of COVID-19 Cases in Turkey. [Online]. Available:
https://covid19bilgi.saglik.gov.tr/tr/haberler/turkiye-deki-gunluk-covid-
19-vaka-sayilari.html

The Turkish Statistical Institute. (Aug. 13, 2020). The Distribution
of Turkey Population Age Group 2019. [Online]. Available: https://
www.nufusu.com/turkiye-nufusu-yas-gruplari

ONDER TUTSOY was born in Turkey. He grad-
vated from The University of Firat, Turkey.
He received the M.Sc. degree in advanced con-
trol and system engineering and the Ph.D. degree
in electrical and electronic engineering with The
University of Manchester, U.K. He is currently an
Associate Professor with Adana Alparslan Turkes
Science and Technology University specialized in
design and analysis of robotics, control, artificial
intelligence, and object recognition.

VOLUME 8, 2020

ADEM POLAT received the B.Sc. degree in elec-
tronics and communication engineering and the
M.Sc. and Ph.D. degrees in satellite communica-
tions and remote sensing program from Istanbul
Technical University, Turkey, in 2002, 2012 and
2018, respectively. He was with Division of Engi-
neering in Medicine, Department of Medicine,
Harvard Medical School, as a Fellowship, in 2017.
He is currently an Assistant Professor with the
Department of Electrical and Electronics Engi-
neering, AAT Science and Technology University. His research interests
include compressed sensing-based image reconstruction for digital breast
tomosynthesis and microscale biological imaging applications. His research
in biomedical imaging has been supported by TUBITAK.

SULE COLAK was born in Turkey. She received
the B.S., M.S., and Ph.D. degrees from the
Electrical-Electronics Engineering Department,
Cukurova University, Adana, Turkey. She is cur-
rently an Assistant Professor with the Depart-
ment of Electrical-Electronics Engineering, Adana
Alparslan Turkes Science and Technology Univer-
sity, Adana. Her research interests include electro-
magnetic fields and waves, microwave techniques,
antenna design, and ultra-wideband antennas.

KEMAL BALIKCI was born in Turkey. He grad-
vated from The University of Firat, Turkey.
He received the M.Sc. and Ph.D. degrees in electri-
cal and electronic engineering from The University
of Firat. He is currently an Assistant Professor
with Osmaniye Korkut Ata University, special-
ized in mathematical modeling and analysis of the
systems.

225283



