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ABSTRACT Optimizing the coverage path planning (CPP) in robotics has become essential to accomplish
efficient coverage applications. This work presents a novel approach to solve the CPP problem in large
complex environments based on the Travelling Salesman Problem (TSP) and Deep Reinforcement Learning
(DRL) leveraging the grid-based maps. The proposed algorithm applies the cellular decomposition methods
to decompose the environment and generate the coverage path by recursively solving each decomposed cell
formulated as TSP. A solution to TSP is determined by training Recurrent Neural Network (RNN) with
Long Short Term Memory (LSTM) layers using Reinforcement Learning (RL). We validated the proposed
method by systematically benchmarked with other conventional methods in terms of path length, execution
time, and overlapping rate under four different map layouts with various obstacle density. The results depict
that the proposed method outperforms all considered parameters than the conventional schemes. Moreover,
simulation experiments demonstrate that the proposed approach is scalable to the larger grid-maps and
guarantees complete coverage with efficiently generated coverage paths.

INDEX TERMS Coverage path planning, cellular reconfigurable decomposition, deep reinforcement
learning, recurrent neural network, travelling salesman problem.

I. INTRODUCTION
Coverage Path Planning (CPP) algorithms have been applied
to several robotics applications in real-world such as
floor-cleaning robots [1], [2], underwater operations [3],
agricultural robots [4], tiling robotics [5]–[7], ship hull
cleaning [8], benchmarking for inspection [9] and pavement
sweeping [10], [11] to name a few. CPP describes an approach
designed to determine a path that passes through all the
workspace points while avoiding obstacles. A CPP algorithm
is complete if the robot covers the workplace such that the
union of all the sub-trajectories completely covers the work-
place with finite time. The algorithm is non-overlapping if
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the robot does not cover the previously covered area. The
total operational energy and time required for coverage, com-
putation cost, and completeness determine the robustness of
a CPP algorithm [12]. An efficient and optimal path gen-
eration algorithm needs to satisfy all the mentioned criteria
simultaneously.

Generally, CPP algorithms can be classified as either
offline or online [13]. Offline algorithms use fixed informa-
tion, and the environment is assumed to be known in advance.
In contrast, online coverage algorithms utilize real-time sen-
sor measurements and decisions to sweep the entire target
area. Thus, these later algorithms are also called sensor-based
coverage algorithms. In some scenarios, the method for solv-
ing the problem is to use the randomization approach. This
method randomly sweeps the floor for long enough to cover
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the area thoroughly. Examples of commercial floor-cleaning
robots based wholly or partially on this approach are the
RC3000 by Karcher, Trilobite by Electrolux, and Roomba by
iRobot [14]. There are advantages to this approach since no
sophisticated sensors for localization nor expensive computa-
tional resources are needed. However, relying mostly on the
randomized approach could not be beneficial, as the cost of
operating the vehicle (in terms of energy and time) would be
unaffordable.

The majority of CPP methods use approaches based on
the grid information obtained from the initial map creation
process. Since it is easier to create a grid map, coverage algo-
rithms widely use these grid-based map representations [13].
However, grid maps suffer the exponential growth of memory
usage because the resolution remains constant despite the
environment complexity. As the map size increases, grid-
based CPP methods usually utilize simple cost functions and
demand high computational time leading to inefficient and
costly paths, making them not usable in real-world scenarios.
To efficiently address these limitations, the CPP methods
need to consider the complexity and the size of the envi-
ronment to generate scalable coverage paths with lesser path
length and computation time.

In this work, we propose a new CPP method to determine
an efficient and effective coverage path in large and complex
environments by utilizing grid-based map representations.
The main contributions are summarized as follows:
• A Recursive Approach for TSP-based CPP:We develop
a CPP method, which uses a line-sweeping technique
to decompose the grid-based environment into cells and
solves each decomposed cell recursively formulating as
an NP-hard Travelling Salesman Problem (TSP).

• A Deep Reinforcement Learning Approach for TSP: The
proposed algorithm uses deep reinforcement learning
to find the solution of TSP by training a Recurrent
Neural Network (RNN), which consists of Long Short-
Term Memory (LSTM) cells. REINFORCE algorithm,
a policy gradient method for reinforcement learning is
utilized to optimize the proposed neural network param-
eters. With the help of the proposed reward function
designed explicitly for TSP in grid-based environments,
this RL approach for TSP yields near-optimal tours with
faster computation time.

• Simulation Studies: We conduct simulation studies to
evaluate the performance of the proposed CPP approach
from different perspectives in comparison with con-
ventional methods. The experimental results in large
complex environments demonstrate the efficiency and
scalability of the proposed approach.

The rest of the article is organized as follows. We discuss
related work in Section II and the proposed recursive TSP-
based CPP algorithm in Section III. Section IV presents the
reinforcement learning approach for finding the solution of
TSP. We then discuss and analyze the RL training details
and compare the algorithm’s performance through extensive
simulation studies in Section V and conclude in Section VI.

II. RELATED WORK
The problem of Coverage Path Planning (CPP) utilizing grid
representation maps has been addressed by several authors in
the literature. This grid representation was initially proposed
by Moravec, and Elfes [15], where the authors mapped an
indoor environment using a sonar sensormounted on amobile
robot. Each grid cell in this representation occupies a value
denoting the cell’s availability, stating whether an obsta-
cle is present or free. Since these grid representations only
approximate the shape of the environment and its obstacles,
grid-based methods were classified as approximate cellular
decomposition methods [16]. These methods decompose the
environment into specific grid shapes such as rectangles [17],
triangles [18], or tetromino [19], rhombus [20]. Usually, each
grid’s size is square in shape and set to the same size as the
robot to reduce unexplored areas. Utilizing grid-based meth-
ods for coverage path planning opens numerous opportunities
for research and development in the field of robot navigation.
There are numerous grid-based algorithms proposed for effi-
cient CPP for mobile robots.

The first offline grid-based method for coverage path
planning, called the Wavefront Algorithm, was proposed by
Zelinsky et al. [21]. The algorithm defines a starting and
a goal cell and uses a distance transform that propagates a
wavefront from the goal to start to assign a specific number
to each grid cell. A coverage path can be obtained by starting
on the start cell and selecting the adjacent cell with the highest
label that is unexplored. Another method by utilizing grid
representation is the Spiral-STC (Spanning Tree Coverage)
algorithm, proposed by [22]. This online approach generates
the systematic spiral path by following a spanning tree of
the partial grid map that the robot incrementally constructs
using its onboard sensors. The authors validate the proposed
method in simulation. Extended Spiral-STC, and selective
path planning, modified A star, have been proposed in several
works [23]–[25]. In other approaches, [26]–[28] proposed
a novel neural network approach for CPP with obstacle
avoidance of cleaning robots in non-stationary environments.
This approach generates the robot path from the dynamic
activity landscape of the neural network and the previous
robot location. The authors claim that the proposed method
is computationally simple, and they validate the approach
in simulation. Nevertheless, most CPP algorithms designed
for the grid representation still have several challenges to
find the least optimal cost path in larger environments
considering both total path length and computation time
required.

Bormann et al. [29] proposed the heuristic approach for
solving CPP called Grid-based Local Energy Minimiza-
tion. The algorithm determines the potential next unvisited
grid cell within the current neighborhood by minimizing
the energy function. This approach never visits grid cells
twice and terminates when all grid cells have been cov-
ered. Other well-known grid-based CPP methods are the
Grid-based Travelling Salesman Problem (Grid-based TSP)
algorithm [30] and Graph theory-based technique [31].
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The planner decomposes the map into grid cells, and the
solution to CPP is determined by finding the shortest path that
visits all the grid cells as TSP. The authors approximated the
travel distances between grid cells using A*. Since TSPs are
NP-hard optimization problems, finding an optimal solution
considering optimality and scalability has several limitations
when dealing with larger environments.

III. PROPOSED RECURSIVE TSP-BASED CPP
This section explains the proposed recursive TSP-based
approach for solving CPP. The environment map is decom-
posed by utilizing the cellular decomposition methods,
and the algorithm recursively solves each decomposed cell
that contains gridpoints, formulating as an NP-hard TSP
optimization.

FIGURE 1. Decomposition of the environment into free and occupied
robot-sized grids.

A. ENVIRONMENT MAP DECOMPOSITION METHOD
The final goal of resolving area coverage problems is to
cover the free space areas defined in the environment map by
navigating autonomously and following the CPP algorithm’s
predefined path. In this work, we utilize the ideas of approx-
imate cellular decomposition methods and grid-based rep-
resentation maps to achieve complete coverage tasks. First,
the environment map is decomposed into finitely many robot-
sized grids m =

∑
i mi where mi denotes the gridpoint with

index i ∈ R2. Each mi has attached an associated binary
value, which specifies whether an obstacle is present or if
it is instead free space. Figure 1 illustrates the grid map
decomposition with free and approximated occupied grids
where each grid has the same size as the robot. The CPP
solution can then be determined by finding a globally shortest
path that visits all the gridpoint locations. This becomes
TSP, and solving TSP on all the gridpoints offers a valid
solution to the original CPP problem. However, since TSPs
are NP-hard, this approach is undesirable when dealing with
larger environments consisting of several gridpoint locations.

Thus, we propose to utilize the exact cell decomposition
technique, also known as trapezoidal decomposition [32],
to decompose the grid map, as illustrated in Figure 2. The grid

map’s free space is broken down into simple, non-overlapping
regions called cells by sweeping a line through space from left
to right. The cell boundaries are formed when the sweep line
intersects with obstacle boundaries, as indicated in Figure 2a.
Figure 2b represents the decomposed cells where each cell
contains the corresponding centroid information and grid-
point locations. Figure 2c indicates the graph cell structure
where a node represents a cell, and an edge represents the
euclidean distance between each node. Instead of using graph
traversal algorithms, we propose to determine the visit order
of the cell graph by utilizing the TSP approach, i.e., find-
ing a permutation of all the cells to get the minimum total
cost length that visits each cell exactly once, as indicated
in Figure 2d.

B. CPP PROBLEM FORMULATION IN
DECOMPOSED CELLS
We formalize the problem of CPP in the decomposed grid
cells as a standard 2D TSP. Given a list of gridpoints and the
distances between each pair of points, the TSP algorithm has
to determine the shortest possible route that visits each grid-
point exactly once. It is a well-known NP-hard combinational
optimization problem. Compared to Euclidean Distance, also
known as the L2 norm in standard TSP, we use the Manhat-
tan Distance or L1 norm to find the distance between each
grid point mi, where distance d can be calculated using the
following equation:

d(x, y) =
m∑
i=1

| xi − yi |, (1)

Then, the total tour length or the solution to TSP can be
defined as given an input state graph s, represented as a
sequence of gridpoint locations in a two-dimensional space
s = {mi}ni=1 where eachmi = (xi, yi) ∈ R2, we are concerned
with finding a permutation of the nodes, i.e. a tour π , that
visits each node once and has the minimum total length. The
cost of a tour noted by a permutation π can be defined as:

L(π |s) =
n−1∑
i=1

‖mπ (i) − mπ (i+1)‖1, (2)

where ‖.‖1 denotes the L1 norm.

C. OVERVIEW OF THE PROPOSED ALGORITHM
By utilizing the proposed grid cell decomposition, and the
computed cell visit order, the coverage path of the environ-
ment can be obtained by recursively solving each decom-
posed cell. Algorithm 1 describes the proposed recursive
algorithm. The input to the algorithm is the order list of
cells C , in which each cell has the corresponding centroid
and gridpoint locations, empty vectorG to store all the solved
gridpoints, and the starting index, which is used as an initial
gridpoint to find the optimal path of each cell. Figure 3
represents the proposed recursive approach. All the points
of the current cell are stored in the gridpoint vector g, and
instead of solving only those points, we add the centroid of
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FIGURE 2. Decomposition of the grid map into cells and determining the cell visit order. (a) Sweeping from left-to-right.
(b) Decomposed cells holding their corresponding centroid and gridpoint locations. (c) Graph cell structure with euclidean metric
edges. (d) TSP approach to finding the minimal cell visit order.

the upcoming cell into the gridpoint vector g as an endpoint
of TSP to make the path more guidance towards the next cell,
thereby reducing sub-optimal paths, as indicated in Figure 3a.
Once the TSP is solved for a particular cell, the next cell’s
centroid is removed from the solution. In Figure 3b and c,
the starting index for the subsequent TSP is determined by
iterating over the next cell and finding the closest point from

the endpoint of the solved TSP gridpoint list. The algorithm
then recursively resolves the solution of TSP by following
the visit order of cells and remove the cell from the list once
it is solved. This process continues until all the cells are
solved (or the list is empty), which is the base case for our
recursion. Figure 3d illustrates the resulted coverage path of
the environment.
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FIGURE 3. Recursive TSP-based CPP Steps: (a) centroid of cell-1 is added as an endpoint for TSP of cell-0, (b) starting point
for TSP of cell-1 is determined by finding the closest point from the endpoint of cell-0, (c) solving TSP of cell-1 by appending
centroid of cell-4 as an endpoint, and (d) final resulted coverage path.

IV. REINFORCEMENT LEARNING APPROACH
FOR TSP-CPP
In this work, we propose to obtain the coverage path in each
decomposed cell by formulating as 2D Manhattan TSP. The
solution of TSP is determined by training recurrent neural
networks using deep reinforcement learning.

A. RL PROBLEM FORMULATION
We formalize the TSP in the decomposed grid cells as a
standard reinforcement learning setting. Let S be the state
space, where each state st ∈ S is defined as the set of all
previously visited gridpoints, i.e., st = {mπ (i)}ti=1 and A be
the action space, where each action at ∈ A is the next selected

grid point, i.e., at = mπ (t+1). Given a set of visited gridpoints
st , we denote the policy as πθ (at | st ), which will return
a probability distribution over the next candidate gridpoints
at that have not been chosen. The policy is represented by
a neural network and parameterized by θ , which are the
trainable parameters of the network. In this work, we define
the negative of the tour length described in Equation 2 as the
total expected reward r(π |s), which we seek to maximize:

r(π |s) = −L(π |s)

= −

n−1∑
i=1

‖mπ (i) − mπ (i+1)‖1 (3)
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FIGURE 4. Proposed actor-critic architecture.

Algorithm 1 Recursive TSP-Based CPP Pseudocode

1 Function RecursiveCPP(C, G, index):
2 if cells list C is empty then
3 return gridpoints G
4 end if
5 else
6 if length of cells list C > 1 then
7 nextCentroid← centroid of next cell ci+1
8 end if
9 else
10 nextCentroid← centroid of initial cell
11 end if
12 g← all gridpoints of current cell ci ∈ C
13 g← g+ nextCentroid
14 endIndex← last index of g
15 solveList← SolveTSP(g, index, endIndex)
16 remove nextCentroid from the solveList
17 add all the gridpoints from solveList into G
18 lastPoint← last gridpoint of solveList
19 loop through each gridpoint of next cell

ci+1 ∈ C to get the nearest gridpoint index from
lastPoint

20 remove the current cell ci from C
21 return RecursiveCPP(C, G, index)
22 end if

B. NEURAL NETWORK ARCHITECTURE
Our neural network architecture, utilizing the actor-critic
architecture is depicted in Figure 4. Following [33], the pro-
posed neural network architecture uses the chain rule to fac-
torize the probability of tour π in Equation 2 as:

p(π |s) =
n∏
i=1

p(π (i) | π (< i), s), (4)

Furthermore, each component on the right side of Equation 4
is processed sequentially by the softmax modules. Similar
to [33], we employ the pointer network architecture [34],
illustrated in Figure 5, as our actor policy model, which

consists of two RNN modules, encoders and decoders,
each includes LSTM cells [35] to parameterize p(π |s). The
encoder network examines the input states, one gridpoint
location at a time, and converts it into a series of latent
memory states {enci}ni=1 where enci ∈ Rd . The input to the
encoder network at timestep i is a d-dimensional embedding
of 2D gridpoints mi, obtained via a linear transformation
of mi, shared across all input steps. The decoder network
also maintains its Latent memory states {deci}ni=1 where
deci ∈ Rd and utilizes the pointing mechanism to predict a
distribution over the upcoming gridpoints to yield the optimal
tour length. The pointing mechanism is parameterized by two
learned attention matrices K ∈ Rd×d and Q ∈ Rd×d and an
attention vector v ∈ Rd as:

ui =

{
vT tanh(Kri + Qq), if i 6= π (j) for all j < i
−∞, otherwise

(5)

where q is a query vector from the hidden variable of the
LSTM, and ri is a reference vector containing the information
of the context of all gridpoints. Then the probability distribu-
tion policy over all the candidate gridpoints is given by:

p = πθ (ai | si) = softmax(ui) (6)

where we predict the next visited gridpoint ai = mπ (i+1),
by sampling or choosing greedily from the policy as:
ai = argmax(p).

C. OPTIMIZATION WITH REINFORCEMENT LEARNING
Solving NP-hard problems such as TSP and its variations
using supervised learning is challenging since the perfor-
mance of the trained model highly depends on the quality
of the supervised labels. Furthermore, getting the training
data with labels is costly and infeasible. On the contrary, RL
provides a proper and simplistic paradigm for training neural
networks, where an RL agent traverses different tours and
observes the corresponding rewards tomaximize the expected
reward objective. Hence, in this work, we propose to optimize
the policy of the actor pointer network parameters by utilizing
the REINFORCE algorithm [36], which is a policy gradient
method for RL. The reward function described in Equation 3
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FIGURE 5. A pointer network architecture introduced by [34].

is utilized to optimize the parameters θ of the policy pointer
network concerning the training objective, i.e., the expected
tour length given an input state graph s as Equation 7:

J (θ |s) = Eπ∼pθ (.|s)r(π |s), (7)

then we formulate the policy gradient of the objective using
REINFORCE as in Equation 8, which controls stable updates
during the optimization step.

∇θJ (θ |s) = Êπ∼pθ (.|s)
[
Ât∇θ log pθ (π |s)

]
, (8)

where Ât = r(π |s) − b(s) is an estimator of the advantage
function at timestep t , where b(s) being the baseline that does
not depend on the policy π and estimates the expected tour
length to reduce the variance of the gradients.

The proposed baseline b(s), which is the estimated tour
length value, is obtained from the same pointer network with-
out the final softmax layer, called a critic and parameterized
by θv, where the value estimate or the baseline is predicted

based on the final state input. The critic network parameters
θv are trained using the stochastic gradient descent on a mean
squared error objective between its predictions b(s) and the
reward tour length r(π |s), which we obtain from the most
recent episode:

J (θv) =
1
B

B∑
i=1

(b(si)− r(πi|si))2 (9)

V. RESULTS AND DISCUSSION
A. RL TRAINING DETAILS
For training the proposed network architecture, the Pytorch
framework was used. Mini-batches of size 64 were applied
with 6400 instances for one epoch, and the number of the
epoch was set to be the same as the TSP length, i.e., for each
n TSP, the model was trained for n epoch. All the training
instances were generated randomly on the fly. After training
for each TSP length, the trained model was then used as
the pre-trained weight for the next TSP training. The Adam

VOLUME 8, 2020 225951



P. T. Kyaw et al.: Coverage Path Planning for Decomposition Reconfigurable Grid-Maps Using DRL Based TSP

FIGURE 6. Training log for TSP20, TSP30, TSP50 and their respective baselines.

TABLE 1. Average comparison results of the trained models and the baselines obtained by running on 1000 TSP instances.

optimizer [37] was used for regularising the model with
the initial learning rate of 3× 10−4. During the train-
ing, the model was compared with Lin–Kernighan heuristic
(LKH) [38] as the baseline in each epoch to observe themodel
performance. The range of pointer value ui is clipped between
[−C,C] with the value ofC = 10 similar to [33]. The reward
function described in Equation 3 was used, and the training
was done for TSP20, TSP30, and TSP50. Figure 6 plots the
proposed model’s training log compared to the optimal LKH
solver. The trained model of each TSP length converges fast
to the near-optimal solution and generalizes well in the later
training steps.

The trained model was validated by comparing it with
the optimal LKH solver, and the vehicle routing solver from
Google OR Tools [39]. We utilized the two solution search
strategies from OR Tools; the PATH CHEAPEST ARC algo-
rithm and the GUIDED LOCAL SEARCH as the most effi-
cient metaheuristic for TSP optimization, where the search
time limit for each TSP instance was set to 5s, and the
testing was done for TSP20, TSP50, TSP100, and TSP250.
Table 1 describes the average comparison results of each
trained model and the baselines, where 1000 TSP instances
were used for each evaluation tour length. Overall the results
in Table 1 indicate that our proposed trained models could

generalize well to larger TSP instances by merely training on
smaller TSP sizes. Furthermore, as the TSP size increases,
the inference time needed to generate the optimal results
for methods like LKH increases exponentially. In contrast,
the proposed RL solution achieves the lowest inference time
with 3 times and 20 times less than the two OR Tools strate-
gies and 12 times lower than the LKH.

B. SIMULATION STUDIES
This section presents the simulation studies to illustrate
the scalability of the proposed recursive TSP-based CPP
approach using RL. Experiments were conducted on four ran-
dom map layouts of 25m× 25m size displayed in Figure 7.
Robot of dimensions 0.5 meter× 0.5 meter was simulated
and used as the grid size in cell decomposition. In this study,
a Grid-based TSP approach was utilized to benchmark the
performance of the proposed method. Conventional coverage
planning techniques such as zigzag and spiral were also
adopted for the comparison. Note that Google OR Tools
was utilized to find the optimal solution of the Grid TSP
method. All methods were implemented using C++, and
the experiments were conducted on computing nodes with
the following specifications: Intel Core i7-9750H processor
and 16GB Memory. Three metrics were used for the per-

225952 VOLUME 8, 2020



P. T. Kyaw et al.: Coverage Path Planning for Decomposition Reconfigurable Grid-Maps Using DRL Based TSP

TABLE 2. Comparison results of the proposed method and benchmark methods on four different map layouts with different number of obstacles for the
performance evaluation metrics.

FIGURE 7. Four randomly simulated test map layouts: (a) Map-0,
(b) Map-1, (c) Map-2, and (d) Map-3.

formance evaluation as follows: 1) path length, 2) execution
time, and 3) overlapping rate. The path length measures the
final tour of the path generated by the CPP algorithm, where
Manhattan Distance was used as a distance metric to measure
the distance between each gridpoint. The execution timemea-
sures the running time of the CPP algorithm required to obtain
the final coverage path. The overlapping rate measures the
ratio between the revisited gridpoints and the total coverable
gridpoints. In this work, we designed two experiments to

FIGURE 8. Coverage results on test map layout with 5% obstacles.
(a), (b), (c), and (d) are the Map-0 results of ZigZag, Spiral, Grid-TSP and
Proposed methods respectively.

validate the results and demonstrate the impact of the pre-
viously mentioned metrics on the proposed approach.

In the first experiment, diverse shapes and a different
number of obstacles were added to the maps to study the
efficiency of the proposed method in complex environments.
Table 2 describes the experiment’s comparison results on four
test map layouts with several percent of obstacle quantity.
Figure 8 illustrates the coverage path results of the pro-
posed method and benchmark methods on Map-0 layout with
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TABLE 3. Average comparison results of the proposed method and benchmark methods on four different map layouts with different number of obstacles
for the scalability experiment.

5% obstacles. Overall, the data in Table 2 indicates that all
the validated techniques have considerably different values
in terms of CPP criteria, including path length, execution
time, and overlap rate and better from the top row to bottom
row. All the performance metrics of each method are propor-
tional to the complexity of obstacles inside the tested map
layouts. Specifically, if the map is more complicated with
a higher percentage of obstacles, the outperform between
the proposed RL-TSP-based method and other tested meth-
ods is more obvious. Although the fastest execution time
is achieved, the simple zigzag and spiral techniques link-
ing the pair by straight lines and outer-wise order produce
higher cost weights and lead to larger overlapped areas. The
evolutionary Grid-based TSP strategy achieves the second-
best method with lower path lengths and overlapping rate.
However, determining the near-optimal solution utilizing the
TSP strategy has several drawbacks in path execution time
when dealing with larger map layouts consisting of many
gridpoints. This data confirms that the proposed method is
suitable for dynamic and cluttered workspaces. Further ana-
lyzing the numerical data, we can notice as follows. The
execution time of the proposed method grows linearly as
the percent of obstacles increases. This is because the pro-
posed algorithm’s running time is proportional to the number
of decomposed cells, while the Grid-TSP method depends
on the number of grid points. Nevertheless, the proposed
RL-based approach achieves both outperform in numerical
values of path length and overlapping rate. The proposed
method’s path length and overlapping rate are slightly about
1.1% and 1.2%, respectively, less than the Grid-TSP strategy
as the second-best approach. Moreover, the proposed method
yields a significantly smaller value in execution time, with
12 times lower than the second-best approach and 30 times
higher than the conventional coverage techniques.

In the second experiment, we studied the proposed
method’s scalability by increasing the map layouts
1 ∼ 10 times the original size while maintaining their obsta-
cle shapes and numbers as the same in the first experiment.
Table 3 presents the average comparison results of the second
experiment on the scalability of the proposed approach. From
experimental data in the given Table, the significantly outper-
formed results of the proposed method in comparison with
other methods still present for the terms of path length and
overlapping rate despite the average numerical achievements
are slightly reduced to numerical values of 0.8% and 0.9%,
respectively. Moreover, the Grid-TSP method’s execution
time grows exponentially when the map layout size increases
while the running time of the proposed approach remains
the same as the first experiment, slightly increased by only
1.4 times.

VI. CONCLUSION
In this paper, we have presented the recursive CPP frame-
work, which generates an efficient trajectory to cover the
predefined grid-based workspace leveraging cell decompo-
sition and state of the art RL-TSP techniques. The proposed
method was validated in simulation environments with the
three metrics. Although the proposed approach’s execution
time does not achieve the lowest value compared to con-
ventional methods, our approach outperforms the benchmark
methods in terms of path length and overlapping rate, which
are the essential metrics in offline coverage path planning.
The numerical results achieved by the proposed recursive
TSP-based CPP are consistent for all tested map layouts
with different sizes and obstacle settings and prove that it is
feasible to deploy in real environments.

Our future work will focus on 1) redesigning the reward
strategy to reduce the number of turns in the coverage path,
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2) extending to online CPP with the integration of SLAM,
3) expand the proposed approach into a multi-robot coverage
system, 4) explore better cell decomposition techniques to
reduce the number of decomposed cells in the proposed
method, 5) implementing the latest RL optimization algo-
rithms to advance the training results and 6) testing the
method in real environments.

ACKNOWLEDGMENT
The authors would like to thank T. T. Tun for insightful
comments and discussion.

REFERENCES
[1] A. V. Le, N. H. K. Nhan, and R. E. Mohan, ‘‘Evolutionary algorithm-based

complete coverage path planning for tetriamond tiling robots,’’ Sensors,
vol. 20, no. 2, p. 445, Jan. 2020.

[2] A. V. Le, R. Parween, R. E. Mohan, N. H. K. Nhan, and R. E. Abdulkader,
‘‘Optimization complete area coverage by reconfigurable hTrihex tiling
robot,’’ Sensors, vol. 20, no. 11, p. 3170, Jun. 2020.

[3] E. Galceran and M. Carreras, ‘‘Efficient seabed coverage path planning
for ASVs and AUVs,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 88–93.

[4] I. A. Hameed, D. Bochtis, and C. A. Sørensen, ‘‘An optimized field
coverage planning approach for navigation of agricultural robots in fields
involving obstacle areas,’’ Int. J. Adv. Robot. Syst., vol. 10, no. 5, p. 231,
May 2013.

[5] A. Le, P.-C. Ku, T. T. Tun, N. H. K. Nhan, Y. Shi, and R. Mohan,
‘‘Realization energy optimization of complete path planning in differential
drive based self-reconfigurable floor cleaning robot,’’ Energies, vol. 12,
no. 6, p. 1136, Mar. 2019.

[6] P. Veerajagadheswar, K. Ping-Cheng, M. R. Elara, A. V. Le, and M. Iwase,
‘‘Motion planner for a tetris-inspired reconfigurable floor cleaning robot,’’
Int. J. Adv. Robot. Syst., vol. 17, no. 2, pp. 1–27, 2020.

[7] Y. Shi, M. R. Elara, A. V. Le, V. Prabakaran, and K. L. Wood, ‘‘Path
tracking control of self-reconfigurable robot hTetro with four differential
drive units,’’ IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3998–4005,
Jul. 2020.

[8] M. A. V. J. Muthugala, A. V. Le, E. S. Cruz, M. R. Elara,
P. Veerajagadheswar, andM. Kumar, ‘‘A self-organizing fuzzy logic classi-
fier for benchmarking robot-aided blasting of ship hulls,’’ Sensors, vol. 20,
no. 11, p. 3215, Jun. 2020.

[9] V. Prabakaran, A. Vu Le, P. T. Kyaw, R. E. Mohan, P. Kandasamy,
T. N. Nguyen, andM. Kannan, ‘‘Hornbill: A self-evaluating hydro-blasting
reconfigurable robot for ship hull maintenance,’’ IEEE Access, vol. 8,
pp. 193790–193800, 2020.

[10] A. V. Le, A. A. Hayat,M. R. Elara, N. H. K. Nhan, andK. Prathap, ‘‘Recon-
figurable pavement sweeping robot and pedestrian cohabitant framework
by vision techniques,’’ IEEE Access, vol. 7, pp. 159402–159414, 2019.

[11] L. Yi, A. V. Le, A. A. Hayat, C. S. C. S. Borusu, R. E. Mohan,
N. H. K. Nhan, and P. Kandasamy, ‘‘Reconfiguration during locomotion
by pavement sweeping robot with feedback control from vision system,’’
IEEE Access, vol. 8, pp. 113355–113370, 2020.

[12] K. P. Cheng, R. E. Mohan, N. H. K. Nhan, and A. V. Le, ‘‘Multi-objective
genetic algorithm-based autonomous path planning for hinged-tetro recon-
figurable tiling robot,’’ IEEE Access, vol. 8, pp. 121267–121284, 2020.

[13] E. Galceran and M. Carreras, ‘‘A survey on coverage path planning for
robotics,’’ Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, Dec. 2013.

[14] J. Palacin, T. Palleja, I. Valganon, R. Pernia, and J. Roca, ‘‘Measuring
coverage performances of a floor cleaning mobile robot using a vision sys-
tem,’’ inProc. IEEE Int. Conf. Robot. Automat., Apr. 2005, pp. 4236–4241.

[15] H. Moravec and A. Elfes, ‘‘High resolution maps from wide angle sonar,’’
in Proc. IEEE Int. Conf. Robot. Automat., vol. 2, Mar. 1985, pp. 116–121.

[16] H. Choset, ‘‘Coverage for robotics—A survey of recent results,’’ Ann.
Math. Artif. Intell., vol. 31, nos. 1–4, pp. 113–126, 2001.

[17] A. Le, M. Arunmozhi, P. Veerajagadheswar, P.-C. Ku, T. H. Minh,
V. Sivanantham, and R. Mohan, ‘‘Complete path planning for a tetris-
inspired self-reconfigurable robot by the genetic algorithm of the traveling
salesman problem,’’ Electronics, vol. 7, no. 12, p. 344, Nov. 2018.

[18] R. Parween, A. V. Le, Y. Shi, and M. R. Elara, ‘‘System level mod-
eling and control design of hTetrakis—A polyiamond inspired self-
reconfigurable floor tiling robot,’’ IEEE Access, vol. 8, pp. 88177–88187,
2020.

[19] B. Ramalingam,A. Lakshmanan,M. Ilyas, A. Le, andM. Elara, ‘‘Cascaded
machine-learning technique for debris classification in floor-cleaning robot
application,’’ Appl. Sci., vol. 8, no. 12, p. 2649, Dec. 2018.

[20] A. V. Le, R. Parween, P. T. Kyaw, R. E. Mohan, T. H. Q. Minh, and
C. S. C. S. Borusu, ‘‘Reinforcement learning-based energy-aware area
coverage for reconfigurable hRombo tiling robot,’’ IEEE Access, vol. 8,
pp. 209750–209761, 2020.

[21] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta, ‘‘Planning paths of
complete coverage of an unstructured environment by a mobile robot,’’ in
Proc. Int. Conf. Adv. Robot., vol. 13, 1993, pp. 533–538.

[22] Y. Gabriely and E. Rimon, ‘‘Spiral-STC: An on-line coverage algorithm
of grid environments by a mobile robot,’’ in Proc. IEEE Int. Conf. Robot.
Automat., vol. 1, May 2002, pp. 954–960.

[23] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, ‘‘BSA:
A complete coverage algorithm,’’ inProc. IEEE Int. Conf. Robot. Automat.,
Apr. 2005, pp. 2040–2044.

[24] A. Le, V. Prabakaran, V. Sivanantham, and R. Mohan, ‘‘Modified A-star
algorithm for efficient coverage path planning in tetris inspired self-
reconfigurable robot with integrated laser sensor,’’ Sensors, vol. 18, no. 8,
p. 2585, Aug. 2018.

[25] J. Yin, K. G. S. Apuroop, Y. K. Tamilselvam, R. E.Mohan, B. Ramalingam,
and A. V. Le, ‘‘Table cleaning task by human support robot using deep
learning technique,’’ Sensors, vol. 20, no. 6, p. 1698, Mar. 2020.

[26] S. X. Yang and C. Luo, ‘‘A neural network approach to complete coverage
path planning,’’ IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34, no. 1,
pp. 718–724, Feb. 2004.

[27] A. Manimuthu, A. V. Le, R. E. Mohan, P. Veerajagadeshwar,
N. H. K. Nhan, and K. P. Cheng, ‘‘Energy consumption estimation
model for complete coverage of a tetromino inspired reconfigurable
surface tiling robot,’’ Energies, vol. 12, no. 12, p. 2257, Jun. 2019.

[28] A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, A. V. Le,
P. Veerajagadeshwar, K. Tiwari, and M. Ilyas, ‘‘Complete coverage
path planning using reinforcement learning for tetromino based cleaning
and maintenance robot,’’ Autom. Construct., vol. 112, Apr. 2020,
Art. no. 103078.

[29] R. Bormann, J. Hampp, and M. Hägele, ‘‘New brooms sweep clean—
An autonomous robotic cleaning assistant for professional office clean-
ing,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2015,
pp. 4470–4477.

[30] R. Bormann, F. Jordan, J. Hampp, and M. Hagele, ‘‘Indoor coverage path
planning: Survey, implementation, analysis,’’ in Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), May 2018, pp. 1718–1725.

[31] K. P. Cheng, R. E. Mohan, N. H. K. Nhan, and A. V. Le, ‘‘Graph
theory-based approach to accomplish complete coverage path planning
tasks for reconfigurable robots,’’ IEEE Access, vol. 7, pp. 94642–94657,
2019.

[32] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementation. Cambridge, MA, USA: MIT Press,
2005.

[33] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.
[Online]. Available: http://arxiv.org/abs/1611.09940

[34] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 2692–2700.

[35] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[36] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[37] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[38] K. Helsgaun, ‘‘An effective implementation of the Lin–Kernighan trav-
eling salesman heuristic,’’ Eur. J. Oper. Res., vol. 126, pp. 106–130,
Oct. 2000.

[39] L. Perron and V. Furno. Or-Tools Google Version 7.2.
Accessed: Jul. 19, 2019. [Online]. Available: https://developers.
google.com/optimization/

VOLUME 8, 2020 225955



P. T. Kyaw et al.: Coverage Path Planning for Decomposition Reconfigurable Grid-Maps Using DRL Based TSP

PHONE THIHA KYAW is currently pursu-
ing the B.E. degree in mechatronics from Yan-
gon Technological University. He is currently
working as a Visit Fellow with the Robotics
and Automation Research Laboratory (ROAR),
Singapore University of Technology and Design.
His research interests include autonomous robots,
sensor fusion systems, control engineering, and
computer vision applications. He participated in
many different robotic competitions, including

First Global Challenge 2017, which was held in Washington DC, and his
Team Myanmar achieved rank six out of 163 teams.

AUNG PAING is currently pursuing the bach-
elor’s degree in mechatronic engineering with
Yangon Technological University (YTU). He is
also an Assistant Researcher with the Com-
puter Vision and Machine Learning Lab, YTU.
His research interests are in computer vision
applications, applied artificial intelligence, and
industry 4.0.

THEINT THEINT THU received the B.E. degree
in mechatronic engineering from Mandalay Tech-
nological University, in 2004, the M.E. degree
from Yangon Technological University, Myanmar,
in 2006, the Ph.D. degree in mechatronic engi-
neering from Mandalay Technological University,
in 2008, and the Dr.Eng. degree in computer
and information sciences from Nagasaki Univer-
sity, Japan, in 2018. She is currently a Professor
and Deputy Head of the Department of Mecha-

tronic Engineering, Yangon Technological University. Her research interests
include computer vision, data science, artificial intelligence, reconfigurable
systems, and parallel processing.

RAJESH ELARA MOHAN received the B.E.
degree from Bharathiar University, India, in 2003,
and the M.Sc. and Ph.D. degrees from Nanyang
Technological University, in 2005 and 2012,
respectively. He is currently an Assistant Profes-
sor with the Engineering Product Development
Pillar, Singapore University of Technology and
Design. He is also a Visiting Faculty Member
with the International Design Institute, Zhejiang
University, China. He has published over 80 papers

in leading journals, books, and conferences. His research interests are
in robotics with an emphasis on self-reconfigurable platforms as well as
research problems related to robot ergonomics and autonomous systems.
He was a recipient of the SG Mark Design Award, in 2016 and 2017,
the ASEE Best of Design in Engineering Award, in 2012, and the Tan Kah
Kee Young Inventors’ Award, in 2010.

ANH VU LE received the B.S. degree in elec-
tronics and telecommunications from the Hanoi
University of Technology, Vietnam, in 2007, and
the Ph.D. degree in electronics and electrical
from Dongguk University, South Korea, in 2015.
He is currently with theOpto-Electronics Research
Group, Faculty of Electrical and Electronics Engi-
neering, Ton Duc Thang University, Ho Chi Minh
City, Vietnam. He is also a Postdoctoral Research
Fellow with the ROAR Laboratory, Singapore

University of Technology and Design. His current research interests include
robotics vision, robot navigation, human detection, action recognition, fea-
ture matching, and 3D video processing.

PRABAKARAN VEERAJAGADHESWAR recei-
ved the bachelor’s degree in electronics and
instrumentation engineering from Sathyabama
University, India, in 2013, and the Ph.D. degree
in advanced engineering form Tokyo Denki Uni-
versity, in 2019. He is currently working as a
Research Fellow with the ROARS LAB, Singa-
pore University of Technology and Design. He
won SG Mark Design Award in 2017 for the
designing of h-Tetro, a self-reconfigurable clean-

ing robot. His research interest includes the development of complete
coverage path planning, SLAM framework and embedded control for recon-
figurable, and climbing robots. He is also a Visiting Instructor for a design
course of the International Design Institute, Zhejiang University, China.

225956 VOLUME 8, 2020


